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With the connection and integration of renewable energy, the on-load tap-
changer (OLTC) has become an important device for regulating voltage in
distribution networks. However, due to non-smooth and non-linear
characteristics of OLTC, traditional bad data identification and state estimation
methods for transmission network are limited when applied to the distribution
network. Therefore, the nonlinearity and droop control constraints of the OLTC
model are considered in this paper. At the same time, the quadratic penalty
function is introduced to realize the fast normalization of the tap position. It
proposes a two-stage bad data identification method based on mixed-integer
linear programming. In the first stage, suspicious measurements are identified
using projection statistics and maximum normalized residual methods for
preprocessing the measurement data. In the second stage, a linearization
approach utilizing hyhrid data-physical driven is applied to handle nonlinear
constraints, leading to the development of a bad data identification model
based on mixed-integer linear programming. Finally, the proposed
methodology is validated using a modified IEEE-33 node test feeder example,
demonstrating the accuracy and efficiency of bad data identification.
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1 Introduction

In the context of distribution network state estimation, the integrity of the estimation
process can be compromised by the presence of erroneous data. Such data may arise from a
variety of sources, including heterogeneous measurement instruments, sensor failures, and
communication disruptions. These inaccuracies have the potential to severely impact the
reliability and accuracy of the state estimation outcomes (Chen et al., 2021). The same time,
With the continuous integration of renewable energy sources, OLTC is increasingly being
utilized in power grid applications every year. It plays an important role in ensuring the safe
and reliable operation of distribution networks and grid dispatching (Ju and Huang,
2023).The relevant parameters of the on-load tap-changer device exhibit nonlinearity and
discreteness in mathematical models, and traditional continuous variable processing
methods may reduce the accuracy of state estimation.

Traditional methods for bad data identification primarily encompass residual search
methods (Handschin et al., 1975; Lin and Abur, 2018; Zhao and Mill, 2018), zero residual
methods (Zhuang and Balasubramanian, 1987), and estimation-basedmethods (Huang and
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Lin, 2004). These approaches are susceptible to errors such as
misjudgment and missed detection. Contemporary techniques for
bad data detection and identification predominantly include
optimization-based and intelligent algorithm-based approaches.
Among these, optimization-based methods have demonstrated a
significant capacity for accurate identification of erroneous
measurement data. A literature (Irving, 2008) proposes a robust
state estimation model based on mixed integer nonlinear
programming (MINLP). This method has high accuracy in
identifying bad data, but lacks precision in estimation.
Additionally, the model is nonconvex, nonlinear, and introduces
a large number of 0/1 integer variables, making it difficult to solve.
When the scale of the system increases, the solution efficiency de-
creases. The Schweppe-type generalized M-estimator with Huber
psi-function (SHGM) is currently a method with good robustness
(Mili et al., 1996). Introduces coefficients that reflect the lever-age
properties, which can suppress the weight of bad data in leverage
points and weaken the effect of bad data residuals in the objective
function. However, it cannot completely filter out the impact of bad
data. Existing methods need further improvement in terms of
computational efficiency, accuracy, and ability to handle bad data.

For state estimation problems involving discrete variables,
modelling and solving based on MINLP methods may have low
convergence and computational efficiency. In order to avoid solving
MINLP problems, in traditional state estimation, OLTC tap
positions are usually treated as continuous variables (Shiroi and
Hosseinie, 2008), which may lead to biases in the estimated results
due to mismatch with the actual operating characteristics of OLTC.
The literature (Korres et al., 2004; Teixeira et al., 1992; Handschin
and Kliokys, 1995) presents, in addition to the traditional treatment
of continuous variables, using rounding or sensitivity analysis to
round the tap positions to integers. These integer values are then
taken as known parameters and used in the state estimation problem
to solve state variables such as voltage magnitude and phase angle.
The literature (Maalouf et al., 2013) develops a mixed integer
quadratic programming model with discrete variables, which can
effectively address the tap position rounding issue with high
accuracy, although the approach is more complex. Furthermore,
the literature (Nanchian et al., 2017) applies a hybrid particle swarm
optimization method to solve MINLP problems that involve discrete
tap positions, but the algorithm has a long computation time and
low efficiency.

To address the challenges of nonlinearity and low efficiency in
bad data identification for OLTC discrete variables, this paper
introduces a two-stage bad data identification method utilizing a
positive curvature quadratic penalty function to facilitate rapid
adjustment of OLTC tap positions. This method enhances
solution efficiency while maintaining the accuracy of
identification. The main contributions are as follows:

1) In order to improve the accuracy of bad data identification, an
optimization-based method for bad data identification is
proposed in this paper. This method can accurately and
effectively identify the presence of bad data in the
measurement data, demonstrating a good
identification accuracy.

2) To cope with the issue of low efficiency in solving traditional
MINLP models due to a large number of discrete and

nonlinear constraints, this paper presents a two-stage bad
data identification model based on mixed integer linear
programming (MILP). In the first stage, all measurements
are distinguished using projection statistics and maximum
normalized residual methods, generating a reduced set of
suspicious measurements. In the second stage, a
linearization model based on hyhrid data-physical driven is
proposed to linearize nonlinear constraints, leading to aMILP-
based bad data identification method that significantly
improves the accuracy and efficiency of bad data identification.

The organizational structure of this paper is as follows: Section 2
introduces the method of identifying leverage points and suspicious
measurement bad data based on projection statistics and maximum
normalized residual method, and obtains the reduction of suspicious
measurement set; Section 3 introduces the traditional MINLP bad
data identification model, and proposes a hyhrid data-physical
driven linearization model considering OLTC constraints, and
constructs a bad data identification model based on MILP;
Section 4 illustrates the experimental at IEEE-33 node test feeder;
Section 5 provides the conclusion.

2 Stage 1: reduction of suspicious
measurement set

In this paper, the reduced suspicious measurement set mainly
consists of two parts. The first part involves the identification of
leverage points through the use of projection statistics, while the
second part involves the identification of suspicious measurements
in non-leverage points using the maximum normalized residual
method. The detailed explanation of the two algorithm processes is
provided below.

2.1 Identification of leveraged
measurements using projection statistics

This subsection describes the mathematical model for
identifying leverage points based on projection statistics. Firstly,
the connotation of leverage points and their impact on state
estimation are introduced. Currently, there are two types of
definitions for leverage points. As shown in Figure 1, the first
type is based on regression model analysis, while the second type
is based on the analysis of diagonal elements of the hat matrix. The
difference between the two methods is as follows: The first type
constructs a factor space composed of the measurement Jacobian
matrix and the measurement vector, obtaining the distribution of
row vectors in each group of measurement Jacobian matrix and the
measurement vector in the factor space, and identifies outliers as
leverage points; the second type is based on residual sensitivity
analysis, namely, determining whether the measurement residual
increases significantly when there is a large measurement error in
the system, and identifying measurements where the measurement
error cannot be positively fed back to the measurement residual as
leverage points.

The first method based on regression model analysis is
introduced as follows. The first-order Taylor expansion is
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performed at the initial value point x0 and the approximate
expression of the measurement error is obtained as follows:

Δzi � HiΔx + ei (1)
Where, Δzi is the error between the true measurement value and

the measurement vector; Hi represents the ith row element of the
Jacobian matrix H; Δx represents the error between the current
estimated value of the state variable and the initial value.

The above Equation 1 is called the regression analysis model in
statistics. Δzi is the output of the regression analysis model, Δx are
the regression variables, and H is the coefficient matrix of the
regression analysis. (Δzi,Hi) represents a point in the factor
space and also indicates the relationship between the
measurement vector and the true value, as well as the state
variables. The regression factor is defined as, in the m × n
dimensional Jacobi matrix, there is a total of m Hi,and the
elements of each Hi correspond to an n-dimensional space
coordinate, then they are all located in this n-dimensional space.
These coordinates are called the corresponding measured factors,
and the n-dimensional space is the factor space of the
regression analysis.

Due to the system network parameters, measurement errors,
and other reasons, abnormal values may appear in the above
factor space, that is, the data is quite different from other data,
and it is shown as outliers in the two-dimensional space. When
outliers appear in the Y-space ’ of the factor space, that is, in the
ordinate axis ’ Δzi ’ direction, they are bad data in the
conventional sense of state estimation. When the outliers
only appear in the ’ X-space ’ of the factor space, that is, in
the ’ hi ’ direction of the abscissa axis, the corresponding
measurement is leverage measurement; when the outliers
occur in ’ X-space ’ and ’ Y-space ’ at the same time, the
corresponding measurement is the leverage measurement bad
data. In the state estimation of power system, the leverage
measurement is determined by the network topology, line
parameters, measurement position and the meter error of the
measurement instrument. Once the system network parameters
are determined, whether the leverage measurement will become
the inherent attribute of a certain measurement will not change

with the change of the state variables and measurement values of
the system.

To identify outliers in the “X-space,” that is, to identify
anomalies in the row vectors of the Jacobian matrix compared to
other row vectors, this can be achieved by calculating distance
measures between the individual row vectors. The Mahalanobis
distance and other similar distance measures based on this can be
used to calculate the distances between the row vectors. The criterion
of such methods is to compare the distance between the row vectors
with a set threshold. Measurements greater than this threshold are
considered leverage measurements. The threshold setting criterion is
to designate measurements that are far from most other
measurements as leverage measurements. However, in cases
where there are multiple leverage measurements in a system,
problems may arise due to mutual masking between the leverage
measurements, causing this type of method to potentially struggle to
accurately identify systems with multiple leverage measurements.

The second method based on residual sensitivity analysis is
introduced as follows. The estimation of the measurement error
based on the least square method is defined as Δẑ, and the matrix
expression is as follows.

Δẑ � H HTR−1H( )−1HTR−1Δz
W � H HTR−1H( )−1HTR−1{ (2)

Where, W is defined as a hat matrix.
When Equations 1, 2, the measurement residual is defined as the

difference between the measured value and the estimated
measurement vector, which can be equivalent to the error
between the estimated measurement error value Δẑ and the
measurement error value.

r � Δz − Δẑ � I −W( )Δz � SΔz (3)
In the equation, I is the identity matrix with diagonal elements

equal to 1 and off-diagonal elements equal to 0; S defines the residual
sensitivity matrix, with its matrix expression shown as shown in
Equation 4:

S � I −H HTR−1H( )−1HTR−1 (4)

FIGURE 1
Dy11 on-load tap changer equivalent model.
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The hat matrix W has the property of idempotence, where the
matrix elements satisfy as shown in Equation 5:

Wii � W2
ii +∑

i≠j
W2

ij (5)

From the above equation, Based on Equation 3, we know that
when the diagonal elements of are close to 0. If the measurement
error is large and the diagonal elements of the multiplication of the
sensitivity matrix remains very small, indicating that the
measurement error cannot be reflected in the residual of the
measurement, then define this type of measurement as a leverage
measurement. Furthermore, the leverage measurement can also be
determined by comparing with its expected value to assess its
relative magnitude.

The expected value is calculated as shown in Equation 6:

�W � E Kii[ ] � 1
m
∑m
i�1
Kii � 2n − 1

m
(6)

If Wii ≫ �W,it is determined that the measurement
corresponding to the diagonal element is determined to be a
leverage measurement. On the basis of empirical experience, it is
generally considered that when Wii ≥ 2 �W, the measurement is a
leverage measurement.

To avoid the difficult identification of leverage measurements
that may arise from the two aforementioned methods, this paper
adopts a method based on projection statistical values for the
identification of leverage measurement. This method circumvents
the calculation problem of the covariance matrix and directly utilizes
the projections of the row vectors of the Jacobian matrix onto the
relevant subspace to identify leverage measurements. First, calculate
the projection statistical values for all measurements, with the
calculation formula as follows:

PSi � max
k

HiHT
k

∣∣∣∣ ∣∣∣∣
Sk

(7)

Where PSi represents the statistical projection value for
measurement i, Hi represents the i-th element of the Jacobian
matrix H; HT

k represents the transpose of the k-th element of the
Jacobian matrix H; Sk represents the covariance of Hi and HT

k .
The calculation formula for Sk is given by the

following equation:

Sk � 1.1926 lomed
i

lomed
j≠i

HiH
T
k +HjH

T
k

∣∣∣∣ ∣∣∣∣ (8)

Where, lomed is defined as [(m + 1)/2], [x] represents the value
of the integer part of n. For example,: m � 6, [(m + 1)/2] � 3.

After calculating the projection statistical values corresponding
to each measurement based on Equations 7, 8, compare them
numerically with the projection statistical cutoff values. Under a
Gaussian distribution, the projection statistics typically follow a Chi-
square distribution, satisfying Equation 9:

bi � χ2v,0.975 (9)

Where, bi is the calculated cutoff value.
When comparing the calculated projection statistical values with

the cut off values, you can determine whether the measurement is a
leverage measurement based on the comparison results.

Di � PSi · /bi( )> 1 (10)

If the calculated projection statistical value D for measurement i
satisfies Equation 10, then measurement i is determined to be a
leverage measurement. The calculation of projection statistical
values only involves simple algebraic operations and does not
require matrix inversion. Therefore, even in cases where the
Jacobian matrix is very sparse, accurate identification of leverage
measurements can be achieved in a system with multiple leverage
measurements.

2.2 Identification of suspicious bad data
usingmaximumnormalized residualmethod

As the calculation of residuals is approximate to the error values,
it may not be able to detect bad data. By using standardized
residuals, a more accurate method for identifying bad data can
be obtained. The normalized residual value for measurement i can
be obtained by dividing the residual value by the corresponding
diagonal element in the residual covariance matrix.

rNi � ri| |���
Ωii

√ � ri| |����
RiiSii

√ (11)

In Equation 11: rNi represents the normalized residual value; R
represents the measurement error covariance matrix; S represents
the sensitivity matrix;Ω represents the residual covariance matrix; r
represents the residual value.

Ωii � Rii − hi · Ti 1≤ i≤m (12)
In Equation 12:Ω is the residual covariance matrix, T � G−1HT,

G is the gain matrix, The calculation formula of G is G � (HTR−1H)
, Rii � σ2i represent the measurement variance matrix of the error i.

When solving the weighted least squares state estimation, the
residual value can be calculated. The calculation formula is as shown
in Equation 13:

r � z − h x( ) (13)
For non-leverage measurement, the normalized residual vector

rN obeys the standard normal distribution, As Equation 14:

rNi ~ N 0, 1( ) (14)

Therefore, the maximum element in rN is compared with the
statistical threshold to determine the existence of suspicious
measurement bad data. The threshold can be selected according
to the required detection sensitivity level.

3 Stage 2: bad data identification based
on mixed integer linear programming

In order to improve the solving efficiency of the traditional
MINLP model, the hybrid data-physical-driven linearization
model is first applied to linearize the non-linear constraints in
the state estimation of on-load tap changer in transformers.
Subsequently, an MILP-based bad data identification model is
constructed. The following provides a detailed description of the
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linearization process and the construction of the
optimization model.

3.1 Bad data identification based on MINLP

The traditional MINLP-based bad data identification model is
represented as follows:

min ∑m
i�1
bi (15)

s.t. c x( ) � 0 (16)
hi x( ) − zmi ≥ − 3σ i −Mbi (17)
hi x( ) − zmi ≤ 3σ i +Mbi (18)

In Equations 15–18: c(x) represents equality constraints,
including balanced node phase angle constraints, injection
equality constraints, and load tap transformer droop control
constraints., and hi(x) represents nonlinear measurement
equations, including node voltage amplitude measurement
equations, branch current amplitude square measurement
equations, branch active power measurement equations, and
branch reactive power measurement equations. zmi represents
measurement values, M is a large positive number, taken as
10,000 in this paper. bi is a binary variable. When bi equals 0, it
indicates that measurement i is not bad data, and the corresponding
measurement equation inequality constraint is effective. When bi
equals 1, it can be determined that the measurement corresponding
to i is bad data, and the corresponding measurement equation
inequality constraint is invalid.

The bad data identification method based on mixed integer can
overcome the problem that the residual method is difficult to
identify the bad data of the multi-leverage measurement system,
and has high identification accuracy. However, due to the serious
non-convex nonlinearity of the model, the requirement for the
solver is high, and the computational efficiency of the model
solution is low.

3.2 The hybrid data-physical-driven
measurement equation linearization model

3.2.1 OLTC model considering non-smooth
control characteristics

OLTC includes two parts, “transformer” and “tap changer.”
Unlike traditional transformers, an OLTC sets the tap position as an
unknown variable during modelling. By controlling the amplitude of
the secondary side voltage to meet a certain dead band range, the
OLTC adjusts the tap position to maintain the voltage level at the
load center within a certain error range, thereby enhancing the
power quality for the user. This paper proposes a droop control
model for the OLTC, where the amplitude of the secondary side
voltage and the tap turns ratio of the OLTC align with the droop
control curve.

Define the column name of the nodal association matrix to
represent the node i − a, i − b, i − c, j − a, j − b, j − c,the line name
corresponds to the branch connected to i − a,the branch connected

to j − a,the branch connected to i − b,the branch connected to
j − b,the branch connected to i − c,the branch connected to
j − c,where i、 j represent node; a、 b、 c represented by three
phases of each node. The nodal correlation matrix is as shown in
Equation 19:

node

C � branch

1 −1
1

1 −1
1

−1 1
1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (19)

Where represents the association between a branch and a node,
with its direction flowing out of the node; and represents the
association between a branch and a node, with its direction
flowing into the node.

Taking phase A as an example, according to the law of energy
conservation on the primary and secondary sides of the transformer,
the voltage and current on the winding satisfy the following
relationship:

_Ii−a
_Ij−a

� − 1
ta

_Ui−a
_Uj−a − _Ij−a/ya

� ta

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (20)

Here, _Ii−a and _Ij−a represent the branch currents flowing
through the branches connected by i − a and j − a, respectively.
ya � 1/(Ra + jXa) represents the equivalent internal impedance
of phase A of the transformer, ta represents the turns ratio
of phase A.

The relationship between branch current and node voltage is
expressed as shown in Equation 21:

_Ii−a � − 1
ta
_Ij−a

� − 1
ta

_Uj−a −
_Ui−a
ta

( )ya

� ya

t2a
_Ui−a − ya

ta
_Uj−a

_Ij−a � _Uj−a −
_Ui−a
ta

( )ya

� −ya

ta
_Ui−a + ya

_Uj−a

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(21)

Equation 20 is expressed as a matrix as shown in Equation 22:

_Ii−a
_Ij−a

[ ] �
ya

t2a
−ya

ta

−ya

ta
ya

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ _Ui−a
_Uj−a

[ ] (22)

Similarly, the relationship between the branch current and node
voltage for phases B and C is derived, and the relationship between
the three-phase branch current and voltage is ultimately obtained
as follows:
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_I � Ypr
_U

Ypr �

ya

t2a
−ya

ta

−ya

ta
ya

yb

t2b
−yb

tb

−yb

tb
yb

yc

t2c
−yc

tc

−yc

tc
yc

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

In Equation 23: _I � [ _Ii−a _Ij−a _Ii−b _Ij−b _Ii−c _Ij−c ]T represents
the branch current matrix of the OLTC, _U �
[ _Ui−a _Uj−a _Ui−b _Uj−b _Ui−c _Uj−c ]T represents the node voltage
matrix of the OLTC; Ypr is defined as the original admittance
matrix; tb, tc respectively represent the B and C phase
transformation turns ratios.

By combining the original admittance matrix with the node-
branch incidence matrix, the node admittance matrix is obtained
from the following equation:

Ybus � CTYprC

The branch power connected to each node is calculated using the
node injection power expression as shown in Equations 24 and 25:

PReg
i−φ � Ui−φ ∑

β�A,B,C
Uj−β GReg

ij−φβ cos θij−φβ + BReg
ij−φβ sin θij−φβ( )[ ] (24)

QReg
i−φ � Ui−φ ∑

j�A,B,C
Uj−β −BReg

ij−φβ cos θij−φβ + GReg
ij−φβ sin θij−φβ( ) (25)

GReg
ij−φβ and BReg

ij−φβ represent the real and imaginary parts of the
corresponding elements in the node admittance matrix Ybus of the
on-load tap changer, GReg

ij−φβ represents the mutual conductance
between node i − φ and node j − β, BReg

ij−φβ represents the mutual
susceptance between node i − φ and node j − β; The row name and
column name of Ybus are expressed as: node i − a, i − b, i − c, j − a,
j − b, j − c.

The following describes the modelling of the regulator part
in Figure 2.

The tap position of OLTC are regulated through a control
circuit. When voltage control, direct control cannot be carried
out on the high-voltage circuit. Therefore, voltage and current
transformers are used to construct a simulated circuit - the
control circuit. The control circuit is a proportional model of the
actual line. For example, if the actual line transformer has a
secondary side rated at 2.4 kV, the control circuit operates at a

FIGURE 2
Detailed schematic diagram of OLTC voltage regulator part.
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voltage level of 120 V. By monitoring the voltage of the control
circuit, the voltage at the load center of the actual line can be
determined. If the voltage is below the normal level, indicating that
the voltage at the loading center is below the position of the normal
level, the tap changer is adjusted to raise the voltage at the loading
center. For three-phase supply voltages below 10 kV, the allowable
deviation is 7% of the rated voltage. For single-phase supply voltages
of 220 V, the allowable deviation is +7% and −10% of the rated
voltage. Rkj,eq and Xkj,eq are the proportional impedances of the
actual line in the control circuit and are typically known quantities.

For the control circuit, the current rating of the primary winding
of the current transformer is set asCTP, and the current rating of the
secondary winding is set as CTS (usually taken as 5). The voltage
transformer turns ratio is set asNPT. First, according to Ohm’s law,
the equivalent impedance of the three-phase line is calculated as
shown in Equation 26:

Rline + jXline �
_Uk − _Uj

_Ikj
(26)

It should be noted that the equivalent impedance of the three-
phase line is not the actual line impedance; it is the turns ratio of the
actual measured voltage on the secondary side to the load center
voltage difference to the load side current under the rated turns ratio.

The equivalent impedance of the line compensator is calculated
from the equivalent impedance of the three-phase line as Rkj,eq、

Xkj,eq using the formula as shown in Equation 27:

Req,kj + jXeq,kj � Rline + jXline( ) · CTP

NPT · CTS
(27)

The current in the compensator branch is obtained from the
actual line current _Ikj and the current transformer _Ikj,eq.

_Ikj,eq � _Ikj · CTS

CTP
(28)

In Equation 28: _Ikj � [ _Ikj−a _Ikj−b _Ikj−c ]T represents the three-
phase current in the line.

The voltage difference _Udrop of the compensator branch is
obtained as shown in Equation 29:

_Udrop � Rkj,eq + jXkj,eq( ) · _Ikj,eq (29)

Finally, the control voltage of the compensator branch is as
shown in Equation 30:

_Ur �
_U3

NPT
− _Udrop (30)

Applying the droop control to the control voltage and tap
changer turns ratio, taking phase A as an example, the principle
of droop control for the OLTC is introduced. Define Δta, Δtb, Δtc as
the adjustment amounts of the tap changer turns ratio for phases A,
B, and C relative to their respective initial turns ratios, and add to the
objective function as shown in Equation 31:

min Δt2a + Δt2b + Δt2c( ) (31)

The physical meaning of the above equation is that when the
control voltage is within the dead zone, the OLTC tap position
remains unchanged.

The Δta − Ur−a droop control function of the variation in the
variable turns ratio variation and the control voltage is shown in
Equation 31:

Δta �

Δtmax − Δt0 Umin ≤Ur−a <Ul

kdr1 Ur−a − Udbl( ) Ul ≤Ur−a ≤Udbl

0 Udbl <Ur−a <Udbh

kdr2 Ur−a − Udbh( ) Udbh ≤Ur−a ≤Uh

tmin − Δt0 Uh <Ur−a ≤Umax

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (32)

The relationship between Δta and the control voltage Ur−a
satisfies the following curve in Figure 3:

Where, Δtmax and Δtmin respectively represent the upper and
lower limits of the variation in turns ratio Δt; Δt0 represents the
change in tap position corresponding to the initial turns ratio; Udbh

and Udbl respectively represent the upper and lower bounds of the
voltage dead zone; Uh and Ul respectively represent the upper and
lower bounds of the voltage droop control curve; Umax and Umin

respectively represent the upper and lower bounds of the bus voltage
magnitude; kdr1 and kdr2 respectively represent the droop control
coefficients, and kdr1 < 0, kdr2 < 0 . When the voltage Ur−a is within
the dead zone range, the OLTC does not actuate, and the variation in
turns ratio is 0.

The relationship between the droop control coefficient and the
variation in the turns ratio and the voltage is as shown in
Equation 33:

kdr1 � Δtmax

Ul − Udbl

kdr2 � −Δtmin

Udbh − Uh

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (33)

From Figure 3, it can be seen that the characteristic curve
represents a piecewise function. When the system operates near
the turning point, the derivative is discontinuous, the algorithm
search direction is uncertain, and it is difficult to smoothly switch
operating curves, so the piecewise droop control function has strong
non-smooth characteristics and is difficult to solve. Usually, mixed
integer nonlinear programming is used to describe piecewise
function control characteristics, but this method has low
computational efficiency. In this paper, a fitting function is used
to approximate the piecewise function, and the fitted droop control
function is shown in Equation 34:

Δta � Δtmax + kdr1
α

ln 1 + eα Ur−a−Ul( )( ) − ln 1 + eα Ur−a−Udbl( )( )[ ]
+kdr2

α
ln 1 + eα Ur−a−Udbh( )( ) − ln 1 + eα Ur−a−Uh( )( )[ ] (34)

Where, α is the fitting coefficient, set α � 500 in this paper.
Approximately fitting the piecewise droop control function

can transform it into a smooth function that is continuously
differentiable, as shown in Figure 4. The smoothing function can
avoid sudden changes in derivative order during algorithm
iteration calculations, thus improving the convergence of
the algorithm.

The variation of the ratio of the voltage regulator and the tap
variable satisfies the relationship is shown in Equation 34:

Δta � xd−a · Δd (35)
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In the equation, xd−a is the phase A tap-changer variable; Δd is
the turns ratio change corresponding to a 1-tap adjustment, which is
typically taken as Δd � 0.00625 p.u. in distribution networks.

In this paper, the discrete tap-changer variable is first treated as a
continuous variable for state estimation calculations to obtain a
continuous optimal solution for state estimation. Subsequently, a
positive curvature quadratic penalty function is introduced in the
objective function, and the state estimation is continued using the
continuous optimal solution as the initial value to obtain an integer
solution for the tap-changer setting.

Taking phase A as an example, the positive curvature quadratic
penalty function is shown in Figure 5. xd0、 xd1、 xd2 are any three
continuous discrete component values. Define the neighborhood
R(xd−a) as shown in Equation 36:

R xd−a( ) � xd−a
∣∣∣∣∣∣∣xd1 − 1

2
Δd≤xd−a ≤xd1 + 1

2
Δd{ } (36)

Where, xd1 is the neighborhood center, which is the closest
discrete grading value determined according to the continuous
optimal solution.

FIGURE 3
Voltage regulation control curve showing the variation of the turns ratio with control voltage droop.

FIGURE 4
Derivative comparison diagram before and after fitting.
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In the optimization process, when the value of xd−a is in the
neighborhood of the above definition, the penalty function ε(xd−a)
is introduced:

ε xd−a( ) � 1
2
μd xd−a − xd1( )2 (37)

In the equation, μd is the penalty factor, a known quantity; the
penalty function will force xd−a within the neighborhood to
approach the neighborhood center. From Equation 37, we can
obtain the first and second derivatives of the quadratic penalty
function within the neighborhood.

∂ε xd−a( )
∂xd

� μd xd−a − xd1( )

∂2ε xd−a( )
∂xd

2 � μd

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (38)

From Equation 38, it can be observed that for the Newton
method, the introduction of a penalty function in the objective
function will result in the incremental inclusion of the first and
second derivative terms in the Jacobian matrix and the Hessian
matrix during the optimization iteration. Through this procedure,
not only can rapid convergence of OLTC tap positions be achieved,
but also the positive definiteness of the iteration matrix can be
strengthened, thereby improving algorithm convergence. From a
perspective in the field of power systems, this approach enables
efficient adjustment of OLTC tap positions and enhances algorithm
convergence by modifying derivative terms in iterative matrices.

3.2.2 Hybrid data-physical-driven linearization
Nonlinear constraints in themodel of OLTCmainly fall into two

categories: the first category is branch power constraints; the second
category is droop control nonlinear constraints. Due to the
introduction of the unknown variable t of the voltage regulator
in the branch power constraint and the logarithmic function in the
droop control nonlinear constraints, the aforementioned physical
linearization methods are no longer applicable. In this paper, it is
proposed to utilize a first-order Taylor expansion for physical
linearization, followed by using Partial Least Squares Regression
(PLSR) to calculate compensation errors, resulting in the
development of a hybrid data-physical-driven Linearization model.

Firstly, introduce the principle of linearization of power
constraints. For ease of description, define the relationship
between the branch power of the transformer and the variables
as shown in Equation 39:

PReg
i−φ � fP

i−φ XReg( )
QReg

i−φ � fQ
i−φ XReg( )

XReg � θi−ABC Ui−ABC θj−ABC Uj−ABC tABC[ ]T
⎧⎪⎪⎨⎪⎪⎩ (39)

WhereXReg represents the variables of the on-load tap-changing
transformer, composed of the phase angle and voltage magnitude of
the primary and secondary sides, and the three-phase turns ratio;
fP
i−φ and fQ

i−φ respectively represent the functional relationships
between the active and reactive power of phase φ branch and the
variables of the on-load tap-changing transformer.

The first-order Taylor expansion is performed at the initial point
XReg,0 of the variable, as shown in Equation 40:

fP
i−φ XReg( ) ≈ fP

i−φ XReg,0( ) + fP′
i−φ XReg,0( ) · XReg −XReg,0( ) + ΔPReg

i−φ
fQ
i−φ XReg( ) ≈ fQ

i−φ XReg,0( ) + fQ′
i−φ XReg,0( ) · XReg −XReg,0( ) + ΔQReg

i−φ

⎧⎨⎩
(40)

In the equations, fP′
i−φ and fQ′

i−φ represent the partial
derivatives of the active and reactive power functions of the
phase φ branch with respect to each variable in XReg; ΔPReg

i−φ and
ΔQReg

i−φ respectively represent the compensating errors of the active
and reactive power of the phase φ branch, and the compensating
errors are also calculated using the PLSR method.

Next, the linearization principle of the droop control function of
the OLTC is introduced. Similar to the linearization principle of
branch power, the functional relationship between the turns ratio
change and the control voltage is defined in Equation 41:

Δt � fΔt Ur( ) (41)
Where, fΔt represents the functional relationship between the

variable ratio variation and the secondary side control voltage.
The first-order Taylor series expansion is performed at the initial

value point Ur,0 of the variable, as shown in Equation 42:

fΔt Ur( ) ≈ fΔt Ur,0( ) + fΔt′ Ur,0( ) · Ur − Ur,0( ) + Δtr (42)

In the formula, fΔt′ represents the derivative of the variable
turns ratio variation function to the variable Ur ; Δtr represents the
compensation error of the variable turns ratio variation.

Then, the PLSR algorithm is used for data-driven error
compensation, the specific principle and mathematical
expressions are as follows:

The compensation error Δy of active power is defined in
Equation 43:

Δy � ξy′ + η

Δy � ΔPm
PV−φ ΔQm

PV−φ[ ]T
y′ � PPV−φ

load QPV−φ
load[ ]T

⎧⎪⎪⎨⎪⎪⎩ (43)

Among them, ξ is the coefficient matrix and η is the constant
matrix, which are obtained by PLSR fitting is the independent
variable matrix of load composition; PPV−φ

load and QPV−φ
load represent

the vectors composed of active and reactive loads of the grid-
connected node φ phase of the system.

FIGURE 5
Quadratic penalty function model.
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The independent variable set and the dependent variable set can
be obtained from the results of the power flow calculation. After
obtaining the set of independent variables R and the dependent
variable set Z, it is standardized.

R* � R − �R( )S−1R
Z* � Z − �Z( )S−1Z{ (44)

In Equation 44: R*, Z* represent the standardized independent
variables and dependent variable sets; �R and SR respectively
represent the mean and standard deviation of the independent
variable set R.

For the standardized independent variable and dependent
variable sets, the least squares regression analysis method is used
to calculate the fitting coefficients, with the knowledge in the field of
power systems:

C � PLS R*, Z*( ) (45)

η � �Z − �R

SR
C ⊙ SZ (46)

In Equations 45 and 46: C represents the regression coefficient
matrix obtained by PLSR. ξ and η represent the coefficient matrix
and the constant matrix in the linear regression equation,
respectively. Thus, the compensation error Δy can be obtained.
Finally, the correction equation of the measurement is shown in
Equation 47:

fm−p
PV−φ XPV( ) ≈ fm−p

PV−φ X0
PV( ) + ∇fm−p

PV−φ X0
PV( ) × XPV −X0

PV( ) + ΔPm
PV−φ

fm−Q
PV−φ XPV( ) ≈ fm−Q

PV−φ X0
PV( ) + fm−Q

PV−φ X0
PV( ) × XPV −X0

PV( ) + ΔQm
PV−φ
(47)

3.3 Bad data identification model based
on MILP

For the suspicious measurement set, the MILP bad data
identification model is constructed based on the hyhrid data-
physical driven linearization method as shown in Equations 48–51:

min ∑m
i�1
bi (48)

s.t. cL x( ) � 0 (49)
hLi x( ) − zmi ≥ − 3σ i −Mbi (50)
hLi x( ) − zmi ≤ 3σ i +Mbi (51)

Where, cL(x) represents the linearized equality constraint,
and hLi (x) represents the linearized measurement equation
of the line.

When zi is a normal measurement, that is, it does not belong to
the suspicious measurement set, Formulas 50, 51 in the model
should be rewritten as shown in Equations 52 and 53:

hLi x( ) − zmi ≥ − 3σ i (52)
hLi x( ) − zmi ≤ 3σ i (53)

The MILP bad data identification method is not affected by the
leverage point, and can quickly and accurately identify the bad data
in the leverage measurement.

4 Case study

Due to the need for further improvement in the accuracy and
computational efficiency of the current bad data identification
method in distribution networks, this paper proposes a bad data
identification method based on MILP model to simultaneously
address the issues of model accuracy and computational
efficiency. In this chapter, a typical low-voltage 42-node
distribution network case study is used to validate the
effectiveness of the proposed bad data identification model. The
relevant case studies are conducted on the MATLAB software
platform, utilizing an Intel(R) Core(TM) i5-10210U CPU
1.60 GHz processor. The simulation calculations are carried out
using per unit values, with a base voltage of 13.8 kV and a base power
of 100 kVA for the case study system. The state estimation
calculations are initialized in a flat start manner, with
measurement values subject to Gaussian distribution errors with
mean of 0 and variance of σ2 added to the true values. The standard
deviations for voltage measurements, branch power measurements,
and node injection power measurements are set as σ i � 0.004,
σBran � 0.008, and σNode � 0.01.

For ease of analysis, this paper selects two mathematical
indicators, the Root Mean Square Error (RMSE) and the
Maximum Absolute Error (MAE). In this paper, RMSE
represents the square root of the ratio of the sum of the squares
of errors between the estimated values and the true values to the data
dimension; MAE is generally used to measure the range of absolute
errors, i.e., the maximum absolute error between the estimated
values and the true values. The mathematical expressions for
these two indicators are as follows:

RMSE �
������������
1
n
∑n
i

xi − x̂i( )2
√

(54)

MAE � max xi − x̂i| |{ } i � 1, 2, 3 . . . (55)
In the equation, x̂i represents the true value of the state

variable xi.
To verify the model, the modified IEEE-33 node test feeder is

used to test the linearization and bad data identification model
proposed in this paper.

The schematic diagram of the modified IEEE-33 node test feeder
is shown in Figure 6. The feeder consists of 33 nodes and
32 branches. The power flow results of the system are used as
the normal measurements for the entire system, including
402 measurements, including 6 voltage magnitude measurements,
198 branch power measurements, and 198 node injection power
measurements.

4.1 Linearization accuracy comparison

Firstly, test the hybrid data-physical-driven linearization model
proposed in this paper. Based on the IEEE 33-node parameters,
training and test datasets can be generated from the AC power flow
model. The case study sets training and testing data as simulated
data randomly generated within the range of 95%–105% of the
actual load after removing outliers, with a total of 100 sets of training
samples. The measurement linearization accuracy obtained from
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three hybrid data-physical-driven methods, namely, Taylor
expansion linearization, PLSR regression, Least squares regression
(LSR) (Shao et al., 2023), and Bayesian linear regression (BLR) (Liu
et al., 2019), are compared. To facilitate analysis, the difference
between the linearized power flow results and the true values is
represented by two mathematical indicators, RMSE and MAE, as
shown in Equations 54, 55 respectively. The comparison results
in Table 1.

As shown in Table 1, the hybrid data-physical-driven
Linearization method proposed in this paper has a higher
advantage in terms of linearization accuracy. Compared to
physical-driven linearization, This method can improve the
accuracy by 108 of magnitude. Additionally, compared to data-
driven error compensation methods such as LSR and BLR, the PLSR
method used in this paper has the highest accuracy and is closer to
the results of nonlinear constraints.

4.2 OLTC tap position analysis

The OLTC tap position is verified by introducing a positive
curvature quadratic penalty function into the tap position

alignment model proposed in this paper. The tap position is
treated as a continuous variable for state estimation calculations,
obtaining a continuous optimal state estimate. The positive
curvature quadratic penalty function is introduced into the
objective function, using the continuous optimal solution as
the initial value to continue the state estimation and obtain an
integer solution for the tap position. Two different tap position
processing models for on-load tap changing are set up to verify
the effectiveness of the proposed model.

Model 1: Traditional direct treatment of the tap position as a
continuous variable.

Model 2: Tap position rounding method based on positive
curvature quadratic penalty function for OLTC.

The accuracy of voltage magnitude estimation for the two
models is shown in Table 2.

The results indicate that for the OLTC model, the method of
rounding tap positions with a positive curvature quadratic
penalty function can lead to state estimation results with
higher accuracy.

4.3 Analysis of bad data identification results

4.3.1 Comparative analysis of traditional statistical
methods for bad data identification

According to the two-stage bad data identification model
proposed in this paper, 10 bad data are set as shown in Table 3. At
the same time, the false alarm rate is set to Pe � 0.0025. By
querying the standard normal distribution table, the normal
range of normalized residuals can be obtained, and the

FIGURE 6
A modified IEEE-33 node test feeder.

TABLE 1 Comparison of the accuracy between linearization methods.

Linearization method RMSE MAE

Hybrid data-physical-driven LSR 1.36 × 10−2 0.6104

PLSR 4.326 × 10−11 3.593 × 10−5

BLR 1.4784 × 10−6 1.16 × 10−2

Physical driven linearization — 7.2 × 10−3 0.410

TABLE 2 Voltage magnitude estimation results under different OLTC tap position handling methods.

Model RMSE MAE

Phase A Phase B Phase C Phase A Phase B Phase C

Model 1 1.119 × 10−2 3.063 × 10−3 8.643 × 10−3 0.125 3.238 × 10−3 0.140

Model 2 5.405 × 10−3 4.968 × 10−4 2.944 × 10−3 0.09 3.469 × 10−2 0.094
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detection threshold τ is set to 3 and the threshold D for the
projection statistics is set to 1.

According to Table 4, among the 10 bad data, the projection
statistical method effectively identified only 8 pcs bad data,
while all other measurements with projection statistics

values greater than 1 resulted in false alarms. Similarly,
the maximum normalized residual method also failed to
accurately identify the bad data. Therefore, both traditional
statistical methods for bad data identification have certain
limitations.

TABLE 3 Detail information of the bad data and the corresponding projection statistics and normalized residual values.

Measurement number Measurement name True value (p.u.) Bad data (p.u.) Di ri

19 branch powerP2-3-a 4.693 8.9 0.422 5.367

25 branch powerP3-4-b 4.553 10 0.936 7.219

33 branch powerP3-5-b 4.006 9.65 0.690 7.704

38 branch powerP6-7-b 3.539 7.37 0.484 5.113

45 branch powerQ7-8-a 2.854 5.49 1.201 2.222

59 branch powerQ9-11-c 0.919 3.377 1.711 2.408

66 branch powerQ19-20-c 0.844 8.3 0.334 9.359

93 branch powerQ22-27-b 0.863 7.68 0.344 6.936

164 branch powerP36-38-b 0.436 5.5 0.970 9.140

172 branch powerQ39-40-c 0.045 6.7 0.251 8.354

TABLE 4 Comparison of results of different identification methods.

Identification method
Stage 1 Stage 2

Projection statistics method Maximum normalized residual method MILP

Identification result (pcs) 265 8 10

TABLE 5 Comparison of test results of different bad data identification methods.

Identification method Identification
model

Solver Identification
Result

CPU time-consuming/s

Two-Stage Test 1 CPLEX (Kia et al., 2016) True 0.546

BARON (Ghildyal and Sahinidis, 2001) True 0.702

OSICPLEX (Apland and Sun, 2019) True 0.159

OSIMOSEK (Baradar and Hesamzadeh,
2014)

True 1.234

SCIP (Vigerske and Gleixner, 2017) True 1.716

Test 2 BONMIN (Gupta and Ravindran, 1985) True 1,000.00(Over the maximum time
limit)

Single-Stage Test 3 CPLEX True 0.826

BARON True 1.362

OSICPLEX True 1.011

OSIMOSEK True 1.911

SCIP True 39.700

Test 4 BONMIN True 1,000.00(Over the maximum time
limit)
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4.3.2 Comparative analysis of single-stage and
two-stage bad data identification methods

Due to the potential for misjudgments and missed detections by
traditional statistical methods when multiple measurement bad data
points are present in the system, these methods may not accurately
identify measurement bad data. In contrast, the MILP bad data
identification model used in the second stage can accurately identify
all measurement bad data in the set identified by traditional methods
when misjudgments or missed detections occur in the first stage.
Therefore, in the first stage of this paper, all 265 lever measurements
in the system were placed into a suspicious measurement set. The
maximum normalized residual method was then used to identify the
remaining 137 measurements, thereby validating the accuracy of the
proposed bad data identification model and its efficiency compared
to the single-stage model. Four sets of tests were conducted to
compare the bad data identification method proposed in this paper
with the traditional MINLP-based bad data identification method:

Test 1: Compression of the suspicious measurement set using
the MILP-based two-stage bad data identification method proposed
in this paper;

Test 2: Compression of the suspicious measurement set using
the traditional MINLP-based two-stage bad data
identification method;

Test 3: No compression of the suspicious measurement set,
directly using the MILP-based single-stage bad data
identification method;

Test 4: No compression of the suspicious measurement set,
using the traditional MINLP-based single-stage bad data
identification method.

Models were built for both methods in the GAMS optimization
software, different solvers were called for calculation, and the results
were compared and analyzed.

According to Table 5, for the modified IEEE-33 node test feeder
case chosen in this paper, the two-stage model reduces the number
of 0/1 integer variables and improves identification accuracy.
However, for traditional MINLP-based bad data identification
models, feasible solutions could not be obtained with most
solvers, with correct results only achievable using the BONMIN
solver. In contrast, the MILP-based bad data identification model
achieved accurate identification results with most solvers. In terms
of identification efficiency, even with the two-stage model, the
MINLP identification model’s solving time reached the
computational limit of 1,000 s, and the solver exited abnormally,
indicating limited applicability. For the MILP-based bad data
identification method, using the two-stage model, the SCIP solver
improved solving efficiency by approximately 23 times, and the
CPLEX solver achieved the highest efficiency, requiring only 0.546 s.

5 Conclusion

To cope with the issue that existing traditional identification
methods do not consider the nonlinear and discrete characteristics
of on-load tap changers, making it difficult to achieve accurate and
efficient identification of bad data., This paper proposes a MILP-
based two stage bad data identification method. Detailed control
characteristics of on-load tap changers are modelled, and a positive
curvature quadratic penalty function is introduced to achieve fast

tap normalization. In the first stage, leveraging projection statistics
and maximum normalization residue methods effectively identifies
leverage points and suspicious bad data, reduces the set of suspicious
measurements. In the second stage, by linearizing nonlinear
constraints and solving bad data identification model based on
the MILP, the efficiency of the solution is greatly enhanced. The
proposed model can achieve efficient and accurate identification of
bad data, while ensuring optimal solutions by introducing penalty
functions into the objective function for effective tap normalization.
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