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The uncoordinated integration of numerous distributed resources poses
significant challenges to the safe and stable operation of distribution
networks. To address the uncertainties associated with the intermittent output
of distributed power sources, we propose a multi-objective planning strategy for
distribution networks based on distributionally robust model predictive control
(MPC). Initially, an error fuzzy set is established on a Wasserstein sphere using
historical data to enhance out-of-sample performance. Next, a multi-objective
optimization framework is constructed, balancing returns and risks, and is
subsequently converted into a single-objective solution using value-at-risk
conditions. This is followed by the implementation of multi-step rolling
optimization within the model predictive control framework. We have
linearized the proposed model using the linearized power flow method and
conducted a thorough validation on an enhanced IEEE 37-node test system.
Distributionally robust optimization (DRO) has been shown to reduce costs by a
significant 29.16% when compared to an RO method. Moreover, the energy
storage capacity required has been notably reduced by 33.33% on the 29-node
system and by 20% on the 35-node system. These quantified results not only
demonstrate the substantial economic efficiency gains but also the enhanced
robustness of our proposed planning under the uncertainties associated with
renewable energy integration.
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1 Introduction

With the advancement of new power system construction, distribution networks are
evolving toward source-network-load-storage integration and collaborative interaction
(Castro et al., 2024). The integration of large-scale distributed photovoltaic (PV)
systems with uncertain output transforms distribution networks from radial passive
structures into multi-power structures. This shift complicates power flow management
and significantly impacts operational characteristics, leading to increased planning
challenges (Zhang et al., 2023a; Esfahani et al., 2024). Addressing the capacity and
scientific management of distributed power supplies and energy storage devices has
thus become a research hotspot.
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Many scholars have explored distribution network planning
(Wang et al., 2024a; de Lima et al., 2024). For example, Pan
et al. (2023) propose a collaborative planning method for
distribution network and multi-energy systems, balancing multi-
agent interests and improving analysis and calculation efficiency.
Chen et al. (2017) introduce a multi-objective programming model
based on game theory, considering the interests of source-grid-load
multi-agents in a power market environment and using a particle
swarm optimization algorithm for iterative optimization. Wang
et al. (2022) propose a framework that considers energy storage
allocation and bi-level planning of the distribution network, and the
results show that this framework achieves low carbon emissions and
improved economics. Subbaramaiah and Sujatha (2023) propose a
multi-objective distribution network planning scheme that reduces
power losses and identifies optimal wind power locations. However,
these studies do not account for the impact of intermittent
distributed PV output, potentially overestimating the system’s
risk resilience.

Scholars have increasingly recognized the pivotal role of energy
storage in addressing the challenges of integrating high levels of
renewable energy sources (Liu et al., 2023; Ma et al., 2024). For
instance, Zheng et al. (2023) introduce an optimization framework
for energy storage allocation in distribution networks with a
significant penetration of photovoltaic (PV) systems. This
approach addresses the source-load imbalance and voltage
regulation issues, thereby reducing power losses and operational
costs. Another notable contribution is made by Zhang et al. (2024),
who present a method for the concurrent optimization of battery
storage configuration and distribution network operations. The
study demonstrates that energy storage can effectively smooth
power fluctuations and enhance the network’s resilience to fault
disturbances. Through planning, the capacity of energy storage in
the distribution network can increase the local consumption rate of
renewable energy, reduce the system operating costs, and reduce the
impact of PV uncertainty on the distribution network (Ba-swaimi
et al., 2024; Li et al., 2024a). However, the above literature does not
consider the risk assessment component in the energy storage
configuration process.

Methods such as stochastic optimization, robust optimization,
and distributionally robust optimization (DRO) are commonly used
to address the uncertainty in high-proportion renewable energy
predictions. Stochastic optimization assumes prediction errors
follow specific probability distributions and uses manageable
probability constraints (Wang et al., 2024b; Zhang et al., 2022; Li
et al., 2024b). Robust optimization finds optimal solutions under
worst-case scenarios, often resulting in overly conservative
outcomes. DRO, on the other hand, uses real data to generate
fuzzy sets and estimate distribution parameters, making it more
suitable for complex, high-dimensional, multi-constraint problems
(Skalyga et al., 2023). However, these constraints can turn the
problem into a non-convex, nonlinear stochastic optimization
challenge. Thus, a comprehensive approach that considers both
economic benefits and operational safety is required. DRO focuses
on establishing fuzzy sets with a flexible and diverse optimization
framework. The Wasserstein distance, a measure of the difference
between probability distributions, accurately describes similarities
and differences by considering shape and weight information (Lu
and Zhou, 2024).

Based on this analysis, the main contributions of this study are:
(1) We consider energy storage capacity configuration and use a
radius-controllable Wasserstein ball to construct a fuzzy set that
achieves good out-of-sample performance, mitigating data
overfitting and use distributed robust methods to balance
robustness and economy. (2) Utilizing conditional value at risk
(CVaR), we define optimization objectives for operation cost and
constraint violation risk, transforming the multi-objective problem
into a single-objective solution. (3) In order to reduce the error in PV
forecasting, we implement rolling optimization within the model
predictive control (MPC) framework.

2 Distributionally robust multi-
objective model based on a
Wasserstein sphere

2.1 Fuzzy set model based on a
Wasserstein ball

Currently, there are two primary methods to model
constraint distribution in distributionally robust optimization
(DRO). One method involves moment-based fuzzy sets, such as
unimodality (Zhang et al., 2021), symmetry (Wang et al., 2024c),
and directional derivatives (Jiao et al., 2021), where fuzzy sets are
defined as confidence intervals based on goodness-of-fit tests.
The other method treats the fuzzy set as a ball in probability
space, with the radius determined by metrics such as the
Wasserstein metric, Kullback–Leibler divergence, and
Prohorov metric.

Among these, theWasserstein distance is particularly effective in
measuring differences between two probability distributions. By
considering both the shape and weight information of the
distributions, it accurately captures the similarities and
differences between them. In this paper, we construct fuzzy sets
using the Wasserstein metric to achieve better out-of-sample
performance and enhanced flexibility with radius control.
Esfahani et al. (2024) demonstrated the effectiveness of data-
driven Wasserstein metrics in solving distributed robust
optimization re-representation problems. Inspired by this, our
study employs the Wasserstein ball to construct fuzzy sets
derived from limited prediction error data, thus achieving
controllable data sets. Assuming the uncertainty set is a
polyhedron, the prediction error ξ constitutes the data set
Π � ξ ∈ RNξ : Hξ ≤dξ{ }, as shown in Equation 1:

EQ ‖ ξ ‖[ ] � ∫
Π
‖ ξ ‖ Q dξ( )<∞, (1)

where ‖ · ‖ represents the norm, and EQ[·] denotes the expectation
operation under the Q distribution. The Wasserstein distance dw is
defined to represent the distance of all probability distributions Q of
data setΠ in spacem(Π). Let F be the set of all Lipschitz continuous
functions f, and the constant is less than or equal to 1. The
Wasserstein distance, as articulated by Equation 2, is a metric
that grows with the number of samples, causing the fuzzy set to
contract and ultimately converge to the true distribution. This
convergence offers a more accurate and realistic portrayal of PV
uncertainty (Skalyga et al., 2023). The Wasserstein distance
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∀Q1, Q2 ∈ m(Π) between the empirical distribution dw and the true
distribution is calculated as follows:

dw Q1, Q2( ) � maxf∈F
∫Πf ξ( )Q1 dξ( )
−∫Πf ξ( )Q2 dξ( )⎡⎣ ⎤⎦. (2)

The Wasserstein metric quantifies the minimum “distance”
required to morph one probability distribution into another. The
fuzzy set is delineated by encompassing all distributions within a
controllable Wasserstein radius centered on the uniform
empirical distribution derived from the training dataset, like
Equation 3.

P̂
Ns � Q ∈ m Π( ): dw P̂

Ns
, Q( )≤ γ{ }, (3)

where P̂
Ns

contains all distributions P̂
Ns in a Wasserstein sphere

with radius γ centered on the uniform empirical distribution. By
adjusting the radius γ, the ball contains a true distribution P with a
specified confidence level and good performance guarantee.

2.2 System optimization objective

The optimization goal of the system is to seek the balance
between the operation cost and risk of the distribution network.
Therefore, the objective function includes the sum of the
operating cost function Jcost and the violation constraint risk
function Jrisk, namely Equation 4:

f � Jcost + Jrisk. (4)

1) The operating cost function Jcost is calculated as follows, as
expressed in Equation 5:

Jcost � Cbuy − Csell + Cpre + Ccur + Ccar, (5)

where Cbuy, Csell, Cpre, Ccur, and Ccar are electricity purchase cost,
electricity sales income, operation, and maintenance cost,
abandoned light cost, and carbon subsidy cost, respectively.
The specific equations are expressed as Equations 6, 9
respectively

Cbuy − Csell � ∑
n∈N

at1,n Pt
l,n + Pt

B,n − 1 − αtn( )Pt
av,n[ ]

+ ∑
n∈N

at2,n Qt
l,n − Qt

av,n[ ]
+ ∑

n∈N
at3,n 1 − αtn( )Pt

av,n − Pt
l,n − Pt

B,n[ ], (6)

where Pt
l,n and Qt

l,n respectively represent the active and reactive
power load of t bus n ∈ N at the moment, N � (1, 2, 3,/, n)
indicates the bus set, Pt

av,n and Qt
av,n are the available active and

reactive power generated by PV, respectively, and Pt
B,n denotes the

charging and discharging power of the energy storage. The power
reduction factor αtn ∈ [0, 1] is used to prevent the overvoltage hazard
caused by high PV penetration. at1,n and a

t
2,n represent the active and

reactive power purchase prices, respectively, and at3,n refers to the
active power sale price.

Cpre � ∑
n∈Nav

aavP
t
av,n + ∑

n∈NB

aBP
t
B,n, (7)

where n ∈ Nav and n ∈ NB are the buses where the PV and
energy storage are located, respectively; aav and aB are
respectively the maintenance costs of unit power PV and
energy storage.

Ccur � ∑
n∈Nav

at4,n αtnP
t
av,n[ ], (8)

where at4,n represents the cost of discarding light.

Ccar � ∑
n∈N

at5,nP
t
av,n, (9)

where at5,n denotes the government’s carbon subsidy unit price for
PV power generation.

2) The violation constraint risk function Jrisk is computed
as follows:

The risk function Jrisk related to constraint violation
encompasses the sum of the CVaR of the set of network and
device constraint functions. This approach is supported by
recent research in the field of energy systems and
distribution network planning, as evidenced by Ren et al.
(2024) and Chen et al. (2024). Specifically defined by Fan
et al. (2023) and Zhang et al. (2023b), the CVaR measure is
used to quantify the tail risk imposed by uncertainties,
providing a more comprehensive assessment of risk than
traditional measures

Jtrisk � ∑Nl

i�1
CVaRβ

P li xt, ut, ξt( )[ ], (10)

where Nl is the constraint set, and β ∈(0, 1] represents the CVaR
confidence level of the random variable ξt under the P distribution.
The specific details will be derived in the next section.

2.3 System constraints

2.3.1 PV output constraint
The distributed PV is connected to the distribution

network through the inverter, and the relationship curve of
the active and reactive power output characteristics is shown
in Figure 1.

The relationship between the adjustable reactive power of the
PV inverter on bus n ∈ N and the inverter capacity Fav,n can be
expressed as follows, namely Equation 11:

���������������������
1 − αt

n( )Pt
av,n[ ]2 + Qt

av,n( )2√
≤Fav,n, n ∈ N. (11)

The reactive power output is limited by the power factor angle θn
to be Equation 12

Qt
av,n

∣∣∣∣ ∣∣∣∣≤ tan θn( ) 1 − αtn( )Pt
av,n[ ], n ∈ N, (12)

where the power factor angle θn of PV is also limited by
0< cos(θn)≤ 1.
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2.3.2 Energy storage constraints

Dt+1
es,n � Dt

es,n + ηcP
t
Bc,n

T − 1
ηd
Pt
Bd,n

T, n ∈ N, (13)

where Equation 13 demonstrates the state-of-charge constraints for
energy storage. T indicates the duration interval of (t, t + 1]; Dt

es,n

denotes the state of charge of the energy storage device on the bus n;
ηc and ηd are the charging and discharging efficiency, respectively.
Pt
Bc,n

and Pt
Bd,n

represent the charging and discharging power stored
at moment t, respectively. The charge/discharge power also satisfies
Pt
Bc,n

Pt
Bd,n

� 0. The inequality constraints of energy storage capacity
and power limit are Equation 14:

Des,n
min ≤Dt

es,n ≤Des,n
max, PB,n

min ≤Pt
B,n ≤PB,n

max, (14)

where Des,n
min and Des,n

max are the minimum and maximum capacities
of energy storage equipment, respectively; PB,n

min and PB,n
max represent

respectively the impulse and discharge power limits.

2.3.3 Distribution network model
Suppose that the distribution network with N buses,

N � 1, 2, 3,/, n, Γ ⊂ N × N represents the line connection
matrix. Let Vt

i ∈ C and Iti ∈ C denote the voltage and current at
node i at time t, i ∈ N, V t � [Vt

1, V
t
2,/, Vt

N]T ∈ CN, and
It � [It1, It2,/, ItN]T ∈ CN. Let zij ∈ Z represent the impedance
between node i and node j, then the line admittance
yij � 1/zij � gij + jbij, where gij ∈ G and bij ∈ B represent the
conductance and susceptance between nodes, respectively. The
bus bar is modeled using the Pi model, and the matrix yij of the
admittance Y ij ∈ CN×N can be expressed as Equation 15:

Y ij �
∑
l~i

yil + yii, i � j

−yij, i, j( ) ∈ Γ
0, i, j( ) ∉ Γ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (15)

where l ~ i means that the node i is connected to j. According to
Kirchhoff’s law and Ohm’s law, It � Y ijV t. Network complex power
injection can be expressed as follows:

St � V t It( )* � diag V t( ) YV t( )*, (16)

where the superscript “*” represents the conjugate operation, and the
complex power St � [St1, St2,/, StN]T can be decomposed into Sti �
Pt
i + jQt

i in the rectangular coordinate, where Pt
i and Qt

i represent the
active power and reactive power injected by the node, respectively.

3 Multi-objective planning based
on DROMPC

3.1 Dynamic characteristics with MPC

Consider Nd grid-connected devices, including a traditional
generator, an inverter-based distributed power supply, and time-
varying load. Energy storage devices, such as batteries and plug-in
electric vehicles, can be used both as generators and as loads. The
power flow of each controllable device is modeled by a discrete linear
dynamic system as follows Equation 17:

xd
t+1 � �A

d
xd
t + �B

d
ud
t , (17)

where the state variable xd
t ∈ Rnd of the device d at the time t, the

dynamic matrix �A
d ∈ Rnd×nd , and the coefficient input matrix

�Bd ∈ Rnd×md of the control variable udt ∈ Rmd . The first element of
xd
t corresponds to the output power of device d to the distribution

network at t time.
Let the control domain be H; then, the matrix form of system

evolution can be expressed as Equation 18:

xdt � Ad
t x

d
0 + Bd

t u
d
t , (18)

where xdt is the state vector, xdt � [xd1 , xd
2 ,/, xd

t ]⊤ contains all the
state variables in the control domain; udt denotes the control matrix,
and udt � [ud0 , ud1 ,/, udt−1]⊤. The calculation formulas of Ad

t and Bd
t

can be expressed as Equation 19:

Ad
t �

�A
d

�A
d( )2
..
.

�A
d( )t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,Bd

t �
�B
d 0 / 0

�A
d �B

d �B
d

/ 0
..
. ..

. ..
. ..

.

�A
d( )t−1 �Bd

/ �A
d �B

d �B
d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (19)

3.2 Linearized approximate power flow

In this paper, the linearization method of literature (Alizadeh
and Capitanescu, 2022) is used to linearize the power flow model
shown in Equation 16. In a balanced, symmetrical distribution
network, the common coupling point connected to the power
grid is denoted as node 0, serving as the bus set that connects
the load and the distributed generator.

The complex form of the node voltage is Vt
n � |Vt

n|ej∠Vt
n , and the

node injection current is expressed as Itn � |Itn|ej∠Itn , where |Vt
n| and

|Itn| correspond to the root mean square value, and ∠Vt
n and ∠Itn are

the relative phase angles of voltage and current, respectively. The
node 0 denotes the slack node, and the other nodes are the PQ nodes
that inject complex power. The admittance matrix can be
divided into

FIGURE 1
Distributed PV active and reactive power output characteristics.
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It0
It

[ ] � y00 �y⊤

�y Y
[ ] V0

V t[ ], (20)

where V0 is the slack bus voltage; It0 is the current injected into the
slack bus at time t; y00 is the self-admittance of the slack node; �y
indicates transfer admittance.

The injection power presented in Equation 20 can be formulated
as follows:

St � diag V t( ) Y* V t( )* + �y* Vt
0( )*( ). (21)

Assuming that �V � | �V |∠θ is a preset nominal voltage value, and
ΔVt represents the difference between the actual voltage and the
nominal voltage, the voltage can be expressed as V t � �V + ΔV t.
Then, Equation 21 becomes Equation 22:

St � diag �V + ΔV t( ) Y* �V + ΔV t( )* + �y*V0
*( ). (22)

Ignoring the influence of the higher-order term
diag(ΔV t)Y*(ΔV t)*, the power constraint equation is
transformed into Equation 23:

ΛΔV t +Φ ΔV t( )* � St + Ψ, (23)
where
Λ � diag(Y* �V* + �y*V0

*);
Φ � diag( �V)Y*,Ψ � −diag( �V)(Y* �V* + �y*V0

*)。
Given Λ � 0N×N and ψ � 0N, the nominal voltage is

�V � Y−1 �yV0, and the linearized power is expressed as
St � diag( �V)Y*(ΔV t)*. The voltage deviation becomes
Equation 24:

ΔV t � Y−1diag−1 �V*( ) St( )*. (24)

Let ZR be the real part of the impedance and ZI be the imaginary
part of the impedance, then Y−1 � (G + jB)−1 � ZR + jZI. Taking
M and N as the active and reactive component coefficients,
respectively, ΔV t is expanded in the form of rectangular
coordinates as Equation 25:

M � ZRdiag
cos θ( )

�V
∣∣∣∣ ∣∣∣∣( ) − ZIdiag

sin θ( )
�V
∣∣∣∣ ∣∣∣∣( )( ),

N � ZIdiag
cos θ( )

�V
∣∣∣∣ ∣∣∣∣( ) − ZRdiag

sin θ( )
�V
∣∣∣∣ ∣∣∣∣( )( ). (25)

The voltage amplitude is approximately equal to
| �V | + R(ΔV t), R(·) represents the real part operation, and I

indicates the unit matrix. Referring to the linear relationship
between voltage and power, the voltage amplitude is finally
expressed as Equation 26:

V t pt, qt[ ] � M I − diag αtn{ }( )Pt
av,n +NQt + �V

∣∣∣∣ ∣∣∣∣. (26)

The voltage constraint is shown in Equation 27:

V t pt, qt[ ] − Vmax ≤ 0,Vmin − V t pt, qt[ ]≤ 0, (27)
where Vmin and Vmax are the matrix forms of the lower
limit Vmin and the upper limit Vmax of the line voltage,
respectively.

3.3 DROMPC for distribution
network planning

In this paper, the device constraints and voltage constraints
under different times and nodes can be summarized as follows:

ER V t pt, qt[ ] − Vmax ≤ 0[ ]
ER Vmin − V t pt, qt[ ]≤ 0[ ]
ER Tt

dx
d
t + Ut

du
d
t + Zt

dξt − ωd ≤ 0[ ],
⎧⎪⎨⎪⎩ (28)

where R[·] denotes the general transformation from inequality
constraints to random form. Tt

dx
d
t + Ut

du
d
t + Zt

dξt − ωd ≤ 0 contains
various local constraints of grid-connected equipment; Tt

d, U
t
d, and

Zt
d are the coefficient matrices of equipment state variables, control

variables, and uncertain errors, respectively. ωd is a local constraint
parameter. In this paper, CVaR is used to re-describe the voltage
affine constraints, and the remaining constraints are evaluated by
sample average.

Define an affine constraint set Vt containing Nl Equation 28,
where each affine constraint can be expressed as Equation 29:

Ct
o yt, ξt( ) � �A yt( )[ ]

o
ξt + �B yt( )[ ]o, (29)

where Cto(·) is the o, o � 1,/, Nl affine constraint in Vt.
The decision variable yt includes the PV reduction variable
αtn and the controllable device setting point. The CVaR
constrained at confidence level β in A Vt is calculated as
follows Equation 30:

inf
κto

Eξt Ct
o yt, ξt( ) + κto[ ]+ − κtoβ{ }≤ 0, (30)

where κto is an auxiliary variable. The expected operation in the
above equation can be restated as Equation 31:

�Qt

o � max
k�1,2

〈�aok yt( ), ξt〉 + �bok κto( )[ ]. (31)

Because the result is the maximum of two affine functions, the
expression is convex in yt for each fixed ξt. The risk objective shown
in Equation 10 is expressed by the distributionally robust
optimization form of CVaR as follows Equation 32:

Ĵ
t

risk � ∑H
t�1
∑Nl

o�1 sup
Qt∈P̂t

Ns

EQt max
k�1,2

〈�aok yt( ), ξ̂t〉 + �bok κto( )[ ]. (32)

The above multi-objective DRO is equivalently restated as
a single-objective quadratic programming using the method
of Lin et al. (2023). The objective is to minimize the total worst-
case CVaR of the function and affine constraints. The specific form
of the subproblem of MPC is as follows Equation 33:

inf
ϖ1,n ,ϖ2,n ,
yt ,κ

t
o

∑H
t�1

E Ĵ
t

cost[ ] + sup
Qt∈P̂t

Ns

∑Nl

o�1
EQt �Qt

o][ }⎧⎪⎨⎪⎩
⎧⎪⎪⎨⎪⎪⎩

� inf
ϖ1,n ,ϖ2,n ,
yt ,κ

t
o ,

λto ,s
t
io ,ς

t
iko

∑H
t�1

E Ĵ
t

cost[ ] +∑Nl

o�1
λoγt +

1
Ns

∑Ns

i�1
stio⎛⎝ ⎞⎠⎧⎨⎩ ⎫⎬⎭

s.t. (�bok κto( ) + 〈�aok yt( ), ξ̂ it〉≤ stio ‖ ςtiko

Frontiers in Energy Research frontiersin.org05

Li et al. 10.3389/fenrg.2024.1478040

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1478040


−�aok yt( )‖∞ ≤ λtoς
t
iko ≥ 0

1
Ns

∑Ns

i�1
1 − αtn( )P̂t,i

av,n[ ]2[
+ Qt
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1,nβ

1
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n
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Equations 13( ) − 14( ), (33)
where ϖt

1,n, ϖt
2,n, and κto are auxiliary variables of CVaR, λ

t
o, s

t
io, and

ςtiko are auxiliary variables of distributionally robust Wasserstein
sphere reconstruction (Dong et al. (2024)). The power factor
constraint and apparent power constraint are processed by
sample average.

4 Simulation and discussion

4.1 System description and
parameter settings

To verify the effectiveness of the proposed optimization
framework, we conducted simulations using the improved IEEE
37-bus system, with network parameters derived from Reference
Chen et al. (2023). The modified network is a single-phase

equivalent network, as shown in Figure 2, and includes 21 PV
inverters. Table 1 lists their positions and capacities. Figure 3
displays the total available PV power and total load demand
throughout the day. The energy storage charge and discharge
efficiency are set at 90%.

In this verification case, the upper and lower limits of voltage
optimization are set to Vmin � 0.95 p.u. and Vmax � 1.05 p.u.,
respectively. The power factor is set to 0.9. The optimization
decision interval is set to 5 min. The remaining parameters are
shown in Table 2. Aiming at the difficulty and complexity of solving
the distributed robust optimization problem, the cvx convex
optimization toolbox is called in MATLAB for calculation.

4.2 Simulation results

Table 3 now includes a comprehensive comparison of energy
storage planning results using the DRO-based MPC method
proposed in this paper, along with the RO and SO methods for
the 29th and 35th nodes. The table provides specific numerical
values for the energy storage configurations obtained through each
method. Table 4 presents a detailed comparison of operating costs
under various strategic planning methods. The table now includes
exact figures for the maximum, mean, and standard deviation of
total operating costs for each method.

The quantified results, as shown in Table 3, indicate that the use
of the DROmethod leads to a 29.16% reduction in cost compared to
the RO method, with energy storage capacities reduced by 33.33%
and 20% on the 29- and 35-node systems, respectively. Furthermore,
Table 4 reveals that the DROmethod achieves maximum, mean, and
standard deviation values of total operating costs that are 12.5%,
0.75%, and 51.3% lower than those obtained using the RO method,
respectively.

These improvements are attributed to the DRO method’s
ability to utilize real data, offering more flexible and reliable
planning support. This approach avoids the excessive
conservatism and economic sacrifices associated with the RO
method, which adopts a worst-case distribution strategy, and
the SO method, which, despite using a preset probability
distribution for energy storage capacity configuration, lacks
adaptability in actual scheduling.

The SO, RO, and DROmethods are used for optimization under
the same planning scheme. Figure 4 shows the system operation cost

FIGURE 2
Curves of available PV power and total load demand.

TABLE 1 Location and capacity of PV and energy storage.

Node PV(kW)/ES(kWh) Node PV(kW)/ES(kWh) Node PV(kW)/ES(kWh)

4 150/- 17 360/- 30 360/-

7 300/- 20 450/- 31 500/-

9 300/100 22 150/- 32 330/250

10 600/100 23 500/- 33 500/-

11 660/- 26 300/- 34 450/-

13 360/- 28 500/50 35 450/-

16 600/- 29 300/- 36 450/200
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from 10:00 to 15:00 for each method. Table 3 presents the
maximum, minimum, average, and standard deviation of the
system operation costs under these different methods. The results

indicate that the proposed method outperforms the traditional RO
method in terms of operation cost and demonstrates better
economic efficiency. Although the proposed method is less
economical than the SO method, it has a smaller skewness,
leading to smoother system operation under uncertainty.

Figure 5 shows the operating voltages under the three
planning strategies. It is evident that under the SO method,
high uncertainty impacts lead to voltage limit violations due
to excessive emphasis on economic factors, significantly reducing
system robustness. The proposed method considers worst-case
planning results by solving the distribution cluster containing the
empirical distribution, aligning better with the modeling of
uncertain outputs from different renewable energy sources,
and thus offers stronger robustness than traditional stochastic
optimization.

In summary, the DRO-based MPC method proposed in this
paper effectively balances the relationship between economic
efficiency and robustness. The proposed planning
comprehensively addresses the probability of prediction errors.
The average reduction in PV power achieved with this strategy is
645.510 kW, providing an effective control approach for managing
significant deviations in PV predictions. Although ensuring voltage
security and stability, the proposed strategy increases the average
power reduction by 36.851%, thereby enhancing the distribution
network’s robustness in handling the uncertainties associated with
renewable energy predictions.

Table 5 presents a comparative analysis of system costs and PV
consumption rates under two scenarios for the IEEE 37-node
system. “Case 1” includes energy storage configuration, while
“Case 2” does not. The data clearly show that including energy

FIGURE 3
Improved IEEE 37-node test system.

TABLE 2 System parameters

Parameter Value Parameter Value Parameter Value

at1,n 0.6 CNY/kW at4,n 0.6 CNY/kW aB 0.04 CNY/kW

at2,n 0.6 CNY/kW at5,n 0.2 CNY/kW β 0.01

at3,n 0.4 CNY/kW aav 0.06 CNY/kW

TABLE 3 Energy storage configuration under different strategic planning schemes.

Method 29-Node 35-Node Cost/104CNY

RO 300 kWh 150 kWh 48

SO 150 kWh 80 kWh 26

DRO 200 kWh 120 kWh 34

TABLE 4 Comparison of operating costs under different strategic planning schemes.

Method Total operating cost/104CNY

Minimum value Maximum value Mean value Standard deviation

RO 76.26 110.73 92.08 7.60

SO 72.21 91.35 80.96 4.04

DRO 79.28 96.91 85.16 3.70
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storage leads to a 2.85% reduction in system cost and a 1.2% increase
in the PV in-situ consumption rate.

Figure 6A illustrates the purchased and sold power from the
substation for the IEEE 37-node system. Figure 6B depicts the
charging and discharging patterns of the energy storage system.
These figures demonstrate how excess PV output is stored during
periods of low demand and utilized during high demand, effectively
performing peak-shaving and load-balancing functions that
enhance the economic efficiency and reliability of the
distribution network.

4.3 The influence of different
Wasserstein spheres

To illustrate the impact of the Wasserstein sphere radius on
planning results, various radius values are used to compare the
total operational costs. As shown in Table 6, increasing the radius
of the Wasserstein sphere results in a broader coverage of
uncertainties by the fuzzy set. This broader coverage leads to
more conservative decision-making, which in turn raises
operating costs but results in a smoother operational mode.
Consequently, the proposed method allows for more flexible
control of robustness and economic efficiency by adjusting the
radius of the Wasserstein sphere.

5 Conclusion

This paper introduces a multi-objective planning approach for
DRO power systems utilizing MPC to tackle the uncertainty
challenges posed by high levels of renewable energy integration
in distribution networks. The proposed method offers a flexible
balance between economic efficiency and operational robustness.
The key quantitative conclusions drawn from our analysis are:

(1) The DRO-MPC approach significantly mitigates the impact
of uncertainty from large-scale distributed PV output on

FIGURE 4
Operating costs under different strategic planning.

FIGURE 5
Operating voltage under different strategic planning.

TABLE 5 Results of total operating cost and PV consumption rate on the
IEEE 37-node system.

Total operating cost/
104CNY

Local consumption
rate/%

Case 1 34 98.48

Case 2 35 97.31
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distribution network planning. It enhances economic
efficiency and maintains system robustness, reducing costs
by 29.16% compared to the RO method. Additionally, the
energy storage capacity is optimized, resulting in a 33.33%
reduction on the 29-node system and a 20% reduction on the
35-node system.

(2) By transforming the computationally intensive multi-
objective problem into a streamlined single-objective
solution, our method overcomes the limitations inherent in
traditional multi-objective optimization approaches.

(3) The planning scheme’s adaptability is further enhanced by the
variable radius of the Wasserstein sphere, allowing for greater
flexibility and tailored responses to different
operational scenarios.
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