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The intermittent and fluctuating nature of active power output from wind power
significantly affects the Load Frequency Control (LFC) in a power grid based on
active power balance. To address this issue, this paper proposes a cloud-based
intelligent PI controller designed to enhance the performance of LFC in smart
grids with large-scale wind power integration. By using the error and the rate of
change of error as the antecedent inputs of the cloud model-based controller
and the tuning values of P and I as the consequent outputs of the cloud model,
adaptive online tuning of the PI parameters is achieved. Based on the control rules
of LFC in interconnected power grids and considering the uncertainty of wind
power’s active power output, the membership cloud parameters are designed,
which effectively solves the problems of poor parameter robustness in traditional
PI control and significant human influence on membership degrees in Fuzzy PI
control. A simulation model of a dual-area interconnected power grid with wind
power for LFC was built using Matlab/Simulink. Two typical disturbances, namely
random fluctuations inwind power and sudden increases/decreases in load, were
simulated. The simulation results demonstrate that the cloud model-based
intelligent PI controller designed in this paper can effectively track the
frequency variations caused by random fluctuations in wind power and
exhibits strong robustness.
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1 Introduction

In an interconnected power grid, load frequency control is an important technical
means to ensure the safe, reliable, stable, and economical operation of the system (Bevrani
H, 2009). With the continuous improvement in society’s requirements for power quality,
supply security, and reliability, the expansion of interconnected power grid scale, and the
rapid development of new energy sources, traditional load frequency control methods face
serious challenges and struggle tomeet the performance requirements of LFC (Liang Y et al.,
2024). Among these challenges, large-scale wind power, as the fastest-growing renewable
energy source, has already demonstrated significant social and environmental benefits
(Ratnam K et al., 2020). However, unlike conventional forms of power generation, the
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primary energy source for wind power (i.e., wind energy) is difficult
to predict and control accurately. Therefore, integrating large-scale
wind power into the grid imposes higher demands on load frequency
control in interconnected power grids (Liu et al., 2017; Liu
et al., 2024).

Traditional LFC employs classical PI/PID control (Tan, 2010).
However, with the integration of high-penetration renewable energy
sources, the system’s uncertainties are further increased. The PI/PID
controllers based on linear control theory struggle to meet the control
requirements of the new type of interconnected power system that
exhibits strong nonlinear characteristics. Novel LFC control strategies
have been continuously proposed, such as robust control methods based
on linear matrix inequality design (Rerkpreedapong et al., 2003; Ojaghi
and Rahmani, 2017), disturbance-insensitive sliding mode control
methods (Wei M et al., 2021; Huynh et al., 2024; Tummala et al.,
2018)), model predictive control methods with rolling optimization
strategies (Qi X et al., 2022; Jia Y et al., 2019; Jun Zhou et al., 2024;
Liu et al., 2016), and AI-based control methods (Zhang Y et al., 2022;
Cam and Kocaarslan, 2005; Yan and Xu, 2020; Wadi et al., 2024). These
controlmethods partially compensate for the shortcomings of traditional
FLC, but they rely on precise mathematical models, have high control
costs, and pose difficulties in design and implementation.

The cloud model, based on statistical and fuzzy mathematics,
provides a unified representation of the fuzziness and randomness
between linguistic values of uncertainty and precise numerical
values. It achieves a natural transformation of uncertainty
between qualitative concepts and their quantitative counterparts
(Li D et al., 2009; Wang G et al., 2014). Currently, cloud model
theory has been successfully applied in intelligent control and
performance evaluation of large-scale systems. Based on a
thorough analysis of LFC control characteristics in an
interconnected power grid with high penetration wind power,
this study proposes an intelligent PI control strategy using cloud
model. The main contributions of this paper are as follows:

1) The antecedent membership cloud functions were separately
constructed for Area Control Error (ACE) and its rate of
change, as well as the consequent membership cloud functions
for the proportional parameter P and integral parameter I of
the PI controller. Based on this, a cloud-based intelligent
controller for LFC was designed. Compared to traditional
fuzzy control, the proposed cloud-based LFC intelligent
controller in this paper achieves faster frequency control
speed and higher efficiency.

2) A simulation model for LFC in a two-area interconnected
power grid with high penetration wind power was built in the
Matlab/Simulink environment. Two typical power disturbance
events, namely random wind power fluctuation and sudden
load change, were simulated. The simulation results were
compared and analyzed against the LFC control effect based
on Fuzzy PI control. This validation confirms the effectiveness
and robustness of the intelligent PI controller based on the
cloud model.

The remainder of this paper is organized as follows: Section 2
establishes the LFC model for interconnected power grid with wind
power. Then, the cloud model-based intelligent PI controller for
LFC is developed in Section 3. Section 4 tests the effectiveness of the

proposed intelligent PI controller. The conclusions are given
in Section 5.

2 Load frequency control model for
interconnected power grid with
wind power

The power system achieves tracking of generation power to load
power by sensing frequency variations, thereby maintaining power
balance and frequency stability in the grid. After the large-scale
integration of wind power, the fluctuation in its active power output
has, to some extent, affected the power balance state of the grid and
increased the difficulty of active-power frequency control in the system.

Although multi-area power systems are strongly coupled and
time-varying, LFC was designed for small fluctuations and
perturbations. At this point, the system operates near a stable
point, allowing for the establishment of its model using low-
order linear transfer functions (Bevrani H, 2009).

In this study, the LFC model of a power system incorporating
wind power is established based on conventional thermal power
units, as shown in Figure 1. Before conducting a detailed derivation,
the following explanations are provided for this model.

1) The objective of LFC (Load Frequency Control) in
interconnected power systems is to maintain the system
frequency and the power exchange between regions within
a normal range. Based on this objective, the frequency
deviation Δf(t) and the power deviation on the tie line
ΔPtie,i(t) are usually linearly combined to form a variable
called Area Control Error ACE(t), which serves as the
control signal in the LFC problem. The ACE(t) being zero
is considered a criterion for measuring the stability achieved in
the control area. Therefore, the ACE for the ith area, ACEi(t),
can be defined as Equation 1:

ACEi t( ) � ΔPtie,i t( ) + βiΔf i t( ) (1)
where, βi is the frequency deviation coefficient. Δfi(t) and ΔPtie,i(t)
represent the frequency deviation and tie line power deviation for
the ith area, respectively.

2) The LFC system of conventional thermal power units
consists of components such as a governor, non-reheat
steam turbine, generator, load, tie line, and controller.
Each component in the different areas is represented by
an equivalent multi-machine dynamic response using a
single-machine model. When there is a change in the
load or an external disturbance in a specific area, the
controller receives control input signals and issues
control commands to adjust the position of the governor
valve. This regulates the steam flow into the turbine, thereby
changing the turbine’s output power, affecting the
generator’s input power, and adjusting the active power
output of the generator to achieve the control objective.

3) After meeting the set load demand in each area, the excess
electricity generated by the wind power units connected to
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each area is considered an energy-bounded external disturbance
signal. In order to suppress the randomness of this disturbance, a
distributed structure is formed by sharing and coordinating
control information among partially interconnected controllers
based on sparse optimization results. The system suppresses load
variations and random disturbances by actively adjusting the
control loop of the thermal power units.

The model described in Figure 1 can be represented by a set of
differential equation, as shown in Equation 2.

Δ _f i t( ) � 1
2His

−DiΔf i t( ) +∑n

k�1ΔPmk,i t( ) − ΔPtie,i t( ) − ΔPL,i t( ) − ΔPwind,i t( )( )
Δ _Pmk,i t( ) � 1

Tchk,i
−ΔPmk,i t( ) + ΔPgk,i t( )( )

Δ _Pgk,i t( ) � 1
Tgk,i

− 1
Rk,i

Δfi t( ) − Δpgk,i t( ) + αk,iui t( )( )
Δ _Pwind,i t( ) � 1

TW ,i
−ΔPwind,i t( ) + ΔPw,i t( )( )

Δ _Ptie,i t( ) � 2π ∑N
j�1,j ≠ i

Tij Δf i t( ) − Δf j t( )( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(2)

FIGURE 1
LFC model for the ith area in multi-area power grid with wind power.

FIGURE 2
Double condition cloud generator.
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where, His represents equivalent inertia of area i; Tchk,i represents
turbine time constant; Tgk,i represents governor time constant; TW,i

represents wind generator time constant; αk,i represents generator
ramp rate factor; ΔPmk,i represents the change in mechanical power
of the kth generators in the ith area; ΔPL,i represents the fluctuation
in active load power; ΔPwind,i represents wind power deviation in the
ith area; ΔPW,i represents the fluctuation of wind power; ΔPgk,i
represents regulating valve position deviation; ui represents the
control variable, which refers to the output of the LFC controller.
As shown in Equation 3, the output of the LFC controller can be
represented as a function of ACE (Wood AJ et al., 1996):

ui t( ) � f i ACEi t( )( ) (3)

3 Cloud model-based intelligent PI
controller for LFC

3.1 Cloud model theory

Cloud model, based on probability theory and fuzzy
mathematics, uses natural language to describe the bidirectional
conversion of quantitative and qualitative information, reflecting the
correlation between randomness and fuzziness (Kavousi-Fard A
et al., 2016; K. Zhou et al., 2024).

Definition: Let E be a quantitative domain on precise numerical
values, and F be a qualitative concept on the quantitative domain
E. If a quantitative value x is a random realization of the
qualitative concept F, and x has a stable tendency with a
certainty degree μ(x)∈ [0, 1], where μ: E → [0, 1], ∀x∈E,
x→μ(x), the distribution of x on the domain E is called a
cloud, and each x is considered a cloud droplet.

The cloud model uses three numerical characteristics to reflect
the overall properties of a concept. These three numerical
characteristics (Li D et al., 2009) are the Expected Value (Ex),
Entropy (En), and Hyper Entropy (He).

The solution of the three numerical variables, i.e., the formation
of the cloud model, requires the collection of a certain number of
cloud droplet samples. By collecting multiple samples, the more

FIGURE 3
The structure of cloud PI controller for LFC.

TABLE 1 Cloud model inference rules table.

Cloud
inference

E

NB NS ZE PS PB

Ec NB NB NS ZE PS PB

NS NS NS ZE PS PS

ZE ZE ZE ZE ZE ZE

PS PS PS ZE NS NS

PB PB PS ZE NS NB

TABLE 2 Membership of the cloud characteristic parameters.

Qualitative concepts E EC ΔKP&ΔKI

Ex En He Ex En He Ex En He

NB −0.1 0.025 0.003 −2.45 0.5 0.005 −0.05 0.005/3 0.0002

NS −0.04 0.02 0.002 −1.2 0.5 0.005 −0.002 0.002/3 0.00015

ZE 0 0.01 0.001 0 0.5 0.005 0 0.00033 0.00004

PS 0.04 0.02 0.002 1.2 0.5 0.005 0.002 0.002/3 0.00015

PB 0.1 0.025 0.003 2.45 0.5 0.005 0.05 0.005/3 0.0002

Frontiers in Energy Research frontiersin.org04

Li et al. 10.3389/fenrg.2024.1477645

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1477645


samples collected, the more accurate the obtained cloud model will
be, and quantitative input preprocessing should be performed. Ex,
En, and He can be obtained through statistical analysis of the
research object’s sample data using Equation 4.

Ex � �x � 1
n
∑n

i�1xi

En �

π

2

√
1
n
∑n

i�1 xi − Ex| |

He �

s2 − E2

n

√
�


1

n − 1
∑n

i�1 xi − �x( ) − E2
n

√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(4)

This process of obtaining a cloud model composed of three
numerical variables essentially refers to the statistical analysis of the
sample data.

The cloud model has similarities with fuzzy mathematics, but it
also has its unique aspects, particularly in how it handles
uncertainty. The cloud model was proposed based on probability
theory and fuzzy mathematics, aiming to address the uncertain
transition between qualitative concepts and quantitative
descriptions. Compared to fuzzy mathematics, the cloud model
not only considers fuzziness but also incorporates randomness,
providing a more comprehensive approach to uncertainty. The

FIGURE 4
The Membership cloud diagram.
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cloud model describes the quantitative representation of qualitative
concepts through the numerical characteristics of clouds, while
fuzzy mathematics primarily deals with fuzziness, which pertains
to intermediate transitions between categories of things. The
successful application of the cloud model demonstrates its unique
advantages in decision analysis, intelligent control, and other areas
of complex systems, as it better simulates the uncertainty and
fuzziness inherent in human thinking.

3.2 Rule inference of cloud model

The key to cloud model application lies in the generation of
cloud droplets, and the algorithm for generating cloud droplets is
called a cloud generator (CG). The cloud generator includes a
forward cloud generator and a backward cloud generator (Wang
G et al., 2014).

The forward cloud generator is responsible for generating cloud
droplets (drop (x, μ)) based on the numerical characteristics of the
cloud (Ex, En, He), which represents a mapping from qualitative to
quantitative. On the other hand, the backward cloud generator is a
conversion model that transforms quantitative values into
qualitative concepts. The specific algorithm of the cloud
generator can be found in the reference (Wang G. et al., 2014).

In control engineering, rules like “perception-action” represent
logical causal relationships between concepts. Cloud models can be
used to construct qualitative rule generators for control logic.
Perception serves as the antecedent of control rules and can have
one or more conditions. Action, on the other hand, represents
detailed control actions and serves as the consequence of control
rules. Both perception and action have a certain degree of
uncertainty in practical engineering.

In the domain E1, for a specific point y, the cloud generator can
generate a certainty distribution drop (y, μ), indicating the degree of
certainty that point a belongs to the qualitative concept F1. In this case,
the cloud generator is referred to as the antecedent cloud generator CGA.

If a certainty value μ is given, where μ∈ [0, 1], the cloud generator
can be used to generate a cloud droplet distribution on the concept
F2 in the domain E2 that satisfies the specified certainty. In this case,
the cloud generator is referred to as the consequent cloud
generator CGB.

It is possible for a two-dimensional spatial domain to construct
both a two-dimensional antecedent cloud generator and a
consequent cloud generator, as shown in Figure 2.

FIGURE 5
Load disturbance in Area 1 and Area 2.

FIGURE 6
Control performance under load disturbance. (A) Frequency
responses. (B) Tie-line active power responses. (C) ACE responses.
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3.3 Design of parameter self-tuning
intelligent PI controller based on
cloud model

The central idea of LFC is to ensure the stable operation of system
frequency and the exchange of power between areas according to
planned values. However, in practical applications, due to the
uncertainty of system operation, the randomness of disturbance
variations, and the uncertainty in the mapping relationship between
input deviations and controller outputs, LFC faces severe challenges.
Cloud models can effectively address the uncertainty relationship
between determinism and quantification. Therefore, by combining
the cloud model with conventional PI controllers, the cloud-based
PI controller can provide new opportunities for the LFC.

By using ACE (Area Control Error) and its rate of change as inputs
to the antecedents of the cloud model rules and using the tuning values
of P (Proportional) and I (Integral) as outputs of the entire system, a
cloud model system with dual inputs and single output applicable for
LFC is constructed, as shown in Figure 3. By sampling ACE, both ACE
and its rate of change are input into the controller. Under the
assumption that the three numerical characteristics of the cloud
model are known when the antecedent of a rule is triggered by a
certain input, it will randomly generate a certainty level μ. This certainty
level then stimulates the consequent generators CGP and CGI, resulting
in two sets of cloud droplets, drop (P, μ) and drop (I, μ), which represent
the tuning values of P and I, respectively.

In traditional methods, the tuning of parameters P and I is
mainly based on accumulated operational experience in industrial
production. When selecting linguistic variable values, we need to
consider both the flexibility and specificity of control rules, as well as
the simplicity and feasibility of control. Therefore, based on the
reference of operational experience, we will use five linguistic
variable values, namely “Positive Big (PB), Positive Small (PS),
Zero (ZE), Negative Small (NS), and Negative Big (NB)”. The
maximum membership degree for each linguistic value is “1”.
The range of variations for ACE and its rate of change together
form a two-dimensional domain, which is then combined with the
range of variations for △P and △I to create two independent
biconditional cloud rule inference generators. These generators
are used to dynamically tune the parameters P and I in real-time
during the control process.

The cloud model inference rules applied to load frequency
control are shown in Table 1.

Based on operational experience, the control rules for self-tuning
the PI controller using cloud model parameters can be expressed in
linguistic terms.

Region 1: ACE (Area Control Error) E = NB (Negative Big)
indicates that the actual value deviates significantly from the set
value, indicating a large error. Since the rate of change of ACE EC =
PB (Positive Big) indicates a rapidly increasing trend in the positive
direction. Therefore, no adjustment is made to the output at this
time, and the output value U = ZE (Zero), which corresponds to the
last row of the first column in the cloud control Table 1.

Region 2: The E = NS (Negative Small) indicates that the actual
value deviates slightly from the set value. In this case, if EC = ZE
(Zero), which means the rate of change of the error has no changing
trend, the output value is required to decrease accordingly. The
output value U = NS (Negative Small). This corresponds to the
second column in the third row of cloud control Table 1.

Region 3: E = PS (Positive Small) indicates that the actual value is
slightly lower than the set value. In this case, if EC = NB (Negative
Big), the speed error will be changed from PS to NS. Consequently,
the output U = NS (Negative Small) accordingly.

After formulating cloud inference rules, the cloud intelligent
controller for LFC can be designed using a cloud generator. It mainly
consists of four parts: input fuzzification, cloud inference rules,
cloud inference, and output defuzzification, as shown in Figure 3.

In addition to inputting cloud inference rules in advance, the
cloud intelligent controller requires the definition of the input and
output variable domains. Three numerical variables (Ex, En, andHe)
can be obtained by using statistical tools based on the prior data
accumulated from the input and output variables during the
operation or simulation process of the controlled object.

4 Simulation and analysis

4.1 Simulation model and parameters

To validate the effectiveness of the cloud model-based intelligent
PI controller proposed in this paper for LFC, a simulation model for
load frequency control with wind power generation was built in the
Matlab/Simulink based on a two-area LFC control model.

The cloud intelligent controller utilized in the simulation
process of this paper adopts the cloud inference rules shown in
Table 1. Combining multiple simulation processes under different
control performances, based on the changes in the values
corresponding to ACE and the P and I parameters, the fuzzy
membership parameters corresponding to the input and output
variables of the controller were obtained for five qualitative concepts
(Jalali N et al., 2020). The numerical variables (Ex, En, and He) are
shown in Table 2, and the corresponding membership cloud
diagrams are shown in Figure 4.

4.2 Performance analysis under load step
disturbance

In order to validate the control performance of the proposed
cloud-based controller under significant load impacts, load step
disturbances of 0.04 p.u. and 0.05 p.u. were respectively set in

FIGURE 7
Wind power fluctuations in Area 1 and Area 2.
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Area 1 and Area two at 10s and 50s, as shown in Figure 5. Both
conventional PI control and Fuzzy PI control which was designed
based on reference (Cam and Kocaarslan, 2005), were
simultaneously employed. The time-domain responses of
frequency deviation, ACE (Area Control Error), and interval
transmission power deviation are shown in (Figures 6A–C),
respectively.

From Figure 6, it is evident that the proposed cloud-based
intelligent PI controller and Fuzzy PI controller exhibit
significantly better control performance than the traditional PI
control. Notably, no oscillations were observed during the
frequency recovery process, which can be attributed to the
adaptive adjustment of the P and I parameters of the cloud
intelligent PI controller and Fuzzy PI controller. Furthermore,
compared to the Fuzzy PI control, the proposed cloud-intelligent
PI controller exhibits significant advantages in terms of the speed of
frequency and ACE recovery.

4.3 Performance analysis under wind power
fluctuations

In order to further validate the adaptability of the proposed
cloud-based intelligent PI control in frequency control of power
systems with wind generation, wind power generation was
introduced in Area 1 and Area 2. Based on considering the
aggregation effect of wind farms, a wind power sequence was
generated. The deviation between the actual wind power and the
predicted value is shown in Figure 7. Using the LFC model
established in this study, simulations were conducted on the
dynamic frequency response of a two-area system under the
stochastic wind power fluctuations shown in Figure 8A). The
time-domain responses of the transmission power deviation are
shown in Figure 8B).

By observing the dynamic frequency response curves of the
simulated results and the wind power fluctuation characteristics

FIGURE 8
Control performance under wind power fluctuations. (A) Frequency responses. (B) Tie-line active power responses.

Frontiers in Energy Research frontiersin.org08

Li et al. 10.3389/fenrg.2024.1477645

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1477645


shown in Figure 7, it can be observed that the LFCmodel established
in this study effectively reflects the impact of stochastic fluctuations
in active power output from large-scale wind farms on the dynamic
response of the LFC.

As seen from Figures 8A, B), when there are stochastic
fluctuations in the active power output of wind farms, the
proposed cloud-based intelligent PI control in this study can
effectively track the wind power fluctuations and provide optimal
control signals for the AGC units in the region to adapt to the
stochastic fluctuations in wind power, which, in turn, ensures that
the system frequency and ACE fluctuate within a smaller range. On
the other hand, both the Fuzzy PI and conventional PI control
strategies lag behind the cloud PI control in terms of frequency
recovery speed and fluctuation range, and they are unable to track
the stochastic variations in wind power effectively.

In conclusion, the proposed cloud-based intelligent PI controller
in this study is effective in handling uncertain wind power
integration and exhibits better control performance than the
Fuzzy PI control strategy. The cloud-based intelligent PI control
proposed in this study is not only effective in handling typical load
disturbances but also capable of tracking the stochastic fluctuations
in wind power. This further validates the adaptability and robustness
of the proposed cloud based intelligent PI control for LFC.

5 Conclusion

This paper designs a cloud-based intelligent PI controller based
on the cloud model theory, combined with the LFC characteristics of
interconnected power grids. It achieves load frequency control in
interconnected power grids with high wind power penetration. The
designed cloud-based intelligent controller does not rely on the
mathematical model of the control system. It can be designed and
implemented based on the characteristics of the controlled system
and prior experience. The design process is intuitive and
straightforward, without the need for tedious formula derivation.
The cloud-based intelligent controller exhibits strong robustness
against the uncertainty of wind power and outperforms traditional
fuzzy controllers in terms of tracking time, frequency fluctuation
suppression, and interval control deviation.

The three numerical characteristics, namely expectation,
entropy, and hyper-entropy, directly affect the control
effectiveness of the cloud-based intelligent controller. Further
research is still needed to optimize these characteristic
parameters based on the characteristics of the controlled system.
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