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With the rapid development of the economy and society, the demand for power
quality is constantly increasing. As a crucial part of grid situational awareness,
distribution network state estimation plays a vital role in providing critical data
support for other advanced applications, which is significant for ensuring the
safe and reliable operation of the distribution network. Therefore, this paper
proposes a dynamic state awareness method for distribution networks based
on the robust adaptive cubature Kalman filter (RACKF). The proposed solution,
grounded on the core computational concept of the cubature Kalman filter
(CKF), constructs a robust noise statistical estimator (NSE) composed of a biased
NSE and an unbiased NSE to adapt to the unknown and time-varying process
noise parameters in the dynamic state estimation process. The proposed
solution can ensure that the calculated process noise parameters always meet
the constraints and guarantee the robustness of the algorithm. In addition,
an estimation strategy for the fusion of multi-time scale measurement data is
developed according to the RACKF-based dynamic state estimation features in
order to realize system state corrections and updates. The results of simulation
experiments and comparisons with traditional CKF methods demonstrate the
accuracy and superiority of the proposed solution.

KEYWORDS

state estimation, distribution network, cubature kalmanfilter, noise statistical estimator,
robustness, estimation strategy

1 Introduction

In recent years, with the rapid development of clean energy technology, more and more
distributed power generation sources such as photovoltaics and wind power have been
integrated into the distribution grid due to their non-polluting characteristics (Ma et al.,
2021). However, with the increasing integration of distributed generation sources and the
continued growth of controllable loads, distribution networks are facing severe challenges in
terms of reduced power supply reliability and deteriorating power quality (Ma et al., 2022).
Therefore, the power grids are driven to the evolution towards smart grids characterized by
efficiency, flexibility, intelligence, sustainability, etc (Khalid, 2024). And, the current trend
lies in endowing distribution networks with stronger active regulation capabilities through
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the implementation of flexible and effective coordinated control
technologies andmanagementmeasures. In this regard, distribution
network state estimation as a crucial component of the situational
awareness for distribution systems plays an indispensable role in
optimizing the operation of distribution networks, achieving rapid
fault recovery, and ensuring the reliable performance of relay
protection (Ashok et al., 2017)- (Wang et al., 2022).

The state estimation methods of power systems can be mainly
divided into two types. One is the static state estimation method,
which is mainly based on the Weighted Least Square (WLS).
This method only utilizes the measurement data of the current
measurement snapshot to estimate the current operating state of the
system. With the development of phasor measurement technology,
distribution phasor measurement units (DPMU) are gradually
being deployed in distribution networks to further enhance the
measurement level of the distribution network (Zhang et al., 2020).
The DPMU serves as a complement to supervisory control
and data acquisition (SCADA) measurements, providing data
support for functions such as state estimation (Lin et al., 2018)-
(von Meier et al., 2017). Therefore, related applications (e.g., event
detection) based on DPMU data have grown significantly in recent
years (Liu et al., 2020). For instance, a review of state estimation
using hybrid DPMU and SCADA data is developed in (Cheng et al.,
2024). However, the differences in measurement accuracy between
DPMU and SCADA are more likely to result in low efficiency or
even non-convergence in the solution of WLS-based static state
estimation.

Compared with static state estimation methods, dynamic state
estimation not only utilizes measurement information at the
current time slot but also employs state prediction values obtained
from the previous time slot, which can satisfy the requirements
for dynamic state tracking in power systems (Zhao et al., 2019)-
(Shih and Huang, 2002). Moreover, the dynamic state estimation
computation process does not require iterative calculations and
thus does not suffer from the numerical problem of non-
convergence. To accommodate the nonlinearity of power systems,
current dynamic state estimation methods for power systems
have primarily evolved into methods such as extended Kalman
filter (EKF), unscented Kalman filter (UKF) and cubature Kalman
filter (CKF) under the basic Kalman filter framework. Among
them, EKF linearizes the nonlinear equations of the system by
performing a Taylor series expansion and discarding terms above
the second order, which can lead to truncation errors and reduce
estimation accuracy. For example, a robust iterative EKF based
on the maximum likelihood method was proposed in (Zhao et al.,
2017) to achieve dynamic state estimation in the presence of
gross measurement errors. A multi-step adaptive interpolation
method was proposed in (Akhlaghi et al., 2018) that measures the
nonlinearity of the measurement equations and state equations
to mitigate the negative impact on estimation accuracy, thereby
improving the performance of dynamic state estimation. UKF
utilizes the unscented transformation to approximately obtain
the statistical characteristics of the state variables after nonlinear
transformation, thus ensuring that the accuracy reaches at least
second-order. For instance (Wang et al., 2012), and (Zhao, 2017)
employed UKF to achieve dynamic state estimation for power
systems.However, theUKFhasmanyparameters to select during the
unscented transformation (e.g., proportional correction factor, etc.),

which puts a burden on the UKF to maintain a better performance.
Although UKF and EKF have been integrated in (Kong et al., 2022)
to achieve state estimation based on interacting multiple models,
they do not change the inherent shortcomings of EKF and UKF.
In addition, the fusion estimation of multi-time scale measurement
data is not realized in the dynamic state estimation methods
described previously. Therefore, there is a need to establish an
estimation strategy for the fusion of multi-time scale measurement
data applicable to dynamic state estimation.

Compared to the EKF and UKF, the CKF is presently seen as
a superior alternative due to its higher level of accuracy, stability,
and scalability for higher-dimensional issues (Panda et al., 2009).
The CKF algorithm generates a set of equally weighted cubature
points based on the spherical-radial rule to approximate the
nonlinearization, enabling high-order nonlinear filtering without
the need to select any parameters. This can effectively overcome
the shortcomings of UKF, such as difficulty in parameter selection,
poor flexibility, and low estimation accuracy for high-order systems
(Arasaratnam and Haykin, 2009). However, Kalman-type filters
(including CKF) can only demonstrate superior performance when
accurate process and measurement noise parameters are accurately
known (Zhao, 2018). The constant fluctuations in power load can
lead to sudden changes in the state of the distribution network,
resulting in continuous variations in the statistical parameters of
process noise. In addition, there are also certain modeling errors in
the construction of state equations for power systems, which can also
lead to inaccuracies in the process noise parameters. Therefore, the
statistical parameters of process noise are time-varying and difficult
to accurately obtain, which makes it challenging to guarantee
the performance of traditional state estimation methods based
on Kalman-type filters. To address this issue, previous works
have established noise statistic estimators (NSE) to estimate noise
parameters. For example, the Sage-Husa NSE was used in (Zhang,
2009) to estimate the time-varying noise covariance matrix.
However, the NSE in the aforementioned studies may lead
to violations of constraints in the estimated noise parameters,
thereby reducing the robustness of the state estimation algorithm.
Moreover, there is still a lack of robust NSE that is effectively
applicable to CKF.

To address the aforementioned challenges faced in distribution
network state estimation, this paper derives a robustNSE to establish
the robust adaptive cubature Kalman filter (RACKF), and further
proposes a dynamic state estimation method based on RACKF with
the corresponding estimation strategy for the fusion of multi-time
scale measurement data. The proposed solution not only inherits
the advantage of CKF in achieving efficient filtering without the
need for parameter selection but also guarantees the adaptability and
robustness of CKF. The main technical contributions made in this
paper can be summarized as follows.

(1) A robust NSE consisting of a biased NSE and an unbiased
NSE is constructed based on the core computational concept
of CKF and provides a rigorous proof of the semi-positive
definiteness of the estimated parameters, which can adaptively
estimate process noise parameters during the state estimation
to cope with the fluctuations in noise parameters caused by
modeling errors and state changes. Furthermore, the NSE can
ensure that the calculated process noise parameters always
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satisfy the constraints, significantly enhancing the robustness
of the algorithm.

(2) An estimation strategy for the fusion of multi-time scale
measurement data is developed according to the RACKF-
based dynamic state estimation features, which can realize
system state corrections and updates utilizing abundant
DPMUmeasurements.

(3) Simulation experiments on the IEEE 33-bus system and
comparisons with the traditional CKF method demonstrate
the accuracy and superiority of the proposed method in
dynamic state estimation of distribution networks.

The remainder of this paper is structured as follows. Section 2
introduces the problem formulation. Section 3 elaborates on
the principles of CKF and RACKF. Section 4 develops the
estimation strategy for the fusion of multi-time scale measurement
data and summarizes the specific implementation steps of the
proposed solution. The performance of the proposed solution
is verified through simulation in Section 5. This paper is
concluded in Section 6.

2 Problem formulation

The goal of state estimation is to capture the real-time
operational state of the distribution network based on the hybrid
SCADA and DPMU measurement data. In general, the real-time
operational state of the distribution network is characterized by a
set of state variables, including the voltage magnitudes of each bus
and the voltage phase angles of all buses except the reference bus,
as shown in Equation 1.

xk = [Vm,δm]
T (1)

where Vm and δm are voltage magnitude and phase angle of m-th
bus, respectively.

The focus of this paper is on dynamic state estimation, so
it is necessary to establish the state equations of the distribution
network. The state equation of the distribution network can be
constructed as Equation 2 based on the two-parameter exponential
smoothing method.

{{{{
{{{{
{

xk +1|k = Sk + bk
Sk = αxk + (1− α)xk|k−1
bk = β(Sk − Sk−1) + (1− β)bk−1

(2)

where Sk and bk are horizontal and vertical components,
respectively; α and β are smoothing parameters, and they
characterize trust in recent historical data and forward historical
data, respectively; The subscripts k and k− 1 indicate time slots.

As stated previously, the measurement of the distribution
network consists of a hybrid measurement of DPMU and SCADA.
Therefore, the measurement vector of the distribution network can
be expressed as Equation 3.

zk = [Vm Pm Qm Pmt Qmt δm]
T (3)

where Vm and δm are voltage magnitude and phase angle
measurements of m-th bus, respectively; Pm and Qm are inject

active and reactive power measurements of m-th bus, respectively;
Pmt and Qmt are active and reactive flow measurements of
branch m− t, respectively. In the distribution network, only
some buses are equipped with DPMU and hence phase angle
measurements in Equation 3 are only available for a subset of buses.

Corresponding to the various measurement types in the
measurement vector and considering that the conductance branch
to the ground can be neglected for distribution lines, the distribution
network measurement equations also need to be constructed for
dynamic state estimation, as shown in Equation 4.

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

Vm = Vm

Pm = Vm∑tVt(Gmt cos δmt +Bmt sin δmt)

Qm = Vm∑tVt(Gmt sin δmt −Bmt cos δmt)

Pmt = V
2
mgmt −VmVtgmt cos δmt −VmVtbmt sin δmt

Qmt = −V2
mbmt −VmVtgmt sin δmt +VmVtbmt cos δmt

δm = δm

(4)

where Gmt and Bmt are the real and imaginary parts of the position
element of the mth row and the tth column of the node admittance
matrix, respectively; δmt = δm − δt; gmt and bmt are the conductance
and susceptance of the corresponding branch, respectively.

At this point, the state-space model required for dynamic state
estimation of distribution networks can bemodeled as (2) and (4). In
the compact form, the state-spacemodel of the distribution network
can be represented as Equation 5.

{
{
{

xk+1 = f(xk) +wk

zk+1 = h(xk+1) + vk+1
(5)

where xk and zk+1 are the n-dimensional state vector and h-
dimensional measurement vector of the system, respectively;wk and
vk+1 represent the process noise and measurement noise vectors,
respectively, and they satisfy wk ∼ N(0,Qk) and vk+1 ∼ N(0,Rk+1);
Qk and Rk+1 denote the covariance matrices of process noise and
measurement noise, respectively.

From the construction of the distribution network state
equations Equation 2, it is essentially a prediction model, so there
will be some modeling errors. Also, the noise is time-varying due
to the constant change of the system state, so it is necessary to
adapt to the unknown and time-varying noise parameters in the
dynamic state estimation process. For this reason, this paper derives
a robust NSE consisting of a biased NSE and an unbiased NSE
based on the core computational concept of CKF and thus RACKF
is constructed to guarantee the performance of state estimation.
The detailed principle of RACKF including the robust NSE is
described in Section 3.

Although measurement accuracy and redundancy have
improved with increased DPMU deployment. However, it also
creates challenges for the fusion of multi-time scale measurement
data from DPMU and SCADA. Therefore, an estimation strategy
for the fusion of multi-time scale measurement data is developed in
this paper according to the RACKF-based dynamic state estimation
features, as detailed in Section 4.
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3 Robust adaptive cubature kalman
filter

3.1 Fundamentals of CKF algorithm

The CKF algorithm generates a set of equally weighted
cubature points based on the spherical-radial rule to approximate
nonlinearities, enabling high-order nonlinear filtering without the
need to select any parameters.The computational process of theCKF
algorithm comprises two main stages: prediction and filtering. In
the prediction stage, the CKF algorithm utilizes the state estimate
results and covariance information from the previous time slot,
in conjunction with the state equation, to predict the state at a
future time slot. During the filtering stage, the algorithm corrects the
prediction results using actual observation data, thereby obtaining
the state estimate results and covariance for the current time slot.
The entire computational process of the CKF is detailed as follows.

Stage 1: Prediction. During the prediction process, a set of
equally weighted cubature points should first be generated
around the state estimation results from the previous time
slot based on the spherical-radial rule, where the number of
cubature points is twice the dimension of the state vector (i.e.,
2n). The generation method for the cubature point set and
weights is presented in Equations 6, 7.

Xi
k = √Pkξi + ̂xk, i = 1,2,⋯,2n (6)

Wi =
1
2n
, i = 1,2,⋯,2n (7)

where Xi
k denotes the i-th cubature point constructed from the state

estimation result at time slot k; ̂xk is the state estimation result at
time slot k; √Pk represents the Cholesky decomposition of Pk and
Pk is the covariance matrix of estimation error at time slot k; ξi is the
i-th column of matrix ξ and ξ is shown in Equation 8;Wi represents
the weight of the i-th cubature point.

ξ = √n

[[[[[[[

[

1 0 ⋯ 0 −1 0 ⋯ 0

0 1 ⋯ 0 0 −1 ⋯ 0

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋯ ⋮

0 0 ⋯ 1 0 0 ⋯ −1

]]]]]]]

]

(8)

By substituting all cubature points into the state equation of the
distribution network to propagate them, the predicted values of all
cubature points can be obtained, as shown in Equation 9.

xik +1|k = f(X
i
k) (9)

where xik +1|k is the cubature point after propagation through the state
equation.Accordingly, the predicted value of state and the prediction
error covariancematrix can be calculated based on Equations 10, 11,
respectively.

̂xk +1|k =
2n

∑
i=1

Wix
i
k +1|k (10)

Pk +1|k =
2n

∑
i=1

Wix
i
k +1|k(x

i
k +1|k)

T
− ̂xk +1|k( ̂xk +1|k)

T +Qk (11)

Stage 2: Filtering. Based on the predicted values of the
state, a new set of cubature points Xi

k +1|k can be generated
according to Equation 12, and then these points are substituted
into the measurement equation to obtain the measurement
predictions of the cubature point set zik +1|k, as shown in
Equation 13.

Xi
k +1|k = √Pk +1|kξi + ̂xk +1|k, i = 1,2,⋯,2n (12)

zik +1|k = h(X
i
k +1|k) (13)

By performing weighted summation on the cubature point
set of all measurement predictions, the final measurement
prediction can be obtained, as shown in Equation 14. Subsequently,
the measurement prediction error covariance matrix and
the cross-covariance matrix between the state prediction
and the measurement prediction can be calculated based on
Equations 15, 16, respectively.

̂zk +1|k =
2n

∑
i=1

Wiz
i
k +1|k (14)

Pzz,k +1|k =
2n

∑
i=1

Wiz
i
k +1|k(z

i
k +1|k)

T
− ̂zk +1|k( ̂zk +1|k)

T +Rk+1 (15)

Pxz,k +1|k =
2n

∑
i=1

Wix
i
k +1|k(z

i
k +1|k)

T
− ̂xk +1|k( ̂zk +1|k)

T (16)

where ̂zk +1|k represents the measurement prediction obtained
through propagation, while Pzz,k +1|k and Pxz,k +1|k represent the
measurement prediction error covariance matrix and the cross-
covariance matrix, respectively.

Finally, the Kalman gain can be calculated to update the state
vector and covariance matrix, as shown in Equations 17–19.

Kk+1 = Pxz,k +1|kP
−1
zz,k +1|k (17)

̂xk+1 = ̂xk +1|k +Kk+1(zk+1 − ̂zk +1|k) (18)

Pk+1 = Pk +1|k −Kk+1Pzz,k +1|kK
T
k+1 (19)

where Kk+1 denotes the Kalman gain at k+ 1 time slot.
After obtaining the estimated state vector and the estimation

error variance matrix at the time slot k+ 1, one can return to the
prediction step for the state estimation at the next time slot.

3.2 Noise statistics estimator

During the state estimation process, if the process noise
variance matrix Qk is inaccurate, it can severely impact the
estimation performance of the CKF algorithm, making it difficult
to accurately estimate the system state. Therefore, it is necessary
to estimate the process noise variance matrix Qk in real time
during dynamic state estimation to ensure the performance of
state estimation. Based on the computational rule of CKF, the
CKF-based Sage-Husa NSE can be developed as Equations 20–22.
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FIGURE 1
Diagram of measurement frequency for PMU and SCADA.

FIGURE 2
RACKF-based estimation of PMU and SCADA data fusion.

Therefore, an unbiasedNSE that considers adaptive forgetting can be
constructed.

dk+1 =
1− b

1− bk+1
(20)

εk+1 = zk+1 − ̂zk +1|k (21)

Qk+1 = (1− dk+1)Qk + dk+1[Kk+1εk+1ε
T
k+1K

T
k+1+

Pk −
2n

∑
i=1

Wix
i
k +1|k(x

i
k +1|k)

T
− ̂xk +1|k( ̂xk +1|k)

T] (22)

where dk+1 is forgetting coefficient at time slot k+ 1; b is forgetting
factor; εk+1 denotes the residual difference between the system
measure and the measure prediction at time slot k+ 1.

According to the definition of covariance matrix, it must be
a semi-positive definite matrix. Assuming that matrices A and
B are both semi-positive definite matrices, it is not guaranteed
that A−B is still semi-positive definite by the properties of semi-
positive definite matrices. Therefore, the subtraction operation in
Equation 22 may lead to Qk+1 losing its semi-positive definiteness,
which can cause the algorithm to become ill-conditioned during
computation and unable to continue running. Therefore, in order
to ensure the robustness of the algorithm (i.e., The computation
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FIGURE 3
Flowchart of RACKF-based dynamic state estimation for distribution networks.

is not made to terminate because the estimated noise statistics
parameter violates semi-positive definiteness.) while retaining most
of the covariance correction terms in the unbiased NSE to ensure
high estimation accuracy, a well-performing biased NSE must be
established to estimate the process noise variance matrix. Regarding
this, a biased NSE is derived from an unbiased NSE shown in
Equation 23 (Caceres et al., 2009).

Qk+1 = (1− dk+1)Qk + dk+1[diag( ̂xk+1 − ̂xk +1|k)
2 − (Pk+1 − Pk +1|k +Qk)]

(23)

where diag(·) denotes a diagonal matrix constructed with diagonal
elements of matrix (·).

Rearranging Equation 19, and substituting it into
Equation 23, Equation 24 can be obtained.

Qk+1 = (1− dk+1)Qk + dk+1[diag( ̂xk+1 − ̂xk +1|k)
2 +KkPzz,k +1|kK

T
k −Qk]

(24)

According to (18) and (21), and discarding −Qk, the biased NSE
(25) can be finally derived from Equation 23.

Qk+1 = (1− dk+1)Qk + dk+1[diag(Kk+1εk+1ε
T
k+1K

T
k+1) +Kk+1Pzz,k +1|kK

T
k+1]
(25)
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FIGURE 4
Topology and measurement configuration of the IEEE 33-bus system.

TABLE 1 The measurement configuration of the IEEE 33-bus system.

Measurement type Bus

DPMU 3,6,9,11,14,17,19,22,24,26,29,32

SCADA 1,2,4,5,7,8,10,12,13,15,16,18,20,21,23,25,27,
28,30,31,33

Proof: Since both the initial Qk and [diag(Kk+1εk+1ε
T
k+1K

T
k+1)

+Kk+1Pzz,k +1|kK
T
k+1] are semi-positive definite, the Qk+1

calculated from Equation 25 can also be guaranteed to be
semi-positive definite. That is, the robustness of the RACKF
algorithm is strong, and the estimated Qk+1 will not violate
the semi-positive definiteness, thus making the algorithm
ill-conditioned.

By combining (25) with (22), a fault-tolerant NSE can be
constructed. Specifically, when Qk+1 computed from the unbiased
NSE (22) is not positive semi-definite, Qk+1 can be recalculated
based on the biased NSE (25) to ensure the robustness of the
algorithm on the basis of retaining a large amount of correction
information.

4 RACKF-based dynamic state
estimation for distribution networks

4.1 Estimation strategy for the fusion of
multi-time scale measurement data

As stated previously, the current sources of measurement data in
distribution networks are mainly SCADA and DPMU. As shown in
Figure 1, a complete frame of data can be obtained together with the

DPMU measurements at the time slot of SCADA sampling. Then,
dynamic state estimation can be performed according to the state-
space model described in Section 2. However, there will be DPMU
measurement between two complete frames of DPMU and SCADA
data due to the higher sampling frequency of DPMU. In this regard,
a fusion estimation strategy is proposed in this paper for multi-
timescale measurement data applicable to dynamic state estimation
features. At time slots k and k+ 1, the complete measurement
data is obtained and a complete prediction and filtering step is
performed for state estimation using the RACKF. Only DPMU
measurement data can be obtained at the time slot tn. Therefore,
the state prediction step is not carried out considering that the
DPMU sampling interval is small. Instead, only the filtering step
is performed using the estimated state and error covariance matrix
at the time slot k in order to correct and update the system state
using DPMU data.

A concrete implementation of data fusion estimation based
on RACKF dynamic state estimation is detailed in Figure 2. More
specifically, the complete prediction and filtering session is achieved
by using the measurement data of SCADA and DPMU at the time
slot k to achieve state estimation and to estimate the statistical
parameter of the process noiseQk+1 for use in the next complete state
estimation process. At time slot k+ 1, the state estimation results
obtained at time slot k, Qk+1, and the hybrid DPMU and SCADA
measurement data are used for the prediction and filtering session to
complete the state estimation. When the DPMU measurements are
obtained between time slots k and k+ 1, the results of themost recent
state estimation are used as a starting point, and only the filtering
session of the RACKF is performed to correct and update the system
state. As shown in Figure 2, the most recent state estimation result is
̂xtn−1 when computing ̂xtn . The filtering Process is performed using
̂xtn . It is worth noting that in the calculation of the RACKF filtering

step, the predicted state values ̂xk +1|k and prediction error covariance
matrix Pk +1|k to be used in Equation 12 for generating cubature
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FIGURE 5
Estimated voltage phase angle results of bus 31.

FIGURE 6
Estimated voltage magnitude results of bus 31.

points are replaced with ̂xtn−1 and Pk, respectively, and similarly,
̂xk +1|k used in Equation 18 is replaced with ̂xtn−1.

4.2 RACKF-based dynamic state estimation
process for distribution networks

The specific implementation steps of the proposed dynamic
state estimation based on RACKF and fusing multi-time scale
measurement data are summarized in Figure 3. First, initialize
the state values ̂x0 and the estimation error covariance matrix
P0 and set k = 1. After that, the prediction step is carried out.
Specifically, cubature point sampling is performed according to

Equation 6–8. State prediction and prediction covariance matrix
calculations were performed according to the state equations
Equation 2 and Equations 9–11.This is followed by the computation
of the filtering step. The cubature points are sampled again
according to Equation 12. Then the measurement predictions and
covariancematrices are calculated based onmeasurement equations
Equation 4 and Equations 13–16. Finally, the Kalman gain is
calculated according to Equation 17 and the state and estimation
error covariance matrix is updated according to Equations 18, 19. If
the time slot k+ 1 has not yet been reached at this point and only
DPMU measurements have been received, only state corrections
are performed as described in Section 4.1. After reaching the time
slot k+ 1, the estimation of the statistical parameters of the process
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FIGURE 7
RMSE of CKF and RACKF for different Q0.

noise is performed according to Equations 20–22 and Equation 25.
The updated process noise parameters are utilized to go back to the
prediction step for the calculation of the state estimation for the next
timewhen the complete hybrid ofmeasurement data is received, and
k = k+ 1.

5 Case studies

In this section, the IEEE 33-bus system is used for simulation
experiments, and a comparison is made with the traditional CKF
algorithm to validate the effectiveness of the solution proposed in
this paper. The topology of the IEEE 33-bus system is shown in
Figure 4. All parameters of the IEEE 33-bus system can be found in
(Baran and Wu, 1989). The measurement configuration is shown in

Table 1 and denoted as red and black dots in Figure 4 for DPMU
and SCADA measurements, respectively. To have more realistic
case studies in this work, the IEEE 33-bus system is constructed
in MATPOWER for power flow computation and Gaussian noise
is added to obtain the measurement data (Asprou and Kyriakides,
2017)- (Zimmerman et al., 2011). The standard deviation of the
measurement error in the SCADA system is 0.02 with a mean
value of 0. The standard deviation of the DPMU voltage magnitude
measurement error is 0.005 with a mean value of 0, and the standard
deviation of the DPMU phase angle measurement error is 0.002
with a mean value of 0. Furthermore, the forgetting factor b is set
to 0.96 and the smoothing parameters α and β are set to 0.8 and 0.5
in the simulations. Q0 is set to 10−6Ι (Wang et al., 2022). Then, the
state estimation performance of the proposed method is tested in
the following subsections.
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FIGURE 8
Comparison of relative errors in phase angle estimation results.

In this simulation, a sudden load drop is set at the 40-th time
slot and the load level remains until the 50-th time slot, after
which it returns to the original load level. During the dynamic
state estimation, it is found that the process noise covariance matrix
calculated by the unbiased NSE loses semi-positive definiteness
99 times out of 100 time slots, suggesting that the creation of
the proposed robust NSE for dynamic state estimation is effective
and necessary. Then, the state estimation results of bus 31 were
randomly selected for analysis. The curves of voltage phase angle
and magnitude varying with time are presented in Figures 5, 6,
respectively. As can be seen, both for voltage magnitude and phase
angle, during the steady-state operation phase of the system from
time slots one to 39, CKF and RACKF are able to achieve good
estimation performance, with the state estimation results being close
to the true values. However, the estimation results of RACKF are
more accurate than CKF because the NSE involved is adaptive to
the modeling error. When the load at the 40th time slot experiences
severe fluctuations and suddenly drops, the CKF algorithm lacks the
necessary noise adaptive ability as its process noise variance matrix
always equals the initial value. This indicates that the estimation
accuracy of the CKF algorithm entirely depends on the initially
set noise statistical parameters, which often deviate significantly
from the actual situation. Consequently, the mismatch of the
process noise variance matrix prevents the CKF algorithm from
effectively tracking the state changes, leading to filter divergence
and a significant increase in the error of its state estimation results,

thus failing to meet the actual needs. Even when the system load
level recovers to its original state at the 51st time slot, the CKF
algorithm still exhibits a significant discrepancy between its noise
statistical parameter values and the true values due to the inaccurate
state estimation results from previous time slots. This results in
the inability of the state estimation to converge accurately at each
subsequent time slot, and the existence of persistent large errors.
Consequently, the accuracy of the CKF algorithm fails to meet the
requirements.

In contrast, the NSE in the RACKF algorithm is capable of
accurately estimating both the magnitude and phase angle process
noise parameters online simultaneously. After completing the state
estimation at each time slot, it updates the process noise variance
matrix and uses the estimated Qk+1 for the state estimation at
the next time slot. This mechanism enables the RACKF algorithm
to adaptively respond to changes in the system state, thereby
accurately tracking the system state and ensuring the highest state
estimation accuracy.

In practical applications, there may exist significant deviations
in the initial settings of process noise parameters, leading to
inconsistencies with the actual situation. In such cases, even
if the system maintains stable operation, it may still result in
inaccurate state estimation results. To comprehensively evaluate the
performance of the proposed method under different initial process
noise parameters, the initial process noise parameters Q0 are set
to 10−4Ι, 10−5Ι, 10−6Ι , and 10−7Ι, respectively. During the entire
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FIGURE 9
Comparison of relative errors of magnitude estimation results.

FIGURE 10
Voltage phase angle update results of bus 32.

simulation, the load level is maintained stable without significant
changes. After the simulation, the root mean square error (RMSE)
of the relative error for each algorithm under different initial process
noise parameters is compared in Figure 7. RMSE of the relative error
can be calculated according to (26) (Panda et al., 2023).

RMSE = √ 1
N

n

∑
i=1
(
xi − ̂xi
xi
)
2

(26)

where xi and ̂xi are the true and estimated values of i-th state
variables; N is the total number of sate variables.
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FIGURE 11
Voltage magnitude update results of bus 32.

From the comparison of the results in Figure 7, it can be
observed that regardless of the accuracy of the initial process noise
statistical parameter Q0, the RACKF algorithm is able to achieve
accurate estimation of the process noise statistical parameters during
the state estimation, thereby adapting to the real process noise.
Consequently, the RMSE of the relative error in its state estimation
results rapidly converges to a lower level. In contrast, the state
estimation accuracy of the CKF algorithm entirely depends on
the initially set process noise parameters. When the initial process
noise parameters are not accurately set, the state estimation error
of the CKF algorithm gradually accumulates over time, resulting
in a generally upward trend in the RMSE of the relative error. This
demonstrates that the RACKF algorithm exhibits greater robustness
and adaptability when dealing with different initial noise parameter
scenarios.

Taking the case ofQ0 = 10−6Ι as an example, the average relative
errors of the state estimation results for 33 buses at 100 time
slots obtained using RACKF and CKF are compared, as shown in
Figures 8, 9, respectively. From the figures, it can be visualized again
that the estimation performance of RACKF is significantly higher
than that of CKF, both for phase angle and magnitude, which again
reflects the superiority of the method proposed in this paper.

In addition, it is assumed that there are 10 DPMU data
samples between the two SCADA samples to validate the estimation
strategies for the fusion of multi-time scale measurement data
proposed in this paper. After simulation, bus 32 is arbitrarily selected
to compare the state update results with the true state, as shown
in Figures 10, 11. It can be seen that the deviation between the
estimated and true values of magnitude and phase angle shows an
overall upward trend because the DPMU measurements are used
to update the system state without a prediction step and are only
corrected on the basis of the estimated results of the previous time
slot. The deviation rises until the complete state estimation process
is performed at the time slot of arrival of the complete data, then the
next time slot of update starts from the new state and the error goes
back to the initial level. Due to the high sampling frequency of the
DPMU, the state of the system does not change much between two

DPMU sampling intervals, so even if the error rises to the time slot
of maximum it is still considered to be accepted.

6 Conclusion

To achieve accurate state awareness for the distribution network,
a dynamic state estimation method incorporating multiple time scale
measurement data is proposed in this paper. In the proposed solution,
a robust NSE consisting of a biased NSE and an unbiased NSE is
constructedbasedon thecore computational conceptofCKFandhence
RACKFisdeveloped.ThroughtherobustNES, thetime-varyingprocess
noise parameters can be adapted during the dynamic state estimation,
while the robustness of the RACKF is guaranteed. In addition, an
estimation strategy for the fusion ofmulti-time scalemeasurement data
is developed according to the RACKF-based dynamic state estimation
features. It effectively achieves distribution network state updates using
abundant DPMUmeasurements.

The superior performance of the proposed method is verified
through a series of simulations in the IEEE 33-bus system and
compared with the conventional CKF algorithm and the key findings
are summarized as follows: the process noise variance matrix obtained
from the proposed robust NSE can strictly maintain the semi-positive
definiteness.The solution proposed in this paper is not only superior to
the conventional CKF algorithm in state estimation accuracy when the
systemis runningsteady,butalsocanstill accuratelyadapt to theprocess
noise parameters and realize the tracking of the real state of the system
when the load sharply fluctuates. In addition, the RMSE of the state
estimation results of the proposedmethod in this paper is smaller than
that of the traditional CKF algorithm, regardless of the initial process
noise parameter settings.

The development of information technology has led to an
increasing level of intelligence and automation in the current
distribution network. However, the ensuing drawback is that the
distribution network is vulnerable to cyber-attacks. Therefore,
further research efforts can be made in the future on dynamic state
estimation of distribution networks under cyber-attacks.
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