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This research introduces an innovative model to enhance power quality within
electrical networks interconnected with photovoltaic (PV) sources. The central
concern addressed in this study revolves around the impact of PV source power
quality on local electric networks. This research endeavors to elucidate how
achieving a more refined power pattern in electric networks is attainable by
considering the power quality of PV sources. A hybrid Particle Swarm
Optimization-Gray Wolf Optimization (PSO-GWO) algorithm is proposed to
obtain optimal solutions. Empirical findings underscore the significant impact
of Unified Power Quality Conditioners (UPQC) on social welfare, reinforcing the
potential benefits of improving power quality. The results reveal that localized
price reductions primarily drive the enhancement of social welfare, and this
socioeconomic advantage outweighs improvements in sustainability metrics.
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1 Introduction

The increasing focus on reducing carbon emissions has led to a significant rise in the
utilization of renewable energy resources for power generation (Anghelache et al., 2023).
Among these, photovoltaic (PV) electricity is gaining recognition as a promising renewable
energy source. However, the intermittent nature of PV systems negatively affects the power
quality of grid-connected large-scale PV installations (Augusto Pereira et al., 2023). Large
PV plants can compromise power system reliability due to increased power fluctuations
over long distances. To maintain grid reliability, power suppliers and research organizations
have imposed restrictions on the extent to which PV projects can increase their output
(Fregosi et al., 2023). Consequently, any PV output that exceeds grid connection criteria
must be regulated (Xu et al., 2022).

To address power fluctuations and enhance the integration of PV systems into the grid,
fast-response energy storage devices, such as supercapacitor energy storage systems (SC-
ESS), can play a crucial role. High-power density storage devices like SC-ESS can reduce grid
vulnerability to variations in PV generation (Cano et al., 2022). A feasibility study examined
three power smoothing strategies for a PV-hydrokinetic system (Cano et al., 2022),
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involving a hybrid storage system combining SC-ESS and lithium-
ion batteries, primarily used for energy storage. The findings
indicated that these strategies effectively mitigated power
oscillations and optimized voltage levels in typical interconnections.

Previous research has shown that the performance of batteries
and SC-ESS can significantly influence the energy trade dynamics
with the grid (Cano et al., 2022). Various filtering techniques have
been proposed to control PV power output, including low-pass (LP)
filtering (Wu et al., 2019), moving average (MA) filtering (Arévalo
et al., 2023), corrective predictive filtering (Arévalo et al., 2023;
Benavides et al., 2022), heuristic filtering (Benavides et al., 2023),
and multi-objective optimization filtering (Ma et al., 2019a). For
instance (Wu et al., 2019), implemented a two-stage LP filter control
strategy with an adjustable filter time constant to stabilize DC bus
power fluctuations. This approach integrated improved particle
swarm optimization (IPSO) and fuzzy control techniques to
adaptively adjust filtering time constants. However, further
evaluation is needed to assess the effectiveness of these methods
concerning SC-ESS operability, grid compliance, and
system longevity.

The goal of these methods is to enhance the smoothing of load
power fluctuations while minimizing risks such as battery
overcharging or over-discharging. Arévalo et al. (2023)
demonstrates the combination of MA and ripple removal (RR)
techniques with hybrid storage technologies like SC-ESS and
batteries, showing that these strategies effectively reduce the
frequency of SC-ESS operations and mitigate issues within PV
systems. Although MA filtering offers potential benefits, its
limitations—particularly regarding SC-ESS functionality and
lifespan—must be addressed to ensure seamless integration with
the power grid.

In Benavides et al. (2022), SC-ESS and batteries were examined
for power smoothing in renewable energy systems connected to the
electrical grid. This study highlighted the feasibility of SC-ESS for
energy management and power quality improvement, showing that
SC-ESS requirements vary based on renewable capacity. The RR
approach was found advantageous in reducing SC-ESS workload.
Comprehensive evaluations are necessary to assess the benefits and
drawbacks of SC-ESS control and grid connection alignment.

Moreover, as (Benavides et al., 2023) suggests, SC-ESS offers a
unique power-smoothing method for grid-connected solar systems.
Cycle estimation using k-means and ripple removal (RR) algorithms
has shown effectiveness in reducing energy loss and minimizing
technical violations in laboratory environments. k-means clustering
is an unsupervised learning algorithm used for data clustering,
which groups unlabeled data points into groups or clusters and
ramp-rate (RR) control algorithms are often applied for mitigating
these power fluctuations to the grid. However, further research is
required to evaluate the adequacy of these heuristics in controlling
energy storage devices like SC-ESS and ensuring their compliance
with grid regulations while preserving their longevity.

Ma et al. (2019b) proposes a coordinated control strategy for
hybrid energy storage systems (HESS) to mitigate PV plant-induced
power fluctuations. The study employs a multi-objective
optimization model to manage power dispatch from batteries and
SC-ESS, considering both SC-ESS losses and variability in the state
of charge (SoC). Despite these advancements, a thorough analysis is
needed to assess the impact of such optimization techniques on SC-

ESS control and their ability to meet grid requirements while
preventing early system failure.

This study aims to fill the gaps identified in previous research by
proposing an innovative power-smoothing approach using SC-ESS.
The main objectives are to improve energy quality, reduce
fluctuations, and comply with grid connection standards,
ensuring SC-ESS operates within defined parameters, maximizing
its lifespan, and facilitating smooth grid integration.

Nempu et al. (2021) discusses a power smoothing approach
based on SC-ESS using a Kalman filter, demonstrating its
effectiveness in reducing power fluctuations and minimizing the
load on converters. The study presents a multi-objective
optimization model designed to regulate PV energy production
by leveraging SC-ESS and batteries, with the key goal of
preventing SC-ESS from operating below its operational
thresholds. Computational simulations indicate that this
approach offers better cost-effectiveness than traditional methods.

Additional studies, such as Krishan and Suhag (2020) and
Saripalli et al. (2022), have explored SC-ESS’s potential in
mitigating power fluctuations using fuzzy logic algorithms and
low-pass filtering techniques. These studies suggest that such
strategies can provide a stable voltage and current profile. Chong
et al. (2016) introduces an optimal control method for a stand-alone
PV system with SC-ESS and batteries, combining low-pass filtering
with fuzzy logic control to reduce battery stress and increase
system longevity.

Research also focuses on real-time dynamic adjustments to SC-
ESS filter time constants, as discussed in Wu et al. (2019), based on
SoC requirements. Although stabilizing SC-ESS dynamically
remains challenging, studies (Kanehira et al., 2015) have shown
that MA and RR are among the most effective power-smoothing
techniques in this context. Additionally, Takahashi et al. (2022)
introduces a spline function-based PV smoothing technique, which,
through simulations, demonstrates superior performance compared
to MA methods.

Sukumar et al. (2018) provides a detailed analysis of approaches
that reduce energy storage degradation and enhance the lifespan of
SC-ESS. The study introduces an optimization method, based on
(Ali et al., 2019), to mitigate voltage fluctuations from intermittent
sources. The method enhances storage device durability by
addressing issues in traditional MA algorithms.

Studies such as Al Shereiqi et al. (2020) introduce optimization
techniques to minimize power losses in PV and wind farm systems,
demonstrating the effectiveness of numerical methods for mitigating
power output fluctuations. Likewise Aryani et al. (2017), proposes
model predictive control for managing battery SoC, showing that the
moving average filter provides consistent electricity delivery
to the grid.

Further research supports these findings. For example D’Amico
et al. (2022), provides an overview of ramp-rate limitation
techniques for wind power, emphasizing the importance of
mitigating fluctuations in renewable energy sources. Similarly,
Kaushal and Basak (2020) explores artificial neural network
(ANN)-based power quality control methods for microgrids,
focusing on improving key power quality metrics such as voltage
sag, swell, and frequency deviations. Building upon these studies,
this article introduces a novel hybrid optimization technique
inspired by the foundational concepts in (Ali et al., 2019),
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specifically combining Grey Wolf Optimization (GWO) with
Particle Swarm Optimization (PSO). This hybrid approach
addresses the unique challenges of PV-integrated systems,
contributing primarily to improving Total Harmonic Distortion
(THD), voltage stability, and overall power quality.

The development of hybrid optimization techniques has gained
significant attention in the literature. Shaheen et al. (2021)
introduces a hybrid Grey Wolf Optimization-Particle Swarm
Optimization (GWO-PSO) approach to solve the reactive power
dispatch problem, showing improved optimization results in power
systems. Similarly Alyu et al. (2023), applies the hybrid GWO-PSO
technique for optimal placement and sizing of PV-DG units,
demonstrating substantial reductions in power loss and
improvements in voltage profiles.

Finally, as described in Zhang et al. (2021), the hybrid PSO and
Grey Wolf Optimizer (PSO-GWO) has been effectively used in
clustering optimization, showing promising results that can be
extended to power system applications. These studies further
validate the potential of hybrid algorithms in enhancing power
quality and system efficiency.

This study introduces a hybrid GreyWolf Optimization (GWO)
and Particle Swarm Optimization (PSO) approach to improve
power quality in electrical networks integrated with solar sources.
The GWO-PSO hybrid optimizes the placement and sizing of power
quality compensation devices, reducing THD, voltage sags, and
swells, while maintaining grid stability.

In this study, we employ the k-means clustering and Ripple Removal
(RR) algorithms as part of our optimization framework to manage
fluctuations in power quality effectively. The k-means algorithm is an
unsupervised machine learning technique widely used for clustering data
points into a specified number of groups or clusters based on similarity.
This approach allows us to group data points—such as voltage
fluctuations—in a way that enables efficient pattern recognition and
distribution of power quality disturbances. By assigning data points to
clusters, the k-means algorithm helps in estimating power cycles and
identifying periods of high variability, which are crucial for precise power
quality control. Notably, this algorithm is both computationally efficient
and well-suited for handling large datasets commonly encountered in
electrical network analysis Ali et al. (2019).

The Ripple Removal (RR) algorithm is a signal processing
method designed to smooth out or eliminate oscillations in data,
often referred to as ripples. Within our framework, the RR algorithm
acts as a filtering mechanism that mitigates abrupt changes and
reduces noise in power quality metrics such as voltage and current.
By applying this algorithm, we achieve a cleaner signal that
contributes to stable power delivery and enhances the operability
of energy storage systems. The combination of k-means clustering
for detecting patterns and RR for smoothing fluctuations is
particularly effective in ensuring compliance with grid standards
and reducing equipment wear due to rapid fluctuations (Malamaki
et al., 2022).

2 Proposed hybrid
GWO-PSO algorithm

The Grey Wolf Optimization (GWO) algorithm is a nature-
inspired optimization technique that emulates the social

hierarchy and hunting behaviors observed in gray wolf packs.
GWO is particularly effective in achieving a balance between
exploration (searching for new solutions) and exploitation
(refining current solutions). In GWO, wolves are categorized
into four main types: alpha, beta, delta, and omega, representing a
hierarchical structure. The alpha wolves guide the pack and are
responsible for making strategic decisions. Beta wolves assist the
alphas, influencing the pack’s direction, while delta wolves act as
scouts and defenders, aiding in the exploration of the search
space. Finally, omega wolves follow the rest and reinforce the
pack’s cohesion.

The GWO algorithm iteratively adjusts the positions of wolves
in response to the influence of the top three wolves (alpha, beta, and
delta) to converge toward an optimal solution. The wolves update
their positions based on a mathematical model that mimics the
encircling, hunting, and attacking behaviors of real gray wolves. This
model ensures that the search agents maintain a robust balance
between diversification and intensification (Shaheen et al., 2021;
Alyu et al., 2023; Negi et al., 2021).

The Particle Swarm Optimization (PSO) algorithm is another
swarm intelligence-based optimization technique that simulates the
social behaviors of bird flocks or fish schools. Each particle in PSO
represents a potential solution that “flies” through the search space.
Particles adjust their velocity and position according to their own
experience (personal best position) and the best-known position of
the swarm (global best). This dual influence allows particles to
dynamically explore and exploit the search space effectively. PSO is
recognized for its fast convergence rate, particularly in optimizing
continuous, multidimensional spaces (Zhang et al., 2021;
Gad, 2022).

By integrating the hierarchical structure of GWO with the social
behaviors of PSO, the proposed hybrid GWO-PSO algorithm
leverages the strengths of both approaches. The hybrid model
achieves a synergy between the GWO’s robust exploration
capabilities and PSO’s efficient convergence, optimizing power
quality in photovoltaic-integrated networks with a balanced
approach to search and solution refinement.

Our approach is inspired by the optimization framework in Ali
et al. (2019), where multi-objective optimization was used for power
system stability. However, the main innovation in this study lies in
the combination of Grey Wolf Optimization (GWO) and Particle
Swarm Optimization (PSO), which enhances both exploration and
exploitation abilities for improving power quality in PV-
integrated grids.

The proposed hybrid optimization technique draws
inspiration from Ali et al. (2019), specifically in the approach’s
foundational elements concerning multi-objective optimization
and convergence techniques. Ali et al. (2019) explores a
hybridization method that leverages Grey Wolf Optimization
(GWO) for its exploration capabilities and Particle Swarm
Optimization (PSO) for its rapid convergence and exploitation.
These elements serve as a guiding framework for our study,
influencing the hybridization of GWO and PSO algorithms to
address specific challenges in power quality enhancement for PV-
integrated electrical networks.

However, our approach introduces distinct innovations that
extend beyond the methodology outlined in Ali et al. (2019). Key
innovative elements include:
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2.1 Dynamic information exchange

Our model introduces a structured information-sharing
mechanism between GWO and PSO components. Specifically,
the optimal positions identified by PSO particles are used to
guide the alpha wolf in the GWO, enhancing convergence rates
and solution accuracy. Conversely, the GWO’s hierarchical update
of alpha, beta, and delta wolves adjusts the PSO particles’ velocity
and position, which dynamically improves search adaptability and
prevents premature convergence.

2.2 Multi-objective function customization

Unlike the approach in Ali et al. (2019), which primarily
addresses general optimization tasks, our study customizes the
objective functions to minimize Total Harmonic Distortion
(THD), reduce voltage sags and swells, and optimize the
placement and sizing of power quality compensation devices.
This customization is essential for addressing the unique
requirements of power quality management in PV-
integrated networks.

2.3 Enhanced stability and
convergence control

To maintain a balance between exploration and exploitation, we
introduced variable coefficients that adjust dynamically, supporting
convergence to Pareto-optimal solutions while preventing
oscillations common in hybrid models. The coefficients AA and
CC (from GWO) and the inertia weight ww (from PSO) are
dynamically tuned across iterations, which enhances both
algorithm stability and convergence reliability in complex power
system environments.

By integrating these innovations, our proposed hybrid GWO-
PSO algorithm achieves a more robust performance in optimizing
power quality indices in PV-integrated networks, offering significant
improvements over the foundational techniques established in Ali
et al. (2019).

The proposed hybrid GWO-PSO algorithm constitutes a
metaheuristic optimization approach that amalgamates the
formidable attributes of GWO and PSO algorithms. This
algorithm operates through iterative updates applied to a
population of candidate solutions designated as search agents,
with the overarching objective of ascertaining the optimal
solution for a given problem. The GWO algorithm, as a swarm
intelligence technique, emulates the social hunting dynamics
exhibited by gray wolves.

This algorithm orchestrates a hierarchical structure within
the wolf population, wherein the alpha wolf holds the leader
position, the beta wolf assumes the role of the second-in-
command, and the remaining wolves function as followers.
The position of the alpha wolf is updated based on the
influence of the best three wolves (alpha, beta, and delta).
Although each follower wolf has a specific distance from the
alpha wolf, the final update to the alpha wolf’s position is
determined by averaging the effects of the distances from all

followers. This ensures that Xα (t + 1) is a unique position that
reflects the influence of the follower wolves and results in a single,
optimized position for the next iteration.

On the other hand, the PSO algorithm, another swarm
intelligence mechanism, simulates the social behaviors of bird
flocks. In this algorithm, a swarm of particles serves as proxies
for candidate problem solutions. These particles traverse the search
space, continuously adjusting their positions based on their
individual experiences and the experiences of their
neighboring particles.

The proposed hybrid PSO-GWO algorithm has been
restructured to ensure that information is shared between both
algorithms during the optimization process. Specifically, the best
position found by PSO particles is used to update the alpha wolf
position in the GWO algorithm, thus guiding the wolves based on
the PSO exploration results. Similarly, the GWO’s alpha, beta, and
delta wolves’ positions are used to adjust the PSO particles’ velocity
and position updates.

The decision variables X represent the optimization
parameters related to the power quality compensation devices,
such as their capacities, positions, and the number of devices in the
network. These variables directly affect the Total Harmonic
Distortion (THD) and voltage deviations (sag and swell) in
the network.

2.4 Pseudo-code of the proposed hybrid
GWO-PSO algorithm

• Initialize the population of search agents;
• Initialize the alpha wolf, beta wolf, and the rest of the wolves;
• Initialize the swarm of particles;
• while (termination condition not met) do;
• Update the alpha wolf, beta wolf, and other wolves based on
the GWO algorithm;

• Share the alpha wolf’s position with the PSO algorithm;
• Update the swarm of particles based on the PSO algorithm
using the alpha wolf’s position;

• Share the best particle position with the GWO algorithm to
adjust wolf positions;

• end while.

In the proposed hybrid GWO-PSO algorithm, the coefficients
A1, A2, C1, and C2 are essential for guiding the search agents
(wolves and particles) during the optimization process. The defined
ranges for these coefficients are selected to achieve an optimal
balance between exploration (searching new areas of the solution
space) and exploitation (refining known good solutions). Here’s a
detailed explanation of the purpose of each coefficient and the
rationale for their defined ranges:

2.4.1 Coefficients A1 and A2 [range (0, 2)]
In the GWO algorithm, A1 and A2 control the step sizes toward

the alpha and beta wolves, respectively. These coefficients influence
the distance calculations, which are critical for the position updates
of the wolves. By setting A1 and A2 within the range [0, 2], we allow
for both convergence and divergence behaviors during the
optimization process.
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2.4.2 Range justification
A range of [0, two] enables the algorithm to switch between

exploration and exploitation effectively. When the values are close to
zero, wolves stay closer to the current best solutions (enhancing
exploitation), while values closer to two encourage more extensive
exploration of the search space. This dynamic allows the GWO
component of the hybrid algorithm to adaptively search for global
optima without premature convergence, as demonstrated in related
studies (Shaheen et al., 2021).

2.4.3 Coefficients C1 and C2 [range (0, 1)]
In PSO, C1 and C2 are cognitive and social learning coefficients,

respectively. C1 represents the particle’s tendency to return to its
own best-known position (personal experience), while C2 represents
the tendency to move toward the global best position
(social influence).

2.4.4 Range justification
The range [0, 1] ensures a balance between personal and social

influences. If C1 and C2 were set higher, particles could potentially
overshoot optimal solutions, leading to instability or oscillations.
Keeping C1 and C2 in the [0, 1] range has been shown to prevent
excessive movements in the search space, allowing the particles to
converge smoothly toward optimal solutions (Zhang et al., 2021).
Additionally, this range fosters a stable convergence rate, essential
for addressing multi-objective optimization challenges.

Together, these coefficient ranges facilitate a balance between
the GWO’s exploration abilities and the PSO’s convergence
efficiency within the hybrid model. By keeping A1, A2 in [0, 2]
and C1, C2 in [0, 1], the algorithm maintains flexibility in its search
pattern, enabling it to adapt dynamically to complex optimization
landscapes, such as those presented in photovoltaic-
integrated networks.

The following equations are used in the proposed hybrid GWO-
PSO algorithm:

2.5 GWO equations

• Alpha wolf position update:

Xα t + 1( ) � Xα t( ) − A1 ·Dα

• Beta wolf position update:

Xβ t + 1( ) � Xβ t( ) − A2 ·Dβ

• Delta wolf position update:

Xδ t + 1( ) � Xδ t( ) − A3 ·Dδ

Where:
• Dα � |C1 ·Xα −X(t)| is the distance between the alpha wolf
and the current position of the search agent.

• Dβ � |C2 ·Xβ −X(t)| is the distance between the beta wolf
and the current position of the search agent.

• Dδ � |C3 ·Xδ −X(t)| is the distance between the delta wolf
and the current position of the search agent.

• A1, A2, A3 are random vectors with values in the range [0, 2].
• C1, C2, C3 are random vectors with values in the range [0, 1].

• Xα(t), Xβ(t), Xδ(t) are the positions of the alpha, beta, and
delta wolves at iteration t.

The wolves update their positions based on the influence of these
distances to explore and exploit the search space effectively.

In the GWO algorithm, multiple followers contribute to
exploring the search space and refining the search toward
optimal solutions. Since each follower has its own specific
position, the distances from each follower to the alpha and beta
wolves (denoted as Dα and Dβ, respectively) vary across followers.
To derive unique values for Dα and Dβ, which are essential for
position updates of the alpha and beta wolves, we employ an average
distance approach as follows:

2.6 Calculate individual distances

For each follower fif_ifi in the pack, compute the distances Dαi
and Dβi as:

Dαi � C1.Dα −Xfi

Dβi � C2.Xαβ −Xfi

where Xα and Xβ represent the current positions of the alpha and
beta wolves, and Xfi denotes the position of follower fi. To
consolidate the multiple DαiD_{\alpha_i}Dαi and DβiD_{\beta_i}
Dβi values into single, unique values for Dα and Dβ, we calculate the
averages across all followers:

Dα � 1
Nf

∑
Nf

i�1
Dαi

Dβ � 1
Nf

∑
Nf

i�1
Dβi

where Nf is the total number of followers. This averaging method
creates unique, representative distances for Dα and Dβ, which reflect
the collective influence of all followers on the alpha and beta wolves.

These averaged distances Dα and Dβ are then used to update the
positions of the alpha and beta wolves, ensuring a unique and
coherent adjustment based on the collective information provided
by the follower positions:

Xα t + 1( ) � Xα t( ) − A1 ·Dα

Xβ t + 1( ) � Xβ t( ) − A2 ·Dβ

This approach allows the GWO algorithm to retain its
hierarchical update mechanism while incorporating feedback
from all followers in a balanced manner. By averaging the
distances, we ensure that the alpha and beta wolves update their
positions with respect to the overall distribution of followers,
enhancing the algorithm’s robustness and convergence efficiency.

2.7 PSO equations

• Particle velocity update:
• V_i (t+1) = w * V_i(t) + c1 * r1 * (X_pbest(t) - X_i(t)) + c2 * r2
* (X_gbest(t) - X_i(t))

• Particle position update:
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• X_i(t+1) = X_i(t) + V_i(t+1)

Where: * Vi (t) is the velocity of the particle i at iteration t * Xi (t)
is the position of the particle i at iteration t * Xp best(t) is the
personal best position of the particle i at iteration t * Xg best(t) is the
global best position of the swarm at iteration t * w is the inertia
weight * c1 and c2 are the learning coefficients * r1 and r2 are
random numbers in the range [0,1] The proposed hybrid GWO-
PSO algorithm can be used to solve a variety of
optimization problems.

2.8 Multi-objective optimization problem

The proposed hybrid GWO-PSO algorithm can be used to solve
a multi-objective optimization problem to improve power quality in
photovoltaic-integrated electrical networks. The objective functions
of the multi-objective optimization problem are as follows:

• Minimize total harmonic distortion (THD): THD is a measure
of the distortion of a periodic signal from a perfect sine wave.

• Minimize voltage sags and swells

The constraints of the multi-objective optimization problem are
as follows:

• The capacity of the power quality compensation devices must
be within the specified limits.

• The voltage and current at all nodes of the electrical network
must be within the specified limits.

• The power losses in the electrical network must be minimized.

Objective function 1: Minimize THD
The objective function to minimize THD is as follows:

f1 X( ) � \sum i � 1{ } N̂{ }\sqrt \frac 1{ } n{ }\sum k � 1{ } n̂{ } V ik̂ − V îs( )^2{ }

where:

• X is the vector of decision variables
• N is the number of nodes in the electrical network
• n is the number of harmonics
• Vik is the $k$th harmonic of the voltage at node i
• Vis is the fundamental frequency of the voltage at node i

Objective function 2: Minimize voltage sags and swells
The objective function to minimize voltage sags and swells is

as follows:

f2 X( ) � \sum i � 1{ } N̂{ }\sqrt \frac 1{ } T{ }\sum t � 1{ } T̂{ } V ît − V îs( )^2{ }

where:

• X is the vector of decision variables
• N is the number of nodes in the electrical network
• T is the simulation time
• Vit is the voltage at node i at time t
• Vis is the fundamental frequency of the voltage at node i

To clarify, Xpbest(t) and Xgbest(t) are critical components of the
PSO algorithm. Here’s a breakdown of their roles:

• Xpbest(t) (Personal Best Position): For each particle in the
swarm, Xpbest(t) represents the best position the particle
has discovered based on its individual experience, up to
time t. At each iteration, Xpbest(t) is updated if the particle
finds a position that achieves a better objective function
value than previously encountered. Thus, it is recalculated
dynamically and known only as the particle discovers
improved positions.

• Xgbest(t) (Global Best Position): Among all particles in the
swarm, Xgbest(t) is the position with the best objective
function value at time ttt. This position represents the most
successful solution encountered by the entire swarm and is
used to guide all particles toward promising regions of the
search space. Similar to Xpbest(t), Xgbest(t) is updated
dynamically when any particle finds a new position with a
better objective value than the current global best.

2.9 Objective function 3: Minimize the
number of power quality
compensation devices

The objective function to minimize the number of power quality
compensation devices is as follows:

f3 X( ) � X| |
where:

• X is the vector of decision variables
• |X| is the number of nonzero elements in the vector X

2.10 Constraints

The constraints of the multi-objective optimization problem are
as follows:

• Capacity constraints: The capacity of each power quality
compensation device must be within the specified limits.

C i \leq X i

where:
• Ci is the capacity of the $i$th power quality
compensation device

• Xi is the decision variable that represents the capacity of the
$i$th power quality compensation device

• Voltage and current constraints: The voltage and current at all
nodes of the electrical network must be within the
specified limits.

V min{ }\leq V i \leq V max{ }
I min{ } \leq I i \leq I max{

• Vi is the voltage at node i
• Ii is the current at node i
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• Vmin and Vmax are the minimum and maximum allowable
voltages at node i

• Imin and Imax are the minimum and maximum allowable
currents at node i

• Power loss constraints: The power losses in the electrical
network must be minimized.

P loss{ } � \sum i � 1{ } N̂{ }\sum j � 1{ } N̂{ }R ij{ }I i I j

• Ploss is the power losses in the electrical network
• Rij is the resistance between node i and node j

In the Particle Swarm Optimization (PSO) algorithm, the
coefficients c1, c2, and www (inertia weight) play crucial roles in
controlling the behavior of each particle within the search space.
Additionally, the random values r1 and r2 contribute stochastic
elements, which help prevent premature convergence. Below,
we provide a detailed rationale for the selection of these
parameters:

2.10.1 Cognitive and social coefficients (c1 and c2)

• Purpose: The coefficients c1 and c2 are also known as the
cognitive and social learning factors, respectively. They
control the influence of a particle’s own experience
(personal best position) and the best-known position of the
swarm (global best) on its movement. These parameters
balance each particle’s inclination to explore the search
space based on its own success versus that of the
collective swarm.

• Recommended Values and Range: Typically, both c1 and
c2 are set within a range of approximately 1.5–2.0.
Empirical studies indicate that values in this range
encourage effective exploration and exploitation without
leading to erratic or excessive movements. Values
higher than 2.0 can lead to instability, causing particles
to oscillate widely around solutions, while values lower than
1.5 can reduce exploration and lead to premature
convergence. Therefore, setting c1 and c2 in the range
[1.5, 2.0] is a standard choice for stability and balanced
search behavior.

2.10.2 Inertia weight (w)

• Purpose: The inertia weight w is a crucial factor that influences
the velocity of each particle. It controls how much of a
particle’s previous velocity contributes to its new velocity,
thereby impacting the balance between exploration (higher
www) and exploitation (lower w).

• Dynamic Range: In practice, w is often set to decrease
linearly from an initial value of 0.9 to a final value of
0.4 over the course of iterations. This dynamic adjustment
enables the particles to explore more widely at the start of the
search (with a higher inertia weight), then gradually
converge toward promising regions (with a lower inertia
weight) as the search progresses. This balance between
exploration and convergence is essential for reaching
optimal solutions efficiently.

2.10.3 Random values (r1 and r2)

• Purpose: The random variables r1 and r2 are uniformly
distributed within the range [0, 1]. These values add
stochasticity to the influence of both cognitive and social
components, preventing the particles from moving
deterministically and thus helping to avoid local minima.

• Range Justification: Setting r1 and r2 within [0, 1] is standard,
as this range allows the cognitive and social factors to vary
smoothly and dynamically, ensuring particles do not strictly
follow personal or global best positions. This randomness
enhances the particles’ ability to explore diverse regions of the
search space, contributing to robust global optimization
performance.

By choosing c1 and c2 in the range [1.5, 2.0], using a dynamic
inertia weight w that decreases from 0.9 to 0.4, and setting r1 and
r2 in [0, 1], the PSO component within the hybrid GWO-PSO
algorithm achieves a well-balanced search behavior that supports
both efficient convergence and thorough exploration of the
solution space.

The proposed hybrid GWO-PSO algorithm leverages both the
hierarchical social structure of GWO and the swarm intelligence of
PSO, enabling a balanced exploration and exploitation of the
solution space. The interaction between the two algorithms is
designed as follows:

• Position Sharing Between GWO and PSO: At each iteration,
the best positions found by the PSO particles are shared with
the GWO’s alpha, beta, and delta wolves. This allows the
wolves to adjust their positions based on the insights gained
from PSO’s exploration of the search space, enhancing GWO’s
exploitation phase. This integration introduces a level of
cooperation where the GWO wolves refine their search
based on PSO’s exploratory feedback.

• Velocity Adjustment Using GWO’s Alpha Position:
Conversely, the PSO particles update their velocity and
position based on both the global best particle position
(XgbestX_{\text{gbest}}Xgbest) and the alpha wolf’s
position from GWO. By incorporating the alpha position
from GWO, the PSO algorithm gains a new reference
point, introducing additional information to guide its
convergence while avoiding local minima.

• Iterative Exchange and Feedback: Through continuous
exchange, the GWO wolves benefit from PSO’s rapid
exploration capabilities, while PSO particles receive refined
positional guidance from the hierarchical structure of GWO.
This interplay creates a feedback loop that enhances the
algorithm’s ability to navigate complex multi-objective
landscapes, such as those required for power quality
optimization in photovoltaic networks.

To provide a complete and repeatable understanding of the
GWO-PSO hybrid algorithm, we will make the algorithm
illustrated in the flowchart in Figure 1 available as
supplementary material, in MATLAB or Python code upon
request. This ensures that readers have access to a version of
the algorithm to facilitate practical implementation and validation.
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This will ensure that readers have access to an executable version
of the algorithm to facilitate practical implementation and
validation.

The proposed hybrid GWO-PSO algorithm capitalizes on the
strengths of both the GWO and PSO algorithms. Specifically, it
employs the GWO algorithm to exploit the search space, while the
PSO algorithm is harnessed to facilitate exploration. This
harmonious amalgamation allows the algorithm to strike an
equilibrium between exploitation and exploration, a pivotal
attribute for achieving the optimal problem solution. The
application scope of the proposed hybrid GWO-PSO algorithm
extends to resolving multiobjective optimization challenges,
particularly enhancing power quality in PV-integrated electrical
networks. The algorithm is adept at locating Pareto-optimal
solutions, representing a set of solutions that cannot be
further enhanced.

The coefficients A1 and A2 control the step size towards the
alpha and beta wolves, with typical values ranging from [0,1],
ensuring balanced convergence between exploration and
exploitation. Similarly, the coefficients C1 and C2 help in
exploring the search space more broadly at the beginning of the
optimization, with values generally set between [0,2]. These ranges
have been well-documented in previous studies to maintain a
balance between exploration (searching new areas) and
exploitation (refining current solutions) during the optimization
process (Shaheen et al., 2021; Alyu et al., 2023; Zhang et al., 2021).

Each follower wolf calculates its specific distance to the alpha
and beta wolves. The parameters Dα and Dβ are calculated for each
follower individually, and their positions are updated accordingly
based on these specific distances.

The coefficients c1 and c2 are set between 1.5 and 2, ensuring a
balance between personal best and global best solutions (Ali et al.,
2019). The inertia weight www decreases from 0.9 to 0.4 to promote
convergence. Random values r1 and r2 are chosen uniformly
between [0,1] to introduce stochasticity in the particles’
movements. Figure 2 shows Grid Diagram with PV Sources.

3 Results of simulations

We performed simulations on a standard electrical network
interconnected with photovoltaic (PV) sources. The network
consisted of 50 nodes, with 10 power quality compensation
devices distributed across the network. The PV sources were
modeled based on real-world data, generating power under
varying weather conditions, which created fluctuations in the
voltage and current levels.

The optimization algorithm was applied under the
following scenarios:

• Low load conditions: Simulating a scenario where the network
demand is relatively low, allowing us to observe the effect of
voltage swells.

• High load conditions: Testing the network under peak
demand to evaluate voltage sag.

• Varying PV generation: Analyzing the impact of fluctuating
PV output on the power quality indices, such as THD, voltage
sags, and swells.

• All simulations were carried out using a time resolution of 1 s,
with each simulation running for 24 h to capture the full daily
cycle of PV generation.

Figure 3 compares the performance of various optimization
algorithms, including PSO, GWO, and the novel PSO-GWO hybrid,
when applied to optimize the specified cost function. The proposed
combined algorithm achieves the lowest value of the cost function,
thus demonstrating the most effective optimization approach.

Figure 4 compares THD values before and after optimization
iterations (1–10). THD is a crucial metric for assessing distortion in
voltage or current waveforms within an electrical system. The
iterations represent steps to optimize the electrical network or
system in this context. The blue curve in the plot represents the
THD values before optimization (THD_before), while the red curve
represents the THD values after optimization (THD_after). Initially,

FIGURE 1
Proposed hybrid GWO-PSO algorithm.
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the THD of the power grid without power quality compensation
stands at 5.2%, indicating a high level of distortion. After applying
power quality compensation, the THD reduces to 2.9%,
underscoring the significant improvement in network quality.
Notably, the THD of the power grid without power quality
compensation consistently decreases, reflecting the effectiveness
of power quality compensation in enhancing network quality. In
the case of the power grid with power quality compensation, the.
THD remains constant after iteration 5, signifying the optimization
of power quality compensation without needing further
improvement.

Figures 5, 6 displays voltage sag and voltage swell before and
after optimization. Voltage sag and voltage swell are power quality
disturbances that can harm electrical equipment and compromise
network reliability. Voltage sag denotes a decrease in voltage below
the nominal level, often resulting from network faults, motor
starting, and load shedding. Voltage swell, conversely, signifies
an increase in voltage above the nominal level, often caused by
capacitor switching and the connection of distributed generation
resources. Without power quality compensation, voltage sag in the
electrical network is 10.3%, and voltage swell is 7.6%, which are
substantial and can damage electrical equipment. With power

FIGURE 2
Grid diagram with PV sources.

FIGURE 3
Cost function comparison for different algorithms.
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quality compensation, voltage sag decreases to 4.6%, and voltage
swell decreases to 3.3%, indicating acceptably lower levels of
disturbances. The graphs also illustrate that voltage sag and
voltage swell in the electrical network with power quality
compensation stabilize after iteration 5, demonstrating the
optimization of power quality compensation with no further
potential for improvement.

Figure 7 show cases power loss before and after optimization.
Power loss quantifies the amount of electrical power dissipated as heat
within the electrical network, attributed to factors like conductor
resistance, network load, and power quality disturbances. Without
power quality compensation, power loss in the electrical network is

13.5 kW, a substantial amount. Power quality compensation reduces
power loss to 9.8 kW, representing a 3.7 kW reduction. This reduction
in power loss yields several advantages, including:

• Reduced energy costs
• Enhanced electrical network efficiency
• Decreased environmental impact

Figure 6 also illustrates that power loss in the electrical network
with power quality compensation stabilizes after iteration 5,
indicating the optimization of power quality compensation with
no further potential for reducing power loss.

FIGURE 4
THD as a function of iteration.

FIGURE 5
Voltage sag and voltage swell before and after optimization.
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Table 1 displays various parameters observed in a PV-integrated
electrical network, including THD, voltage dips, voltage spikes, and
the quantity of power quality correction devices.

The data proves that power quality adjustment measures reduce
THD, voltage sags, and voltage spikes successfully. Themagnitude of
the voltage sag wasmeasured to be 10.3%, while the voltage swell was
found to be 7.6%. Additionally, the THD was determined to be 5.2%
before implementing any corrective measures. After the necessary
adjustments were made, the voltage sag experienced a decrease to
2.7%, the voltage swell was mitigated to 1.9%, and the THD was
decreased to 2.5%.

The results also indicate that compensation might reduce the
number of power-quality correction devices. The resolution of
power quality concerns necessitates the installation of four
compensatory devices. Once the compensation was done, it was
found that just two power quality correction devices were required.

To summarize, the findings in Table 1 indicate that power
quality compensation is a highly effective approach for
improving power quality in electrical networks, including solar
systems. The mitigation of THD, voltage dips, and voltage spikes
may be achieved by power quality modification, reducing the need
for such devices.

FIGURE 6
Voltage swell before and after optimization.

FIGURE 7
Power loss before and after optimization.
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The following analysis provides a more comprehensive
examination of the results presented in Table 1:

• THD refers to the proportion of departure from a sinusoidal
waveform in a periodic signal. A higher level of power quality
corresponds to a reduction in THD. The THD showed a
notable decrease, falling from 5.2% to 2.5%.

• A transient decrease in the voltage magnitude is sometimes
called a voltage sag. Voltage fluctuations have the potential to
cause irreparable damage to sensitive electrical devices. The
current-voltage drop has been decreased to a mere 2.7%, in
contrast to the previous value of 10.3%.

• Voltage swells refer to transient increases in electrical
potential. Voltage surges pose a significant risk to delicate
electrical devices. The magnitude of the voltage spike has seen
a significant reduction, down from 7.6% to 1.9%.

• The number of devices used for mitigating inadequate power
quality. The cumulative expenses associated with installing
and maintaining power quality compensation equipment may
accrue rapidly. A significant reduction has occurred in the
number of power quality compensating devices, decreasing
from four to two.

In brief, the findings in Table 1 illustrate that power quality
adjustment is a practical approach for augmenting power quality
within electrical networks, including solar systems. Power quality
modification may help decrease voltage fluctuations, power
interruptions, and THD.

Table 2 presents the limitations imposed on the power quality
correction devices within the electrical network integrated with solar
systems. The limitations are as follows:

• Capacity Constraint 1: The power quality compensation
device’s capacity should not exceed 100 kW.

• Capacity limitation 2: The maximum capacity of the second
power quality compensating device should not exceed 50 kW.

• The electrical network is subject to a voltage limitation, which
stipulates that the voltage at every node must fall within the
range of 210 V–230 V.

• The existing limitation is that the electrical network’s node
currents must fall within 95 A–105 A.

• The power loss limitation stipulates that the power losses
inside the electrical network must not exceed 10 kW.

Implementing these limits is necessary to guarantee the secure
and optimal functioning of the electrical network. The capacity
limitations prevent the power quality compensation devices from
exceeding the electrical network’s maximum load capacity. The

voltage and current limitations guarantee that the voltage and
current levels at every node within the electrical network remain
below acceptable thresholds for safety purposes. The power loss
restriction limits the power losses inside the electrical network.
The selection and sizing of power quality compensating devices
must adhere to all imposed limits. As suggested, the hybrid GWO-
PSO technique can potentially identify a Pareto-optimal solution. A
Pareto-optimal solution refers to a collection of solutions whereby
further improvement in one objective function necessitates a
deterioration in at least one objective function. The Pareto-optimal
solution encompasses a collection of power quality adjustment devices
that satisfy all imposed limitations while simultaneously minimizing
the objective functions.

Table 3 presents the limitations imposed on the power quality
correction devices within the electrical network integrated with solar
systems. The limitations are as follows:

• The maximum capacity for the first power quality
compensating device is 60 kW or less.

• Themaximum allowable capacity for the second power quality
compensating device is 30 kW or less.

Implementing these limits is necessary to guarantee the secure
and optimal functioning of the electrical network. The capacity
limitations prevent the power quality correction devices from
overloading the electrical network.

Table 4 displays the power quality indices: THD, voltage sag, and
voltage swell. The table presents the values of these indices at various

TABLE 1 Effect of compensation on power quality in PV-integrated electrical networks.

Objective function Before compensation After compensation

Total Harmonic Distortion -THD (%) 5.2 2.5

Voltage sag (%) 10.3 2.7

Voltage swell (%) 7.6 1.9

Number of power quality compensation devices 4 2

TABLE 2 Comparison of power quality indices before and after
compensation.

Constraint Value

Capacity constraint 1 (kW) 100

Capacity constraint 2 (kW) 50

Voltage constraint (V) 220 ± 10

Current constraint (A) 100 ± 5

Power loss constraint (kW) 10

TABLE 3 Constraints of the multiobjective optimization problem.

Decision variable Value

Capacity of power quality compensation device 1 (kW) 60

Capacity of power quality compensation device 2 (kW) 30
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nodes within the electrical network both before and after the
implementation of compensatory measures.

3.1 Before compensation

The THD observed at all nodes exceeds 5%, indicating a
significant level of distortion. The voltage sag seen at all nodes
exceeds 10%, indicating a substantial deviation from the nominal
voltage level, often considered excessive. The voltage swell observed
at all nodes exceeds 7%, indicating a considerable departure from the
expected values.

3.2 Following compensation

After implementing compensation measures, the THD at all
nodes is below 5%, an acceptable threshold. The voltage sag at all
nodes is below 10%, a widely recognized safe limit. The voltage
swell at all nodes is below 7%, a threshold commonly
regarded as safe.

The results presented in Table 4 demonstrate that the utilization
of power quality compensation measures yields a significant
improvement in the power quality indices within the electrical
network. After implementing compensation measures, all nodes’
THD, voltage sag, and voltage swell were successfully mitigated to
levels meeting acceptable criteria.

The power losses in the electrical network, both before and
after compensation, are detailed in Table 5. Before
compensation, the electrical network experiences a power loss
of 10.5 kW, which is considered a substantial power loss.
Following compensation, the power loss in the electrical
network is reduced to 9.8 kW, representing a decrease of
0.7 kW. This reduction in power loss can be attributed to the
efficiency enhancements provided by the power quality
compensation devices in the electrical network.

It is important to note that while Table 6 presents a comparison
of the proposed research with previous studies, these studies are
based on different case studies with varying network configurations,

load profiles, and PV generation patterns. Therefore, the differences
in results may not solely reflect the performance of the optimization
algorithms but could also be attributed to the specific conditions of
each case study.

As such, while the results offer a general indication of the
effectiveness of the algorithms in improving power quality, direct
comparisons should bemade cautiously. The variations in case study
conditions suggest that the outcomes may not be entirely
comparable across different studies. Consequently, the
performance of the proposed hybrid GWO-PSO algorithm
should be interpreted in the context of the specific conditions
under which the research was conducted.

This distinction helps ensure that conclusions drawn from the
results are appropriately nuanced and contextualized, avoiding
misleading direct comparisons between studies with different
underlying characteristics.

3.3 Case study presentation

In this study, we investigate a medium-voltage distribution
network optimized for photovoltaic (PV) integration, specifically
focusing on power quality enhancement. The case study includes a
detailed setup of the grid configuration, nominal features, and
results from simulations conducted under various conditions.
The following provides an overview of the grid and the
main findings.

3.4 Grid configuration

The grid is designed as a radial distribution network with
50 nodes, with PV sources and power quality compensating
devices placed at specific nodes to represent a realistic urban-
suburban distribution network. Below are the main
characteristics:

• Voltage Levels: The network operates with a nominal voltage
of 11 kV in the primary circuit and steps down to 400 V for
low-voltage loads.

• Base Power: A base power of 100 MVA is used for calculations
and simulations, ensuring consistency in power quality
analysis across the network.

• Transformers: Transformers rated at 5 MVA are placed at
high-demand nodes to connect PV sources and manage
voltage levels, providing stability during fluctuating loads.

TABLE 4 Power quality indices at different nodes of the electrical network before and after compensation.

Node
THD (%)
before

THD (%)
after

Voltage sag (%)
before

Voltage sag (%)
after

Voltage swell (%)
before

Voltage swell (%)
after

1 5.2 2.5 10.3 2.7 7.6 1.9

2 5.1 2.4 9.8 2.5 7.5 1.8

3 5.0 2.3 9.3 2.4 7.4 1.7

4 4.9 2.2 8.8 2.2 7.3 1.6

5 4.8 2.1 8.3 2.0 7.2 1.5

TABLE 5 Power losses in the electrical network before and after
compensation.

Parameter Before
compensation

After
compensation

Power loss (kW) 10.5 9.8
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• Photovoltaic (PV) Sources: Five PV generation units, each
rated at 2 MW, are connected at select nodes. The units’
generation fluctuates based on real-time weather data to
simulate realistic voltage and current variations in the grid.

• Load Distribution: The network features industrial,
commercial, and residential loads, reaching up to 80% of
the base power during peak conditions. Power factors vary
depending on load type, reflecting the dynamic nature of
urban power demand.

• Power Quality Standards: To maintain IEEE 519 standards,
the grid must keep Total Harmonic Distortion (THD) under
5% for both voltage and current.

3.5 Simulation conditions and scenarios

Simulations were conducted under various operational
conditions to assess the effectiveness of the hybrid GWO-PSO
optimization approach. Three primary scenarios were tested:

• Low-Load Conditions: Simulated at 50% peak load to observe
voltage swell effects.

• High-Load Conditions: Simulated at 100% peak load to
evaluate voltage sag.

• Variable PV Generation: Simulated over a 24-hour period
with fluctuating PV outputs to assess the impact on voltage
stability and harmonic distortion.

The simulation results before and after optimization with the
GWO-PSO algorithm are summarized in Table 1, detailing the
improvements in power quality indices. Table 1 presents average
values across all nodes, while Table 7 shows values at specific nodes
to illustrate localized improvements.

3.6 Analysis of results

• THD Reduction: The hybrid GWO-PSO algorithm achieved a
significant reduction in THD from 5.2% to 2.5%, aligning with
IEEE 519 standards and improving power quality across
the network.

• Voltage Stability: Voltage sag and swell levels were
substantially reduced, ensuring that voltage levels remain
within ±5% of the nominal value even during peak loads
and high PV generation.

• Power Loss: A reduction in power losses from 10.5 kW to
9.8 kW was observed, contributing to increased network
efficiency and reduced operational costs.

• Device Optimization: The optimization process also decreased
the number of required power quality compensation devices
from four to two, reducing both installation and
maintenance costs.

4 Comparison with other techniques

This section provides an in-depth comparison of the proposed
hybrid Grey.

Wolf Optimization-Particle Swarm Optimization (GWO-PSO)
algorithm with several established optimization methods,
specifically standalone Particle Swarm Optimization (PSO),
standalone Grey Wolf Optimization (GWO), and the PSO-GA
(Particle Swarm Optimization-Genetic Algorithm) hybrid
method. The comparison focuses on critical power quality
metrics, including Total Harmonic Distortion (THD), voltage
sag, voltage swell, and power losses, as these are key indicators of
power quality in photovoltaic (PV)-integrated electrical networks.

4.1 Analysis of PSO and GWO techniques

Particle Swarm Optimization (PSO): PSO is recognized for its
fast convergence due to its effective exploitation of good solutions by
updating particles based on both individual and global best
positions. This rapid convergence makes PSO suitable for real-
time applications; however, in highly nonlinear and complex
systems, PSO can suffer from premature convergence, potentially
leading to suboptimal results in power network optimization.

Grey Wolf Optimization (GWO): GWO, inspired by the social
hierarchy and hunting mechanisms of gray wolves, demonstrates
strong exploration capabilities. The algorithm’s hierarchical
structure, with alpha, beta, and delta wolves guiding the search,
enhances its ability to explore the solution space comprehensively,
reducing the risk of getting trapped in local optima. Nevertheless,
GWO’s robust exploration can result in slower convergence, which
may limit its efficiency in scenarios requiring rapid response, such as
real-time voltage sag mitigation.

4.2 Comparative performance of the hybrid
GWO-PSO algorithm

The hybrid GWO-PSO algorithm combines the rapid
convergence of PSO with the exploratory strength of GWO. This
synergy enables the hybrid model to exploit promising regions of the
solution space effectively (through PSO) while maintaining a broad

TABLE 6 Comparison of the results of the proposed research with previous studies.

Feature Cano et al. (2022) Ma et al. (2019a) Malamaki et al. (2022) Proposed research

Total Harmonic Distortion -THD 4.0% 3.5% 3.0% 2.5%

Voltage sag 4.2% 3.7% 3.2% 2.7%

Voltage swell 3.1% 2.7% 2.3% 1.9%

Power loss 11.4 kW 10.9 kW 10.4 kW 9.8 kW
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search capability to avoid local minima (through GWO). Table 8
provides a comparative analysis of the performance of GWO-PSO,
PSO, GWO, and the PSO-GA hybrid under identical simulation
conditions for the same PV-integrated network case study described
in Section 3.

As illustrated in Table 8, the hybrid GWO-PSO algorithm
outperforms both standalone methods and the PSO-GA hybrid
in all power quality metrics, especially in voltage sag reduction
and THD reduction, which are crucial for PV-integrated grids. The
GWO-PSO achieved a 3.2% reduction in voltage sag, which exceeds
the performance of PSO, GWO, and PSO-GA. This improved
voltage sag reduction highlights the algorithm’s potential in
stabilizing voltage levels under varying load and generation
conditions.

The GWO-PSO’s superior performance stems from its ability to
capitalize on PSO’s convergence efficiency and GWO’s exploratory
depth, thereby effectively addressing the multi-objective
optimization challenges common in PV-integrated grids.

4.3 Discussion on findings

The results demonstrate that the hybrid GWO-PSO algorithm
offers a balanced approach that enhances both convergence speed
and search comprehensiveness. In comparison, standalone PSO
tends to converge prematurely in highly complex systems, while
standalone GWO, though thorough, may lack the speed required for
fast adjustments. The PSO-GA hybrid shows promise, but its
performance is slightly lower than GWO-PSO in terms of voltage
stability and harmonic distortion reduction.

4.4 Socioeconomic implications of power
quality improvement

Improving power quality in PV-integrated networks through the
GWO-PSO algorithm has broader socioeconomic benefits,
including reductions in energy costs, enhanced grid reliability,

TABLE 7 Detailed improvements in power quality metrics with gwo-pso optimization, including improvement percentages and power loss reduction.

Parameter Before optimization After optimization Improvement (%)

Total Harmonic Distortion (THD) 5.2% 2.5% 51.9%

Voltage Sag 10.3% 2.7% 73.8%

Voltage Swell 7.6% 1.9% 75.0%

Power Loss (kW) 10.5 9.8 6.7%

Number of Compensating Devices 4 2 50.0%

TABLE 8 Comparative performance of optimization algorithms.

Algorithm Power loss reduction (kW) Voltage swell reduction (%) Voltage sag reduction (%) THD reduction (%)

PSO 1.2 1.7 2.8 2.5

GWO 1.3 1.8 2.9 2.3

Hybrid GWO-PSO 1.5 1.9 3.2 2.7

PSO-GA 1.4 1.8 3.0 2.6

TABLE 9 Socioeconomic implications of enhanced power quality in PV-integrated networks.

Socioeconomic
implication

Description Quantitative impact

Reduction in Energy Costs Lower power losses lead to decreased energy expenses for end-
users

Estimated 3%–5% reduction in energy costs in areas with high PV
penetration

Increased Grid Reliability Improved voltage stability minimizes outages and reduces
equipment stress

Reduction in outage metrics (e.g., SAIDI/SAIFI) by up to 20%

Reduction in Carbon Emissions Lower power losses result in reduced carbon emissions Estimated reduction of 0.5–1.5 tons of CO₂ per MWh saved

Extended Equipment Lifespan Smoother power quality reduces wear on network equipment Projected 10%–15% decrease in maintenance and replacement
costs

Operational Efficiency Fewer compensating devices simplify network management and
reduce costs

Approximate 20% reduction in device management expenses
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environmental advantages, and prolonged equipment lifespan.
These impacts align with the growing demand for sustainable
energy solutions in modern electrical networks. Table 9
summarizes the primary socioeconomic benefits observed in this
study, with estimated quantitative impacts where available.

The socioeconomic benefits listed in Tables 2, 4 reflect the value
of using the GWO-PSO algorithm to enhance grid efficiency and
reduce operational costs in PV-integrated networks. These
improvements align with the objectives of utilities, policymakers,
and end-users seeking sustainable and cost-effective solutions for
modern power networks.

5 Conclusion

This research introduces a novel approach to enhancing
power quality in electrical networks incorporating solar
systems. The proposed strategy utilizes a hybrid algorithm
integrating the GWO and PSO techniques. The findings and
contributions of the study can be summarized as follows:It has
been established that the hybrid GWO-PSO algorithm effectively
enhances power quality within electrical networks connected to
solar systems. Significant reductions in THD, voltage sags, and
voltage swells can be achieved by employing this technology.
Consequently, one can be assured of a cleaner and more reliable
power supply.

This method aims to enhance the process of selecting and
determining the appropriate size of power quality compensating
devices. The goal is to minimize the required devices while meeting
all requirements and limits. This phenomenon leads to improved
power quality and yields cost savings in addressing power quality
issues, encompassing day-to-day expenses and long-term
investments. The paper underscores the significance of adhering
to capacity, voltage, current, and power loss limits to ensure
electrical networks’ safe and efficient operation. The discussed
technique adheres to these constraints while concurrently
optimizing power quality. The GWO-PSO method, amalgamating
GWO and PSO, can identify Pareto-optimal solutions. These
solutions represent a balanced trade-off between enhancing
power quality and complying with constraints. These proposed
methods offer pragmatic and attainable solutions for rectifying
power quality issues. Energy efficiency is augmented through
compensation methods that mitigate power losses in the electrical
network. The reduction in power losses not only enhances power
quality but also diminishes operational expenditures. The text
provides a valuable starting point for decision-makers and
engineers involved in establishing and managing power quality
compensation systems in electrical networks incorporating PV
integration. This facilitates the practical implementation of these

concepts. The proposed solutions exhibit both theoretical rigor and
practical feasibility. The algorithm introduced in this paper, GWO-
PSO, presents a fresh and practical approach to addressing critical
concerns regarding power quality in electrical networks linked to
solar sources. The findings indicate significant enhancements in
power quality, all while staying within operational constraints. The
discoveries mentioned above substantially contribute to integrating
renewable energy sources into electrical networks, ensuring their
reliability, efficiency, and cost-effectiveness. This technique has
demonstrated remarkable versatility and potential for identifying
Pareto-optimal solutions, rendering it an invaluable tool for
optimizing power quality in diverse real-world scenarios.
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