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In small-current grounding systems, the fault current during a single-phase
grounding fault is small, and the transient process is complex, leading to
challenges in line selection accuracy and reliability. This paper proposes a
single-phase grounding line selection method based on transfer learning
using the ResNet-50 model. Zero-sequence voltage and current waveforms at
the fault moment are preprocessed and combined to generate training data for
the model. Simulation results using PSCAD demonstrate that the proposed
method achieves 99.77% validation accuracy, even under noisy conditions.
These results confirm the method’s feasibility and reliability in identifying
grounding faults in various conditions.
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1 Introduction

The small-current grounding systems include high-resistance grounding, arc
suppression coil grounding, and ungrounded systems. When a single-phase grounding
fault occurs, a complete circuit cannot be formed, resulting in a very small fault current;
thus, the system can continue operating for 1–2 h. However, this can cause damage to the
insulation performance of the equipment. Therefore, the “Technical Guidelines for
Distribution Networks” stipulate that after a single-phase grounding fault occurs, the
relevant line switch should trip after a delay to quickly eliminate the fault and isolate the
fault area (State Grid Corporation of China, 2017). Nevertheless, due to the inconspicuous
nature of fault signals, the success rate of single-phase grounding detection using traditional
small-current groundingmethods remains low, and the detection of single-phase grounding
faults in small-current grounding systems has not yet been effectively resolved
(Sapountzoglou et al., 2019). Therefore, a new fault line selection method needs to be
proposed to improve the accuracy of fault line selection.

Current line selection methods for single-phase grounding faults in small-current
systems can be mainly divided into three categories: methods based on fault steady-state
quantities, transient quantities, and modern signal processing technologies (Gururajapathy
et al., 2017; Li et al., 2011). The following sections will discuss these three types of methods
in detail.
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1.1 Steady-state algorithms for fault line
selection in low-current grounding

1.1.1 Zero-sequence current amplitude and phase
comparison method

The zero-sequence current amplitude and phase comparison
method identifies the faulted line by comparing the magnitude and
phase differences of the zero-sequence currents in various lines. A
commonly used approach is the group amplitude-phase comparison
method, which selects several lines with relatively large zero-
sequence current magnitudes for comparison, analyzing the
relative differences in their phases and magnitudes. When a
single-phase ground fault occurs, the zero-sequence current
magnitude of the faulted line is typically larger, and its phase
differs significantly from that of other non-faulted lines. This
amplitude-phase comparison method can effectively identify the
faulted line. However, its effectiveness diminishes in systems
grounded through arc suppression coils, as the resonant
characteristics of the arc suppression coil can interfere with the
magnitude and phase of the zero-sequence current, reducing the
accuracy of fault location.

1.1.2 Fifth harmonic method (Gao and Lin, 2018)
In harmonic disturbances, the fifth harmonic amplitude in the

faulted line is generally the highest, and its phase is often opposite to
that of the normal lines. By comparing the magnitude and phase
differences of the fifth harmonics between the faulted and normal
lines, the faulted line can be more accurately identified. However,
due to the low proportion of the fifth harmonic in the faulted zero-
sequence current (less than 10%), its accuracy in practical
applications is not very high.

1.1.3 Zero-sequence admittance method (Chai
et al., 2020; Li et al., 2023; Zhang et al., 2024)

Zero-sequence admittance is defined as the ratio of zero-
sequence current to zero-sequence voltage. Under normal
operating conditions, zero-sequence admittance is typically
located in the first quadrant of the complex admittance plane.
However, when a fault occurs, zero-sequence admittance may
shift to the second or third quadrant of the complex admittance
plane. Although the faulted line can be identified by analyzing
changes in zero-sequence admittance before and after the fault,
this method heavily relies on accurately determining the zero-
sequence admittance under normal conditions. This dependency
significantly limits the applicability of the zero-sequence
admittance method.

1.2 Transient algorithms for fault line
selection in low-current grounding

1.2.1 Transient energy method (Wei et al., 2022; Xie
et al., 2020)

The transient energy method identifies the faulted line by
analyzing the transient energy changes in the lines at the
moment of fault occurrence. When a single-phase ground fault
occurs, the transient energy of the faulted line is usually significantly
higher than the sum of the other lines. Specifically, this method uses

high-frequency sampled zero-sequence current data from
Distributed Phasor Measurement Units (D-PMU) to calculate the
transient energy of each line. By comparing the transient energy of
different lines, the faulted line can be accurately located. However,
this method requires high-precision synchronous measurement
equipment and high-frequency data collection, leading to higher
system deployment costs, which limits its practical application.

1.2.2 First half-wave method (Gong, 2022; Peng
et al., 2012)

The first half-wave method identifies the faulted line by
analyzing the polarity and magnitude of the first half-wave of
transient zero-sequence current during a single-phase ground
fault. When the fault occurs at the peak of the phase voltage, the
transient zero-sequence current magnitude of the faulted line is
usually large, and its polarity is opposite to that of the non-faulted
lines, allowing accurate identification of the faulted line. However,
due to the short duration of the first half-wave, this method may be
limited under low voltage or in the presence of interference.

1.2.3 Hilbert-Huang transform (HHT) method
(Anand and Affijulla, 2020; Song et al., 2021)

The HHT method identifies the faulted line by performing
Empirical Mode Decomposition (EMD) on the zero-sequence
current signal at the moment of fault occurrence, extracting
instantaneous frequency and energy characteristics. This method
is effective in handling nonlinear and non-stationary signals, making
it particularly suitable for complex fault analysis. However, due to its
high computational complexity and sensitivity to noise, it may
require optimization when combined with other methods in
practical applications.

1.2.4 Waveform image similarity method (He et al.,
2021; He et al., 2022)

The waveform image similarity method identifies the faulted line
by analyzing the waveform of the transient zero-sequence current
during a fault, decomposing it into several non-power frequency
components, and extracting waveform coefficients of characteristic
frequency bands. By calculating the similarity between the waveform
coefficients of different lines, the faulted line can be identified. This
method demonstrates high accuracy in handling complex faults,
especially in environments with multiple interferences. However,
due to its high computational complexity, practical applications may
require balancing the demand for computational resources.

1.3 Fault line selection algorithms based on
modern signal processing techniques

1.3.1 Fault line selection based on wavelet
transform (Ahmed et al., 2023; Gao et al., 2021)

Wavelet analysis, characterized by good localization in both time
and frequency domains and multi-resolution properties, is
particularly suitable for analyzing singular signals, allowing
examination of both time-domain and frequency-domain
characteristics in different frequency ranges. Fault line selection
based on wavelet transform analyzes grounding fault signals using
wavelet transform, extracting amplitude and phase information
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from the fault zero-sequence current waveform. Generally, wavelet
analysis is used for analyzing grounding fault transient signals, and
fault line selection is made based on relationships such as opposite
phase and maximum amplitude during the transient process. The
sensitivity of wavelet analysis to singularities is both an advantage
and a disadvantage, as the selection results are easily affected by
interference signals.

1.3.2 Fault line selection based on artificial
intelligence

Neural networks and fuzzy theory are relatively mature
technologies within the field of artificial intelligence. Neural
networks (Gao et al., 2021; Song et al., 2020; Tong et al., 2021;
Wang et al., 2024; Zhang et al., 2022) can make judgments based
on the mapping between electrical quantities and faults, while
fuzzy logic (Jiao et al., 2020; Shang et al., 2020; Guan et al., 2020;
Zhang et al., 2023) uses some conventional criteria based on
input signals to obtain fault line selection results, deriving
membership functions based on fuzzy theory, and finally
integrating the fault line selection result information to obtain
the final fault line selection outcome. The advantage of neural
networks lies in their powerful learning and generalization
capabilities, making them suitable for analyzing complex
nonlinear relationships, especially in the context of
multivariable fault signals. However, the training process of
neural networks requires extensive data support, and the
training results are sensitive to initial conditions. Fuzzy logic
excels in handling uncertainty and fuzziness, enabling reasonable
decision-making under incomplete information. However, its
performance depends on the design of rules and the definition
of membership functions, requiring fine-tuning in complex
scenarios to achieve optimal results.

This paper proposes a transfer learning approach using the
ResNet-50 model, which does not require selecting feature
quantities. By training with the superimposed waveforms of zero-
sequence voltage and zero-sequence current at the moment of the
fault, the model can accurately select the fault line under different
initial fault angles, grounding transition resistances, and fault
distances, providing a new idea for fault line selection in
distribution networks.

2 Transient singal
characteristic analysis

2.1 Transient equivalent circuit

When a single-phase grounding fault occurs at the neutral point
of an arc suppression coil grounding system, the transient capacitive
current, transient inductive current, and transient grounding
current at the fault point can be analyzed using the equivalent
circuit shown in Figure 1.

As shown in Figure 1, the transient equivalent circuit describes
the dynamics of single-phase grounding faults in resonant
grounding systems. The transient response of the system can be
analyzed by considering the interaction of capacitive and inductive
components. The oscillatory behavior at the fault point is primarily
driven by the energy exchange between the inductance L0 and the

capacitance C, while the damping effect is determined by the
resistive components.

2.2 Transient capacitor current

Due to the high natural frequency of the transient capacitive
current and the fact that the inductance of the arc suppression coil L
is much greater than L0, the effects of RL and L shown in Figure 1
can be neglected. Therefore, by using the series circuit composed of
L0, R0 and C, and applying the zero-sequence sinusoidal voltage u0
across it, the transient response of the capacitive current iC can be
effectively determined as shown in Equation 1.

R0ic + L0
dic
dt

+ 1
C
∫1

0
icdt � Um sin ωt + φ( ) (1)

where Um is the amplitude of the phase voltage; φ is the initial phase
angle of the fault.

Therefore, the transient capacitive current iC includes the
transient free oscillation component iCos and the steady-state
power frequency component iCst.

At the initial time, the initial condition satisfies the following
conditions as described in Equation 2:

ICos + ICst � 0
ICm � UmωC

{ (2)

By performing Laplace transform operations, the relevant
mathematical expressions can be obtained:

iC � iCos + iCst

� ICm

ωf

ω
sin φ( ) sin φft( ) − cos φ( ) cos φft( )( )e−δt + cos ωt + φ( )[ ]

(3)
In Equation 3, iC represents the total transient capacitive current,
which is a combination of the transient free oscillation component
iCos and the steady-state power frequency component iCst. Here, ICm

is the amplitude of the steady-state current component, ω is the
angular frequency of the system, and ωf is the natural angular
frequency of the system. The phase angles φ and φf correspond to
the steady-state and transient components, respectively, while δ is

FIGURE 1
Transient equivalent circuit for single-phase grounding faults in
resonant grounding systems.
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the damping coefficient, which affects the rate at which the transient
oscillations decay.

In power systems, the time constant τC is considered a constant,
and its value has a significant impact on the system’s dynamic
response. The magnitude of τC directly determines the damping rate
of the system’s free oscillations: when τC is large, the system’s free
oscillations decay more slowly; conversely, when τC is small, the
decay rate of the free oscillations increases. Additionally, the free
oscillation component iCos in the power system is influenced by sinφ
and cosφ and can be generated under ground faults at any phase
angle φ. Specifically, when the phase angle φ equals zero, the value of
the free oscillation is minimal; when the phase angle φ equals π/2,
that is, under a ground fault at the voltage peak, the value of the free
oscillation is maximal, occurring at a quarter of the free oscillation
period Tf. In this case, the amplitude of iCos is at its maximum and is
proportional to the ratio of the system’s ωf to ω. The larger this
ratio, the higher the maximum amplitude γC max

of the free
oscillation component.

When a single-phase ground fault occurs and the voltage of the
faulted phase drops to 0, no additional transient capacitive current
free oscillation component is generated. Under this condition the
voltage difference across the capacitor is 0, preventing a rapid
change in the charge within the capacitor and resulting in
minimal transient capacitive current. In this case, the amplitude
of the transient free oscillation current reaches its minimum value
when the time is equal to half of the free oscillation period Tf. This
minimum amplitude can be described by the following Equation 4:

iCosmin � ICm
ωf

ω
eTf/2TC (4)

Alternatively, it can be calculated using the ratio:

γCmin
� ωf

ω
eTf/2TC (5)

Equation 5 indicate that, when the phase angle φ is zero, the
transient capacitive current has a free oscillation component
equal in amplitude to the power frequency capacitive current.

Analyzing the free oscillation current is crucial because it is
directly related to the stability and safety of the system. The
calculation of the natural angular frequency ωf is a core part of
this analysis, and the derivation process is shown in Equation 6:

ωf �

ω2
0 − δ2

√
ω0 �


1

L0C

√
T0 � 2π


L0C

√

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(6)

The attenuation ratio of the current amplitude, γC, reflects the
degree of current amplitude attenuation after a time period of T0/2
and can be calculated using the following Equation 7:

γC � e
R0T0
4L0 (7)

This ratio is generally used to assess the damping characteristics
of the power grid. Experimental observations have found that the
damping ratio in overhead line networks typically ranges between
1.5 and 2.0, indicating significant current attenuation after half
a cycle.

Experimental results indicate that the dynamic response of cable
lines is influenced by their physical characteristics. The free
oscillation frequency of cable lines is relatively high, typically
ranging from 1,500 to 3,000 Hz. This characteristic results in a
shorter response time during transients, allowing cable lines to reach
a steady state more quickly. In contrast, the free oscillation
frequency of overhead lines usually ranges from 300 to 1,500 Hz.

2.3 Transient inductor current

When analyzing the transient process of an arc suppression coil,
the first consideration is the expression of the magnetic flux in the
core. During the transient process, the magnetic flux in the core
remains the same as it is in the unsaturated state. Therefore, the
known expression for the magnetic flux under static conditions can
be directly used to determine themagnetic flux in the core during the
transient process, which in turn allows for the calculation of the
neutral point current through the arc suppression coil. As shown in
Figure 1, according to Kirchhoff’s second law, we can derive the
following expression for the magnetic flux, as described in
Equation 8:

Um sin ωt + φ( ) � RLiL +N
dϕL

dt
(8)

where N is the number of turns in the arc suppression coil in the
system; ϕL is the magnetic flux passing through the iron core of the
arc suppression coil.

The relationship between the current through the arc
suppression coil and the magnetic flux linkage can be expressed
as shown in Equation 9:

LIL � NϕL (9)

Since the magnetic flux through the core of the arc suppression
coil is zero. Substituting IL into Equation 8, the magnetic flux ϕL can
be obtained as:

ϕL � ϕst

ωL

Z
cos φ + ε( )e− t

τL − cos ωt + φ + ξ( ){ }
ϕst �

Um

Nω

ξ � arctan
RL

ωL( )( )
Z �


R2
L + ωL( )2

√

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(10)

where ϕst is the steady-state magnetic flux; ξ is the phase angle of the
compensating current; Z is the impedance of the arc suppression
coil; τL is the time constant of the inductive circuit.

Since RL ≪ωL, the impedance of the arc suppression coil can be
approximated as Z ≈ ωL, and the phase angle of the compensation
current, denoted by ξ, can be considered to be zero. Equation 10 can
be simplified to Equation 11:

IL � ILm cosφe−
t
τL − cos ωt + φ( ){ }

ILm � Um/ωL
⎧⎪⎨⎪⎩ (11)

where ILm is the amplitude of the inductive current.
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2.4 Transient grounding current

In a low-current grounding system, the transient process at a
single-phase ground fault point is mainly composed of transient
capacitive current and transient inductive current. The values are
described in Equation 12:

iD � iC + iL

� ICm − ILm( ) cos ωt + φ( )
+ ICm

ωf

ω
sinφ sin ωft( ) − cosφ cos ωft( )( )e− t

τC

+ ILm cosφe−
t
τL (12)

In the equation: the first term is the steady-state component of
the ground fault current, and the remaining two terms are the
transient components of the ground fault current.

In power systems, the amplitude of transient capacitive
current is typically much larger than that of transient
inductive current, and it decays more rapidly as well. Whether
the neutral point of the power grid is ungrounded or grounded
through an arc suppression coil, the amplitude and frequency of
the transient grounding current are primarily influenced by the
transient capacitive current, with its amplitude also being
dependent on the initial phase angle.

Based on the above analysis, the transient frequency during a
single-phase grounding fault in a low-current grounding system
typically ranges from 300 to 1,500 Hz (Abdel-Fattah and Lehtonen,
2010). This frequency determines the duration of the initial half-
wave and provides essential guidance for selecting the data window
length for the ResNet-50 model.

3 Line selection process for low current
grounding based on ResNet-50

3.1 Image preprocessing

To superimpose the zero-sequence voltage and zero-sequence
current on a single image, it is necessary to normalize the sampled
values of the zero-sequence voltage and zero-sequence current, as
shown in the following Equation 13:

unor
0 t( ) � u0 t( )

max u0 t( )| |( ), t ∈ t0, t0 + 1ms[ ]

inor0k t( ) � i0k t( )
max i0k t( )| |( ), t ∈ t0, t0 + 1ms[ ]

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (13)

where u0 is the sampled value of the bus zero-sequence voltage for
the first half-wave, and i0k is the sampled value of the zero-sequence
current for the kth feeder. unor0 and inor0k are the normalized zero-
sequence voltage and the normalized zero-sequence current of the
kth feeder, respectively. t0 is the fault occurrence time.

As shown in Figure 2, the waveforms of a single-phase
ground fault under normal line conditions are presented.
During the first half wave after the fault occurs, the zero-
sequence current and zero-sequence voltage maintain the
same phase relationship. Figure 3 shows the waveforms of a
single-phase ground fault in a faulty line. In this scenario, during
the first half wave after the fault occurs, the zero-sequence

current and voltage are in opposite phases. This difference
can be used to distinguish normal lines from faulty lines.

Figures 4, 5 show the preprocessed waveforms for the normal
line and the faulty line, respectively. These figures highlight the
transient process and normalize the voltage and current waveforms
to make the features more apparent. This helps the ResNet-50 model
in fault line selection.

3.2 ResNet-50 convolutional neural
network model

ResNet-50 is a type of deep convolutional neural network. It was
proposed by Kaiming He et al. (He et al., 2016), where the concept of
residual learning was first introduced. This effectively alleviates the
problems of gradient vanishing and gradient explosion, significantly
improving the algorithm’s reliability. Specifically, the residual

FIGURE 2
Voltage-current waveforms during a normal line single-phase
grounding fault.

FIGURE 3
Voltage-current waveforms for a faulted line during a single-
phase grounding fault.
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module includes two or more convolutional layers, as well as a skip
connection that directly adds the input to the output, as shown in
Figure 6. The residual block, illustrated in Figure 6, consists of a
series of weight layers followed by Rectified Linear Unit (ReLU)
activation functions. The input x is passed through these layers to
produce f(x), which is then added to the original input x to form the
output f(x)+x. This skip connection helps in preserving the gradient
flow during backpropagation, thereby mitigating the issues of
vanishing and exploding gradients.

The loss function used for training the ResNet-50 model is the
Cross-Entropy Loss, which is well-suited for classification tasks. This
function measures the difference between the predicted class
probabilities and the true class labels, guiding the optimization
process to minimize the prediction error.

This model includes an input module, 4 residual modules, and
an output module. In this paper, the number of neurons in the final
fully connected layer is changed to 2 to adapt it for single-phase

ground fault line selection. The network structure is shown
in Table 1.

3.3 Fault recognition algorithm process

Applying ResNet-50 to small current grounding fault line
selection, the fault identification algorithm flowchart is shown in
Figures 7, 8. The specific process is as follows.

(1) Collect zero-sequence voltage and zero-sequence current data
at the time of the fault, intercept the data within 1 m of the
fault occurrence, preprocess it, and superimpose the
waveforms to form a dataset.

(2) Build the ResNet-50 model, input the dataset obtained above
to train the network, and train the model.

(3) The system continuously detects the bus zero-sequence
voltage U0 based on real-time collected voltage and current
data. When U0 > 0.1UN, the line selection device is activated,
and the zero-sequence voltage and zero-sequence current of
the output line are recorded.

(4) Intercept the zero-sequence voltage and zero-sequence
current within 1 m of the fault occurrence, preprocess the
zero-sequence voltage and zero-sequence current, and
superimpose the processed zero-sequence voltage and zero-
sequence current.

(5) Use the trained ResNet-50 model to make line selection
judgments based on the superimposed waveform.

FIGURE 4
Preprocessed waveform for a normal line during a single-phase
grounding fault.

FIGURE 5
Preprocessed waveform for a faulted line during a single-phase
grounding fault.

FIGURE 6
Residual block structure in a deep residual network.
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4 Simulation analysis

4.1 Construction of simulation model

To verify the accuracy of the proposed method, the PSCAD tool
was used to simulate the system, and a 110/10 kV simulation grid was
constructed. The small current grounding system established in this
study is shown in Figure 9. Themodel and parameters are as follows: the
power source is an infinite power source, the transformer capacity is
1,000 MVA, the transformation ratio is 110/10 kV, and there are four
outgoing lines connected to the substation bus. The lengths of the
feeders are as follows: 20 km (Line 1), 15 km (Line 2), 10 km (Line 3),
and 5 km (Line 4). The line parameters are unit positive-sequence
impedance Z1 � (0.17 + j0.38)Ω/km, unit zero-sequence impedance
Z0 � (0.23 + j1.72)Ω/km, and the end of each line is equipped with a
transformer and load.

By selecting different fault initial phase angles, grounding
transition resistances, fault point distances, and arc suppression
coil compensation degrees, different conditions of single-phase

grounding faults are simulated. The types and values of the
varying parameters are shown in Table 2, in which both full
compensation and over-compensation scenarios are included to
ensure a comprehensive evaluation of the ResNet-50 model under
various conditions.

4.2 Verification of line selection results in a
noise free environment

In a noise-free environment, by setting different compensation
methods, single-phase grounding fault simulations are performed
for different positions on lines L1 to L4, with various initial fault
phases and different grounding resistances. As shown in Table 2, the
dataset consists of 1,536 samples, with 80% used for training, 10%
for validation, and 10% for testing. This division ensures that the
ResNet-50 model is trained, validated, and tested on separate data
subsets to accurately assess its performance. These simulated
waveforms are input into the ResNet-50 model for training, with
a batch size of 32 and 50 iterations. Ten percent of the dataset is

TABLE 1 ResNet-50 network architecture.

Layer Output size (pixels) Network structure

Conv1 112 × 112 7 × 7, 64, S = 2
3 × 3 Max Pool, S = 2

Conv2_x 56 × 56 1 × 1 64
3 × 3 64
1 × 1 256

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ×3

Conv3_x 28 × 28 1 × 1 128
3 × 3 128
1 × 1 256

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ×4

Conv4_x 14 × 14 1 × 1 256
3 × 3 256
1 × 1 1024

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ×6

Conv5_x 7 × 7 1 × 1 512
3 × 3 512
1 × 1 2048

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ×3

Average Pool and Fully Connected(FC) 1 × 1 7 × 7 Average Pool, 1,000 Neurons in FC Layer

FIGURE 7
ResNet-50 training process for single-phase grounding
fault detection.

FIGURE 8
Application process of ResNet-50 for fault line selection.
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randomly selected as the validation set for verification, and the
validation accuracy reaches 100%.

The ResNet-50 model training results are shown in Figures 10,
11. Figure 10 illustrates the algorithm loss, which gradually
converges, indicating effective model training. Figure 11 displays
the validation accuracy, which stabilizes at 100%, indicating that the
model has high accuracy in a noise-free environment. These results
demonstrate that the ResNet-50 model can accurately identify and
classify single-phase grounding faults under ideal conditions.

4.3 Verification of line selection results
under simulated noise environment

Noise refers to irregular information that is unrelated to the
original signal. The ratio of the original signal to the noise is called
the signal-to-noise ratio (SNR). To verify the noise resistance
capability of the proposed method, 30 Decibel (dB) Gaussian
white noise was added to the fault zero-sequence current and
voltage, and tests were conducted. The test results are as follows.

Figures 12, 13 show the waveforms under normal and fault line
noise environments. Despite the presence of significant noise,
Figure 12 shows that in a normal line noise environment, the
zero-sequence current and zero-sequence voltage maintain the
same phase relationship. Figure 13 illustrates that in a fault line
noise environment, the zero-sequence current and voltage are in
opposite phases. These results indicate that even when the data is
corrupted by noise, the distinct characteristics of the normal and
fault conditions remain evident.

The verification results show that the waveform validation
accuracy in a noisy environment is still 99.77%, indicating that
even in a 30 dB noise environment, the algorithm can still efficiently
perform single-phase grounding fault line selection. This high

validation accuracy demonstrates the model’s robustness and its
ability to effectively filter out noise while retaining the essential
features needed for accurate fault detection.

4.4 Verification of selection results in real
environments

To verify the effectiveness of the proposed method in a real-
world environment, waveform data recorded on-site in Xi’an,
Shaanxi, were used. These data were collected using advanced
recording equipment provided by NARI Relays, a subsidiary of

FIGURE 9
Simulated model of a small current grounding system.

TABLE 2 Parameter distribution.

Fault Angle(°) Grounding resistance(Ω) Fault distance (km) Coil compensation (%)

0,30,60,90,120,150,180,270 0,10,25,50,250
500,1000,2000

1,3,5,7,9,11 0,10

FIGURE 10
Changes in algorithm loss during model training.
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the State Grid Corporation of China. The waveform data accurately
represent the voltage and current conditions during single-phase
grounding faults in an actual distribution network. A total of 25 on-
site waveforms were input into the trained ResNet-50 model for
verification. The verification results demonstrate that the line
selection accuracy for all test waveforms is 100%.

Figure 14 shows some of the on-site recorded waveforms,
including voltage, normal current, and fault current. The figure
clearly illustrates the fault occurrence time and its impact on the
system: the single-phase grounding fault occurred at approximately
75 milliseconds, causing a significant disturbance in the voltage
waveform within the first millisecond. Both the normal current and
fault current waveforms exhibit pronounced spikes, with opposite
phases, immediately following the fault occurrence. The verification
results confirm the reliability and adaptability of the proposed
method under various fault conditions, providing strong support
for fault detection in actual distribution networks.

5 Conclusion

This study introduces a novel and highly effective approach to
single-phase grounding fault line selection in low-current systems,
utilizing the ResNet-50 model. Through extensive simulations and
on-site waveform data validation, the proposed method has
demonstrated remarkable adaptability and accuracy across a wide
range of fault conditions. The ResNet-50 model, leveraging transfer
learning and automated feature extraction, successfully eliminates
the need for manual intervention. This significantly improves
detection efficiency and ensures highly accurate results. Notably,
the model maintains an impressive validation accuracy of 99.77%,
even in the presence of significant noise (up to 30 dB), highlighting
its robustness and reliability in real-world environments.

The use of advanced image recognition techniques in this
method greatly simplifies fault detection processes. It minimizes

FIGURE 11
Model validation accuracy in a noise-free environment.

FIGURE 12
Waveform under normal line noise environment.

FIGURE 13
Waveform under normal fault noise environment.

FIGURE 14
On-site recorded waveforms during a single-phase
grounding fault.
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the need for complex hardware and requires only minimal input
data from a single line, which in turn enhances operational
efficiency. This streamlined approach not only reduces the
complexity of detection equipment but also lowers associated
costs, making it highly practical for wide-scale deployment.
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