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This paper proposes a fault current limiting scheme (FCLS) for full-scale wind
power generators based on logic bang-bang funnel control (LBFC). Different
from the convention methods such as frequency droop control and sliding
control, which design the control strategy according to the specific fault
currents, LBFC is able to restrict various fault current within acceptable range
in the shortest time, and it is robust to system nonlinearities and external
disturbances. The control signal of the LBFC is bang-bang with the upper
and lower limits of control variables. In the model of full-scale wind power
generators connecting with the power grid, LBFC is designed to control the
switches of inverter bridges when over-current is detected, and a vector
controller is applied during the normal operation. Time-domain simulations
were conducted with PSCAD, and the performance of LBFC was validated.
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bang-bang funnel controller, fault current limiting, switching control, wind turbine
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1 Introduction

Energy transition brings great challenges to the stable operation of the power grid.
The transient stability of large-scale wind power penetrated power systems (WPPS)
is increasingly influenced by the dynamics of wind power plants (Wang et al., 2015).
Renewable power sources are connected to power grids through flexibly controlled power
electronics inverters (Liu et al., 2017), which introduce completely different dynamics into
power grids in comparison with synchronous generators (SGs) (Li et al., 2020). Under
an extreme event, an effective control system of wind power generators can enhance the
reliability of wind power generation and prevent wind farms from tripping, which helps to
alleviate the power unbalance and improve the transient stability of large scale WPPSs. The
reliability of future renewable energy generation is the major challenge for the development
of renewable power sources (Enslin, 2016; Wu et al., 2023). To ensure that the power system
can operate stably and has strong anti-disturbance ability. Much research has been done to
meet these expectations and challenges.

The concept of Frequency Droop Control was initially introduced in Chandorkar et al.
(1993) for regulating the operation of parallel-connected inverters in autonomous
AC power grids. This control scheme involved determining the frequency
and magnitude of the inverter voltage vectors using active power-frequency
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FIGURE 1
Wind power generation system.

droop and reactive power-voltage droop characteristics, as outlined
in Behera and Saikia (2022); Silva et al. (2022). The primary
objective of this approach was to make the parallel-connected
inverters mimic the load-sharing behavior of traditional SGs to
maintain a stable frequency and voltage in the external power
grid (Li et al., 2021). However, it was observed that this frequency
and voltage droop method exhibited a sluggish and oscillatory
transient response (Guerrero et al., 2004).

To address these limitations, a phase angle droop control
mechanism was introduced in Marwali et al. (2004) for the
management of autonomously operating inverter-interfaced power
grids. In this strategy, the regulation of the phase angle of the
inverter voltage vector, as opposed to the system frequency, was
accomplished by employing an active power-phase angle droop
characteristic. This was done to ensure the proper distribution of

loads among the parallel-connected inverters. An examination of
the small-signal stability of inverter-interfaced power grids with
phase angle droop controllers was carried out in Marwali et al.
(2007), which affirmed the necessity of substantial angle droop gains
for maintaining appropriate load sharing, especially in situations
of system weakness. However, it’s important to note that elevated
droop gains can have an adverse impact on the overall stability of
the system.

Furthermore, various nonlinear control techniques, such
as fuzzy control (Jabr et al., 2011), sliding mode control
(Martinez et al., 2012), and model predictive control Liu and
Kong (2014) have also been applied for the integral control of
the wind turbine. To ease the uncertainty and volatility caused by
high penetration of renewable energy, the robustness and demand
defence of grid were researched (Wang et al., 2024). Although
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FIGURE 2
Schematic of a PMSG.

these nonlinear control methods have superior robustness to the
nonlinearity and parameter uncertainty of the WPPS in contrast
with linear control schemes, none of them has ever employed the
maximumcontrol energy of the converters of the permanentmagnet
synchronous generator (PMSG) in its control law.

In terms of improvements at the algorithmic aspect, some
novel methods were used to study the stability of renewable
energy generation (Chen L. et al., 2024; Liu et al., 2024). A method
of combining multi-step reconfiguration with many-objective
reduction is applied to deal with the power loss and load
peak–valley fluctuation in distribution network (Li J. et al., 2024).
Based on the neural network of dynamic recognition and auto-
reservoir (Liu J. et al., 2023), the load fluctuation can be predicted.
In addition, methods such as artificial intelligence and deep
reinforcement learning have also been applied to study the
potential of renewable power systems in terms of operation
(Li et al., 2023; Li Y. et al., 2024).

Combining the advantages of linear and nonlinear control
methods and exploring the potential of the already existing control
systemof the PMSG, bang-bang control scheme is employed here for
the integral control of the PMSG to enhance the transient stability
of large-scale WPPSs (Chen X. et al., 2024). The bang-bang control
scheme has ever been used for the excitation control of synchronous
generators in Kobayashi and Ichiyanagi (1978). The bang-bang
control law is derived by solving the canonical equation of the
system’s Hamiltonian, which, in turn, necessitates the computation
of the Hamiltonian’s derivatives. Yet, the need for precise system
parameters and the intricate nature of the Hamiltonian have
unquestionably impeded its implementation within extensive power
systems (Chen et al., 2023). A bang-bang funnel controller (BBFC)
is proposed for the nonlinear system having arbitrary known
relative degree (Liberzon and Trenn, 2013). Apart from the existing
researches, the design of the BBFC does not require the detailed

system information, and the system nonlinearity, uncertainty and
the impact of external disturbances are considered (Liu et al., 2016b;
Liu Y. et al., 2023). It involves logic calculation only, which facilitates
its application in the computationally burdened control systems
(Kang et al., 2015). Based on the advantages of inherently robust
nature due to its model-free design, a LBFC of PMSG is proposed
in this paper for limiting the fault current (Chen X. et al., 2024).

The contributions of the fault current limit method proposed in
this paper can be summarized as follows:

• The proposed BBFC method is performed in nature
coordinates with simple structure based on logical module.
And it inherently robustness due to its model-free design,
which brings convenience to its application.
• Benefit from the characteristics of logical switches, BBFC

method has a natural advantage in fault current limiting and
operates without the utilization of angular information from
phase lock loop (PLL), rotational transformation.

To summarise, the paper is structured as follows. Section 2
introduces the model of PMSG and describes the type 4 wind
turbine model in PSCAD. Moreover, the LBFC for fault current
rejection is derived in Section 3. Comparative simulation results of
the test system under the combination of LBFC and vector control
alone under the disturbance of current fault scenarios are given
in Section 4. Based on the results of the time-domain simulation,
conclusions are drawn in Section 5, followed by the Appendix.

2 Modelling of wind turbine system

In a full-scale wind power generator, the stator of the PMSG is
connected to the grid through a back-to-back converter, machine-
side converter (MSC) and grid-side converter (GSC), as shown in
Figure 1. During operation, changes in wind speed lead to variations
in the rotor speed of the generator. The output frequency of the
stator winding depends on the rotor speed. To ensure the rated
frequency of the three-phase voltages and currents generated by
the wind power generator, it is necessary for the MSC to convert
alternating current into direct current, which is then converted
back into rated frequency alternating current by the GSC, thereby
achieving variable-speed constant-frequency operation. For the
control aspect, vector control is used for both the MSC and GSC
to achieve current decoupled control. The outer loops of MSC are
active power loop and AC voltage loop. The outer loops of GSC
are dc voltage loop and reactive power loop. Both sides introduced
the PLL to obtain synchronous phase angle. And the switching
logic can also be obtained in Figure 1. The wind turbine is a core
component in the energy conversion of the full-scale wind power
generator. This section models the wind power generation (WPG)
system comprised of the mathematical models of the wind turbine
and the PMSG.

2.1 Model of wind turbine

A wind turbine consists of several components capable of
converting kinetic energy into electrical energy. The blades on the
wind turbine can convert wind energy into mechanical energy,
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FIGURE 3
Topology of the three-phase full-bridge inverter.

TABLE 1 Parameters of WPG system.

Parameter Value Parameter Value Parameter Value

freq 60 Hz Kp_ω 0.5 Lfilter1 0.335 mH

Sbase 200 MVA Kp_pitch 10 Vdc_base 1.45 kV

Vbase 33 kV Ki_pitch 0.01 Rfilter2 0 Ω

Vsource 230 kV VratedPM 0.69 kV IqrefMin −1.5 p.u

N 100 IqrefMax 1.5 p.u xq 1.11 p.u

Rfilter1 1.332 Ω IdrefMax 1.5 p.u IdrefMin −1.5 p.u

Cfilter1 700 uF ρ 1.2kg/m3 vω 10 m/s

R 50 m xd 0.55 p.u ε+0 0

xkd 0.62 p.u xkq 1.175 p.u φ+0 0.3

FIGURE 4
The scheme of LBFC.

which is then transmitted through the drive system to the generator,
where it is further transformed into electrical energy. Therefore, the
wind turbine is a primary and critical component of a WPG system,
directly impacting the efficiency of wind power generation.

According to aerodynamic principles, it is possible to express the
airflow power as Equation 1.

Pw =
1
2
ρAv3w (1)

where ρ represents air density, under normal conditions, ρ =
1.2kg/m3; A denotes swept area; vw is wind speed.

The blades capture wind power can be expressed as Equation 2.

Pm =
1
2
ρAv3wCp (2)

where Cp denotes wind energy utilization coefficient. According to
the Betz limit, the maximum theoretical value of this coefficient
is 0.59. The sweep area A of the wind turbine is only related to
the physical size of the wind motor, air density is equal to 0.2
generally. Under the wind speed is given, the wind energy utilization
coefficient Cp determines the power obtained by wind turbine.

When the blade rotates, the ratio of the tip speed to the
input wind speed is defined as the tip speed ratioλ. λ can be
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FIGURE 5
The description of the switching logic.

FIGURE 6
Structure of the type 4 wind turbine model.

indicated as Equation 3.

λ =
ωmR
vw

(3)

where ωm represents the angular velocity of the blade, R represents
blade radius.

For variable pitch wind turbine, Cp can be expressed as
Equation 4.

Cp (λ,β) = 0.5176(
116
λi
− 0.4β− 5)e−

21
λi + 0.0068λ (4)

where β represents pitch angle, λi is determined by Equation 5.

1
λi
= 1
λ+ 0.08β

− 0.035
β3 + 1

(5)

Through computing Pm, according to Equation 6, the output
torque of wind turbine is obtained and inputs into the PMSG.

Tm =
Pm
ωm

(6)

2.2 Modelling of PMSG equivalent model

PMSGuses permanentmagnetmaterial to replace the excitation
winding, and the permanent magnet generates rotor excitation,

which is a brushless motor. Since there is no rotor winding, its size
and weight are greatly reduced, and there is no rotor winding loss.

Figure 2 shows the equivalent model of PMSG. The time
domain model of PMSG in the stationary coordinate system can
be represented by voltage equation, flux equation and rotor motion
equation. The three-phase stator winding voltage equation can be
described as Equation 7.

{{{{
{{{{
{

usa = Rsisa + pψsa

usb = Rsisb + pψsb

usc = Rsisc + pψsc

(7)

where usa,usb,usc represent three-phase winding phase voltage;
isa, isb, isc represent three-phase winding phase current; ψsa,ψsb,ψsc
denote three-phase winding flux linkage; p = d

dt
. Three phase

winding flux equation can be written as Equation 8.

[[[[

[

ψsa

ψsb

ψsc

]]]]

]

=(

Laa Lab Lac
Lba Lbb Lbc
Lca Lcb Lcc

)
[[[[

[

isa
isb
isc

]]]]

]

+
[[[[

[

ψ fa

ψ fb

ψ fc

]]]]

]

(8)

where Laa,Lbb,Lcc are three-phase winding inductance; Mab =
Mba,Mac =Mca,Mbc =Mcb denotemutual inductance between three
phase windings; ψ fa,ψ fb,ψ fc denote the flux linkage between the
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FIGURE 7
Dynamics of WPG system in steady operation.

FIGURE 8
Dynamics of WPG system obtained in the case when three-phase current fault happened on bus 1 under vector control. (A) Three-phase voltages
measured on bus 1. (B) Three-phase currents measured on bus 1. (C) Active power output of WPG system. (D) Reactive power output of WPG
system on bus 1.
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FIGURE 9
Dynamics of WPG system obtained in the case when three-phase current fault happened on bus 1 under the switching control of vector control and
BBFC. (A) Three-phase voltages measured on bus 1. (B) Three-phase currents measured on bus 1. (C) Active power output of WPG system. (D) Reactive
power output of WPG system on bus 1.

rotor and the stator, which can be described as Equation 9.

[[[[

[

ψ fa

ψ fb

ψ fc

]]]]

]

= ψ f

[[[[[

[

cos θ

cos(θ− 2π
3
)

cos(θ+ 2π
3
)

]]]]]

]

(9)

According to the theory of permanent magnet motor, the motor
motion equation can be written as Equation 10.

J
dωm

dt
= Te −Tm −Bmωm (10)

where Tm represents input mechanical torque, which can be
acquired in (6), Te denotes mechanical torque of PMSG; Bm = 0 is
coefficient of rotational viscosity.

In the static coordinate system, the uneven air gap leads to
the asymmetry of the fixed rotor magnetic field structure, and
the projection of the rotor flux on the three-phase stator winding
is related to the rotor position Angle. The mathematical model
of the synchronous motor is a set of nonlinear time-varying
equations related to the instantaneous position of the rotor, which is

difficult to analyze and control. After Park transformation, the stator
winding is equivalent to the d and q axis winding and the rotor
winding are relatively stationary, so that the inductance parameters
of the d and q axes become fixed, and the stator voltage, current and
flux vector are all constant direct flow that is relatively stationary
with the rotor. In PSCAD, the modeling of WPG system can be
realized by applying coordinate transformation.

3 Fault current limiting control

3.1 Logical-based bang-bang funnel
control (LBFC) design

The three-phase full-bridge inverter’s topology is described in
Figure 3, and all of the symbols utilized in the subsequent LBFC
design process are defined in Table 1.

Obviously, the states of SjP and SjN are reversed, let SjP serves
as the working state of the switches on j− phase and rewrite it as Sbj ,
Sbj ∈ {0,1}.Then the three-phase invertermodelling in this paper can
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FIGURE 10
Dynamics of WPG system obtained in the case when three-phase current fault happened on bus 2 under the switching control of vector control. (A)
Three-phase voltages measured on bus 1. (B) Three-phase currents measured on bus 1. (C) Active power output of WPG system. (D) Reactive power
output of WPG system on bus 1.

be written as follows Equation 11.

{{{{{
{{{{{
{

LfilterpiLj = VdcS
b
j + uON −RfilteriLj − vj

CfilterpuCj = iLj − ij

uON = −
Vdc

3
(Sba + S

b
b + S

b
c)

(11)

whereuON denotes the voltage between pointO andN,uCj represents
the filter capacitor voltage. The output current of the inverter would
need to be controlled in this paper. As a result, the differential
Equation 11 has to be stated in general linear single-input, single-
output (SISO) form (Liberzon and Trenn, 2013). Then iLj is both the
system’s output yj and one of the state variables, which have been
set as Xj = [iLj,uCj]. The control variable of the system is defined as
uj = S

b
j . Thus the j− phase system in the inverter can be given by

Equations 12, 13.

{
{
{

pXj (t) = F(Xj) +G(Xj)uj (t)

yj (t) = hj (t)
(12)

where

F(xj) =
[[[

[

− 1
Lfilter
(Rfilterx1 +

Vdc
3 Sbk +

Vdc
3 Sbl + vj)

1
Cfilter
(x1 − ij)

]]]

]

G(xj) =
[[

[

2Vdc

3Lfilter
0

]]

]
hj (t) = x1 (t)

(13)

where k and l indicate the two phases aside from j− phase, their
operation states Sbk and Sbl are treated as constant variables during
discussing j− phase to allow the independence of logic switching
control for each phase.

The order of the LBFC varies depending on the relative degree
r of the system. Specifically, the relative degree of control objective
hj(t)with respect to system’s input uj(t) is to differentiate output hj(t)
until input uj(t) explicitly appears in hrj (t), namely, as Equation 14.

.h(r)j (t) = L
r
Fhj (t) +LGLr−1

F hj (t)uj (t) (14)
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FIGURE 11
Dynamics of WPG system obtained in the case when three-phase current fault happened on bus 2 under the switching control of vector control and
LBFC. (A) Three-phase voltages measured on bus 1. (B) Three-phase currents measured on bus 1. (C) Active power output of WPG system. (D) Reactive
power output of WPG system on bus 1.

whenLGLr−1
F hj(t) ≠ 0 holds.Thus, the approach for determining the

relative degree of system (12) is shown in Equation 15.

hj(
1) (t) = LFhj (t) +LGhj (t)uj (t)

= −
Rfilter

Lfilter
x1 (t) −

VdcS
b
k +VdcS

b
l + 3vj

3Lfilter

+
2Vdc

3Lfilter
uj (t)

(15)

Therefore, it has r = 1 and the first-order LBFC would be adopted
here. The switching logic of the first-order LBFC can be simply
defined as Equation 16.

q (t) = G (e (t) ,φ+0 − ε
+
0 ,φ
−
0 + ε
−
0 ,q (t−))

= G (e (t) ,e,e,q (t−))
= [e ≥ e∨ (e > e∧ q (t−))]

q (0−) ∈ {true, false}

(16)

where q(t) ∈ {true, false},having q(t−) ≔ limε→0q(t− ε), is the
switching logic’s output deduced by the tracking error e(t) = iLji.
The chosen funnel boundaries are shown by φ±0 , ε

±
0 represent the

safety distances, and the upper trigger e and lower trigger e are
made up of these two. The BBFC enables to limit the fault current in

the funnel through logical switching control. The funnel boundaries
can be obtained by several simulation trials, combining with the
limit value of current. In most instances, the value of ε±0 is set as 0.
The scheme of LBFC in PSCAD can be described by Figure 4.

On the basis of Lghji(t) =
2Vdci
3Lfilter
> 0, the control law of

the LBFC designed to suppress the inverter outlet currents
is given as Equation 17.

Sbj (t) =
{
{
{

0, ifq(t) = true

1, ifq(t) = false
(17)

3.2 Switching strategy design

The state-dependent strategy T , depicted in Figure 1, is the
foundation uponwhich the switching control scheme created for the
overcurrent suppression of the PMSM power system operates. It is
explained in Figure 5.

Assume that following a short-circuit malfunction at the system,
the absolute value of any j− phase current at the inverter’s outlet is
|ej(t)|.Then the switching strategy is stated as that the inverter bridge
arm switching control switches from the GSC Control to LBFC if
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T1 is satisfied and switches from the LBFC to the GSC Control
on condition that T2 is satisfied, where T1 and T2 are illustrated
as follows (Liu et al., 2016a):

T1:{|ej(t)| ≥ ϖ},T2: {The switching frequency of the control signal
generated by ad LBFC reaches its maximum} ∨ {Signal for fault
clearance, it can be Vtj > τ}where ϖ,τ are design parameters of the
switching strategy of the system, Vtj is the three phase voltage of the
short-circuit point.

4 Simulation verifications

PMSG power system is a part of WPG system. In order to
verify the effectiveness of fault current rejection through LBFC,
time domain simulations of the system considering electromagnetic
transients were performed in PSCAD. In the test system, the
simulation time is set to 3 s, three-phase current faults happened
in 1.5 s on bus 1 and bus 2 separately, and faults were cleared after
90 ms, the type 4 wind turbine model is shown in Figure 6. At the
WPG system outlet A, a multimeter is used to measure the voltage,
current, active power and reactive power of the turbine output. The
voltage and current aremeasured by unit value, and the active power
and reactive power are measured by named value. The result when
the system runs stably is displayed in Figure 7.

4.1 A three-phase current fault occurred on
bus 1 of the WPG system at 1.5 s

On bus 1 at t = 1.5s, a three-phase current fault occurred.
Figures 8, 9 display the dynamics of WPG system. Where the WPG
system in Figure 9 is equipped with LBFC during current fault,
and system in Figure 8 is only under the vector control. Due to
the current fault of three-phase, the magnitudes of bus voltages
dropped, and the three-phase voltages measured on bus 1 are shown
in Figures 8A, 9A. Fault was cleared after 90 ms. During the current
fault time, the short-circuit currents of the system without LBFC
reached 3 times the nominal current value, as shown in Figure 8B.

In contrast, the switching control of vector control and LBFC
had an optimizing effect on WPG system during fault time. When
the short-circuit current was up to the switching criterion ϖ, the
inverter bridge arm switching control was switched from the vector
control to the LBFC, which in turn controlled the current the set
boundary values φ−0 to φ+0 , as seen in Figure 9B, which represented
that BBFC was able to control the fault current. Furthermore, with
the magnitudes of bus voltages declined, the active power both in
Figures 8C, 9C decreased. As presented in Figures 8D, 9D, WPG
system’s reactive power output fluctuated following the voltages’
volatility when system converted from LBFC to vector control.

4.2 A three-phase current fault occurred
on bus 2 of the WPG system at 1.5 s

Similarly, three-phase-to-ground fault occurred on bus 2 at
1.5s. The dynamics of WPG system were displayed in Figures 10,
11. When a three-phase current fault occurred at 1.5s, the three-
phase voltages decreased and were close to zero during the fault

time, as seen in Figures 10A, 11A. WPG system in Figure 10
utilized vector control only, while system in Figure 11 employed
the switching control of vector control and LBFC. The results
were the same as above content, LBFC could operate effectively,
it could control the fault current of WPG system, as displayed in
Figures 10B, 11B. The fault was cleared after 90 ms, when the system
switched from LBFC to vector control, and voltage and current
oscillations occurred during this process, which also caused active
and reactive power fluctuations, as seen in Figures 10C, D and
Figures 11C, D.

5 Conclusion

This paper has proposed a FCLS for the full-scale wind power
generators based on LBFC. The GSC is controlled in a switched
manner with the LBFC and a vector controller. When fault currents
are detected, the control system of GSC switches from vector
controller to LBFC, which generates independent control signals for
the three-phase bridge arms.

Simulation results, obtained in the case when bus 1 and bus
2 happen three-phase-to-ground current fault on the test system,
have verified that switching control in conjuction with the LBFC
could enhance the dynamics of system during fault and restrain
the fault current effectively. LBFC’s fault current rejection avoided
prolonged overcurrent, reduced the pressure on the power grid
under the fault. In contrast to the original Type 4 wind turbine
model in PSCAD, the switching control in conjuctionwith the LBFC
couldmaintain the three-phase fault current at a low value, about 0.5
times the rated value, where 3 times the rated value without LBFC.
Meanwhile, considering the simple structure and excellent ability of
limiting fault current, LBFC could be applied into the area of PV
system, electrochemical energy storage system and flywheel energy
storage system, which helps to reduce the harm of overcurrent
to the system. With the switching from LBFC to vector control
after fault disappeared, the WPG system would experience an
oscillation, leading to the fluctuation of voltage and current in a short
time, which is also the inspiration for the future study considering
the harmonic stability of the co-ordinated control of vector
control and LBFC.

In terms of the difficulties of practical application, the
communication delays will put forward potential challenges
for the implementation of the LBFC. The sensor accuracy
can also impact the performance of the LBFC, and the error
of current measurement weakens the effectiveness of the
controller.
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