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This paper studies how to integrate the smart charging of large-scale electric
vehicles (EVs) into the generation and storage expansion planning (GSEP), while
analyzing the impact of smart charging on the GSEP of a real power system in
south China. For this purpose, a random simulation-based method is first
developed to provide the tractable formulations of the adjustable charging
load and reserve provision from EVs. This method avoids the unrealistic
assumption that EVs drive and charge every day, which often exists in prior
relevant approaches. Based on the random simulation, this paper proposes a
novel GSEP optimization model which incorporates the weekly adjustable
charging load of EVs. In the proposed model, the total charging load of EVs
can be co-optimized with the investment and operational decisions of various
generation and storage units. This GSEP model is applied to a provincial power
system in south China. The numerical results show that the implementation of
smart charging can significantly alter the decisions of GSEP. As the participation
rate of smart charging improves from 0% to 90%, there is an additional 1,800 MW
installation in wind and solar power, while the need to build new batteries is
noticeably reduced; also, depending on the level of EV uptake, the annualized
total system cost decreases by 5.11%–7.57%, and the curtailment of wind and
solar power is reduced by 10.34%–19.64%. Besides, numerical tests reveal that
the traditional assumption that EVs drive and charge every day can mislead the
evaluation of adjustable charging load and overestimate the daily charging power
peak by averagely 24.72%.
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1 Introduction

Electric vehicles (EVs) are seen as a prominent solution for decarbonizing personal
transport, and the transport sector has started to shift away from fossil fuels and path the
way toward its decarbonization. In recent years, the global number of EVs has been growing
rapidly, and it is expected to increase from almost 30 million in 2022 to about 240 million in
2030, achieving an average annual growth rate of about 30% (IEA, 2023). EVs have been also
promoted vigorously by both policymakers and industry stakeholders in China (IEA, 2023),
(IEA, 2020), with 9.44 million EVs produced in 2023 (National Bureau of Statistics, 2024).
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And from January to March of 2024, the market share of EVs in
China has reached 31.1% (CAAM, 2024).

With the increasing penetration level of EV, the charging of EVs
is expected to gradually impact power systems from various aspects,
e.g., the increasing charging demand leads to additional generation
and storage capacities (Syla et al., 2024); the charging of millions of
EVs requires the upgrade of distribution feeders (Jenn and
Highleyman, 2022); numerous EVs increase the system loading
resulting in weakening of the system reliability (Božič and
Pantoš, 2015); the power quality and voltage stability are also
likely to be affected (Torres et al., 2022).

To tackle with the negative impact of high EV penetration, smart
charging of EVs is an effective measure by reducing the peak system
demand (Spencer et al., 2021), (Anwar et al., 2022). Under smart
charging, EVs participate in a demand response program in which
an aggregator (utility or third-party) remotely controls the charging
time and power through the charger or vehicle software; the
charging of EVs is shifted in time to reduce the peak system
loading or accommodate the abundant renewable generation,
with the EV owners getting rewarded by adjusting their charging
plans (Syla et al., 2024).

Smart charging can benefit power systems from different
aspects. The work in (Szinai et al., 2020) reveals that the smart
charging of EVs in California saves grid operational costs and
reduces renewable energy curtailment up to 40%. The benefits of
smart charging are also identified in lowering operational cost and
carbon emissions in France (Lauvergne et al., 2022). Another study
highlights that smart charging in Great Britain can act as an effective
non-network alternative to conventional grid reinforcement
(Borozan et al., 2022).

Long-term generation expansion planning (GEP) is a complex task,
which aims at determining the optimal investment plan on the
generation portfolio (Gómez and Olmos, 2024), (Li et al., 2024).
Some studies have attempted to incorporate large-scale EVs and
smart charging into GEP problems. For instance, the work in
(Taljegard et al., 2019) integrates the flexible EV charging into the
GEP of Scandinavian-German and suggests that smart charging helps
reduce the new investment on local peak power capacity and solar
power. The study in (Manríquez et al., 2020)models the shifting of daily
EV load in a long-term generation and transmission expansion model,
and different to (Taljegard et al., 2019), it points out that smart charging
allows for more installation of solar power in Chile. Reference (Ramirez
et al., 2016) considers the charging optimization of EVs in GEP while
accounting for the cost to enable charging flexibility, and the case
studies inU.K. show the capability of EVs in reducing peak demand and
absorbing wind variability. Further, the research in (Carrión et al., 2019)
includes the controllability of EV charging in a stochastic generation
and storage expansion planning (GSEP) model, with the findings that
the EV flexibility in a regional network in Spain enables for more solar
and less batteries to be installed but has no obvious impact on wind
installation. The impact of smart charging on the Chinese power sector
is also analyzed in (Li et al., 2021) based on a customized GSEP model
for China, and the results suggest that the aggressive EV deployment
using smart charging, coupled with the development of renewables, can
make China meet its future carbon cap targets.

Though some works have considered the smart charging of
EVs in GEP or GSEP, they have deficiencies in the modelling of
the controllable EV charging. The references (Taljegard et al.,

2019)- (Carrión et al., 2019) attempt to use a very limited number
of deterministic daily driving and charging profiles to evaluate the
adjustable charging load, which is inadequate in representing the
wide variety of driving and charging behaviors of EVs in reality.
Actually, from the perspective of the entire EV fleet, the driving
and charging behaviors of EVs are full of randomness (Mandev
et al., 2022), (Li et al., 2023), e.g., the starting time of the charging
of EVs can be distributed in any time of 1 day, which cannot be
accurately represented by a few fixed time points. On the other
hand, the increase of the number of driving and charging profiles
may obviously enlarge the size of GEP models. The methodology
in (Li et al., 2021) fills the gap in (Taljegard et al., 2019)- (Carrión
et al., 2019) by employing the random simulation of adjustable
charging load. In this method, the random driving and charging
behaviors of EVs are represented by proper statistical
distributions. However, the method in (Li et al., 2021) relies on
an assumption that every EV drives and charges every day, which
does not match the reality and may mislead the evaluation of
charging load. Moreover, the approach in (Li et al., 2021) can only
model the charging load for separate days. That is, this approach
cannot be applied to the GEP or GSEP which needs a series of
consecutive days to represent the target whole year (e.g., (Ramirez
et al., 2016)).

This paper studies how to integrate the smart charging of large-
scale EVs into GSEP and analyzes how the smart charging affects the
GSEP on a real power system in south China. To this end, the
following works are conducted is this paper:

1) Based on the probabilistic modelling of various EV parameters,
an improved random simulation method is first developed to
model the adjustable charging load and reserve
provision from EVs.

2) Based on the random simulation method, this paper proposes
a novel optimization model for the GSEP incorporating the
adjustable EV charging. In the GSEP model, the shiftable
charging load of EVs is co-optimized with the investment
and operational decisions of various generation and storage
units. This GSEP model is then applied to a provincial power
system in south China to investigate the impact of smart
charging on GSEP.

Compared to the existing similar research, the study in this
paper has the following merits:

• As for the modelling of adjustable charging load, the proposed
random simulation method enables more adequate and
accurate description of the random driving and charging
behaviours of EVs compared to the approaches in (Gómez
andOlmos, 2024)- (Manríquez et al., 2020); meanwhile, unlike
the approach in (Li et al., 2021), the proposedmethod does not
need the unrealistic assumption that EVs drive and charge
every day, and it can provide the tractable formulation of the
adjustable charging load and reserve provision from EVs
during consecutive days.

• A novel GSEP model incorporating the smart charging of
large-scale EVs is developed, which can leverage the
adjustability of weekly charging load for power balancing
and reserve provision in a tractable way.
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• This paper applies the proposed GSEP optimization model to
a real provincial power system in south China. This power
system is representative of the regions in south China where
the market share of EVs is expected to increase rapidly in
future and smart charging is also beginning to be promoted.
The study in this paper helps understand how the smart
charging affects the GSEP of the southern provinces with
upcoming high EV penetration.

• This paper also analyses how the settings on the driving and
charging frequencies of EVs affect the evaluation of charging
load and its adjustability.

This paper is structured as follows. Section 2 presents the
improved random simulation method for adjustable charging
load. Section 3 gives the mathematical formulation of the
proposed GSEP model. Section 4 conducts case studies. Section 5
concludes the paper.

2 Random simulation method for
adjustable charging load

Figure 1 illustrates the overall structure of the proposed GSEP
model incorporating the random simulation of adjustable charging
load. This section will present the details of the random simulation
method, together with the advantages of the proposed simulation
method over existing methods (e.g., see (Taljegard et al., 2019) (Li
et al., 2021)). The formulation of the GSEP model is constructed by
improving the work in (Ramirez et al., 2016) and (Gómez-Villarreal
et al., 2023), and it will be introduced in the next section.

2.1 General description

In this paper, the entire EV population is categorized into eight
fleets according to both the purposes and power types of EVs,

FIGURE 1
Schematic diagram of the proposed GSEP model incorporating the random simulation of adjustable charging load.

TABLE 1 Description of the charging patterns of each EV fleet.

Fleet type Charging pattern Charge times per day Charging location Charging modea

Weekday Weekend Weekday Weekend

Private BEV/PHEV 1 0–1 Home Home Slow Slow

2 Home Publicb Slow Regular/Fast

3 Workplace Public Slow/Regular Regular/Fast

4 Public Public Regular/Fast Regular/Fast

Official BEV/PHEV 1 0–1 Workplace Workplace Slow/Regular Slow/Regular

2 Public Public Fast Fast

Electric public bus 1 1–2 Bus depots Bus depots Fast Fast

Logistics EVs 1 0–2 Public Public Fast Fast

E-taxis/E-hailing EVs 1 1–2 Public Public Fast Fast

aAccording to the Standards of EV, Conductive Interface released in 2023 (SSA, 2023), this paper considers three charging modes, with the slow, regular and fast ones denoting the charging

speed ranging from 3.5 kW to 7 kW, 14 kW–32 kW and higher than 50 kW, respectively.
b“Public” denotes public commercial charging facilities.
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i.e., private battery EVs (BEVs), private plug-in hybrid EVs
(PHEVs), official BEVs, official PHEVs, logistics EVs, electric
public buses, e-taxis, and e-hailing EVs.

BEVs exclusively use an electrochemical battery to power an
electric motor; PHEVs have both an electric motor with an
electrochemical battery and a combustion engine with a petrol
tank. Like BEVs, PHEVs can be plugged to charge their batteries.
According to the statistical data from the annual report in (Wang
and Liang, 2022), about 24.5% of private EVs are PHEVs in China in
2022, and this percentage is 20% for official EVs. Here, official EVs
denote the EVs owned by government divisions or enterprises and
used for official travels. For other EVs, almost all of them belong to
BEVs (Wang and Liang, 2022), so only BEVs are considered here.

Briefly, the simulation method for the adjustable charging load
of EVs consists of four steps:

1) Select the typical vehicle models of each EV fleet, and each
model is characterized by its battery capacity and electricity
usage per km in each season.

2) For each EV fleet, a series of probability density functions
(PDFs) are employed to describe the statistical distributions of
its driving and charging behaviors.

3) For each EV, its driving and charging behaviors are randomly
sampled from proper PDFs, and the charging sequences
occurred in a specific target year are derived.

4) Finally, the formulations for the total adjustable charging load
and reserve provision from EVs are constructed based on the
total cumulative charging energy (CCE) of all
charging sessions.

2.2 Probabilistic modelling of EV parameters

To characterize the randomness in EV driving and charging, the
PDFs on the following parameters are considered as input:

1) driving parameters of each EV fleet: yearly number of travel
days, average daily driving distance.

2) charging parameters of each EV fleet: proportion of each
charging pattern, the start time and the latest allowed end
time of charging, charging power and efficiency, the state-of-
charge (SOC, the ratio of the energy remaining in the battery to
the battery capacity) threshold to charge.

As shown in Table 1, each EV fleet is assumed to follow one or
more than one charging patterns. Each charging pattern is
characterized by the charging times per day and location and
mode of each charging (depending on the type of day). Private
EVs are mainly used for commuting on weekdays, and most of them
are charged at home overnight or the workplace in the daytime (Sun
et al., 2022). On weekends, owners of private EVs can charge their
cars at their residences, public charging piles during shopping or
charging stations during trips (Luo et al., 2013). Official EVs are
basically used for official travels on weekdays (Zheng et al., 2020),
and they are assumed to charge in workplaces or charging stations. It
is common for the public buses in China to charge overnight after
finishing service, and they also need to charge in the daytime if the
overnight charging energy cannot satisfy the bus service in the next
whole day (Zheng et al., 2020). Logistics EVs, e-taxis and e-hailing
EVs are assumed to charge two times per day if the daily driving
distance is high, and they prefer fast-charging because the shorter
charging time implies more time to finish goods delivery or make
profit (Wang and Liang, 2022).

Note that for each EV fleet, different charging patterns may be
corresponding to different groups of PDFs on the charging parameters
(e.g., the start and latest allowed end time of charging). Those PDFs are
also dependent on the types of day (weekday or weekend).

Note that the random simulation methods in the literature often
assume that each EV drives and charges every day (e.g., see (Li et al.,
2021)), which does not match the reality. Actually, the statistical data
in (Wang and Liang, 2022) shows that private and logistics EVs may
not drive and charge every day, especially for private ones (see

TABLE 2 Average monthly number of travel days and charge times for
private and logistics EVs (Wang and Liang, 2022).

EV type Private EVs Logistics EVs

Average monthly number of travel days 19.42 21.94

Average monthly charge times 8.8 25.7

FIGURE 2
PDFs of yearly number of travel days for private and logistics EVs.
(A) Private EVs. (B) Logistics EVs.

FIGURE 3
Illustration of total CCE and its bounds for days k − 1 and k.
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Table 2). In the proposed random simulation method, the yearly
numbers of travel days for private and logistics EVs are assumed to
follow the PDFs in Figure 2, which are extracted from (Wang and
Liang, 2022). Besides, electric public buses and e-taxis and e-hailing
EVs, considering their purposes and relatively long driving distance
per day, are assumed to drive and charge every day; official EVs are
assumed to drive in every working day. Moreover, every private,
logistics and official EV is assumed to charge only when its battery
SOC drops below a threshold decided by the owner, so that each EV
may not charge every day. More details can be found in Section 2.3.

2.3 Random sampling and annual
charging sequences

Next, the year-round charging sequences of each EV are derived
through the following steps, in which the SOC trajectory of each EV
is tracked and the days with charging are identified sequentially.
Note that each charging sequence is characterized by its start day,
start time, end time, charging power and efficiency.

1) According to the typical model parameters of each EV feet, the
battery capacity and electricity usage per km of each EV in
each day are assigned, i.e., cik and hik.

2) For each EV, the following parameters are also randomly
sampled from the PDFs in Section 2.2: the days in which
the EV travels, average daily driving distance di, type of
charging pattern, SOC threshold to charge (SOC

i
).

3) Let i = 1, n = 1.
4) For EV i, calculate its electricity usage eik in each day k = 1,/,

365, where Iik denotes if EV i drives or not in day k, see
Equation 1.

eik � Iikdihik (1)

5) Let k0 = 1.
6) Starting from the day k0, search for the earliest day k in which

the battery SOC of EV i drops below the threshold SOC
i
, see

Equation 2.

∑k
k′�k0

eik′ ≥ 1 − SOC
i

( )cik (2)

That is, EV i needs to be charged after the driving in day k, and
the charging need is calculated by Equation 3.

Dik � ∑k
k′�k0

eik′ (3)

Note that if the battery SOC of EV i drops below zero after the
driving in day k, k should set to k − 1, i.e., EV i should be charged in
day k − 1 to avoid battery depletion. Also, if k has exceeded 365, i = i
+ 1, go to Step (4).

7) In order to fulfill the charging need Dik, one or two charging
sessions are needed. If EV i is a private or official EV, charging
session n is created. The start time, Ts

n, power, pn, and efficiency,
ηn, of charging session n can be randomly drawn from the PDFs
in Section 2.2; the start day is k ifTs

n ≤ 24 and k + 1 otherwise; the
end time of charging session n can be calculated by Equation 4.

Te
n � Ts

n +
Dik

pnηn
(4)

If EV i is an electric public bus, it is assumed to charge once or
twice (Zheng et al., 2020). Ts

n, pn and ηn of the overnight charging
can be obtained by random sampling; the start day can be
determined according to Ts

n; the end time of the overnight
charging can be calculated by Equation 5:

Te
n � Ts

n +
min Dik, 1 − SOC

i
( )cik( )
pnηn

(5)

If Dik > (1 − SOC
i
)cik, a daytime charging is required; let n =

n + 1, Ts
n, pn, ηn and start day of the daytime charging can be

TABLE 3 Predicted population of each EV fleet (unit: thousand).

Fleet type Moderate level Aggressive level

Private BEV 1882.0 2951.8

Private PHEV 358.5 562.2

Official BEV 29.4 42.0

Official PHEV 5.6 8.0

Electric public bus 9.0 9.0

E-taxi 10.0 10.0

Logistics EV 90.0 155.0

EV for e-hailing 22.0 22.0

Total 2406.5 3,760.0

TABLE 4 Capacities of newly installed generation and storage types under different scenarios (unit: MW).

Technology Mod-0 Mod-45 Mod-90 Agg-0 Agg-45 Agg-90

Gas 2937.5 2937.5 2937.5 2937.5 2937.5 2937.5

Nuclear 2400 2400 2400 2400 2400 2400

Wind 636.39 893.01 1368.83 1263.64 1299.35 2171.83

Solar 2355.42 3,176.75 3,500 2618.29 3,160.79 3,500

Pumped storage 1,500 1,500 1,500 1,500 1,500 1,500

Battery 174.06 0 0 1297.32 15.88 0
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determined in the same fashion as those for the overnight charging,
and the end time can be calculated by Equation 6:

Te
n � Ts

n +
Dik − min Dik, 1 − SOC

i
( )cik( )

pnηn
(6)

If EV i belongs to the logistics, taxi, or e-hailing fleet, it has one
or two fast charging sessions. The characteristics of the charging
sessions can be calculated in the similar manner as those for electric
public buses.

8) n = n + 1, k0 = k, go to Step (6).

The whole procedure is terminated when i has exceeded the total
number of EVs.

2.4 Total charging load and the formulation
of its adjustability

Similar to (Luo et al., 2013), the following types of charging are
considered to be controllable: i) charging of private cars at home or
workplaces; ii) charging of official cars at workplaces; iii) overnight
charging of public buses after they finish daily service. For other types of
charging, they have low controllability since they are often asked to be
finished as early as possible, such as the charging of taxis which pursue
short charging time. Note that for the EVs with controllable charging,
the participation rate is introduced to indicate the percentage of EVs
which participate into smart charging, i.e., they accept the control of
their charging by aggregators.

Next, this paper formulates the adjustable charging load based
on the concept of cumulative charging energy (CCE). Specifically, all
the charging sessions obtained in Section 2.3 represent the strategy
in which each EV is fully charged as early as possible. The CCE of
each charging session n can be calculated by Equation 7, which also
represents the upper boundary of the feasible CCE.

E+
tn � pn ×min max 0, tΔt − Ts

n( ), Te
n − Ts

n( ), t � 1,/, 2NT (7)
where 2NT are considered in the calculation of E+

tn since some
overnight charging sessions may end until the next day.

For a controllable charging session, it can be also postponed as
late as possible, with the corresponding EV fully charged just at the
latest allowed time Tle

n (sampled from the PDFs in Section 2.2). As a
result, the start and end time of the charging session are shifted to Tls

n

and Tle
n , respectively, where Tls

n = Tle
n − (Te

n − Ts
n). The

corresponding CCE is the lower boundary of CCE, as calculated
by Equation 8.

E−
tn � pn ×min max 0, tΔt − Tls

n( ), Te
n − Ts

n( ), t � 1,/, 2NT (8)

For an uncontrollable charging session, it cannot be postponed
so its upper and lower boundaries of CCE are the same.

Then, for all the charging sessions that start in day k, the upper
and lower boundaries of the total CCE can be obtained by
summating E+

tn and E−
tn, respectively, see Equations 9, 10.

ET+
tk � ∑

n∈Ek
E+
tn, t � 1,/, 2NT (9)

ET−
tk � ∑

n∈Ek/EMk
E+
tn + ∑

n∈EMk

E−
tn, t � 1,/, 2NT (10)

TABLE 5 Breakdown of total system costs under different scenarios (unit: billion CNY).

Scenario Annualized investment Yearly operational cost Annualized total system cost

Mod-0 6.04 52.02 58.06

Mod-45 6.50 49.89 56.39

Mod-90 7.14 47.95 55.09

Agg-0 7.46 54.14 61.60

Agg-45 6.96 51.75 58.71

Agg-90 8.04 48.90 56.94

TABLE 6 Some indices under different scenarios.

Scenario Mod-0 Mod-45 Mod-90 Agg-0 Agg-45 Agg-90

Annual curtailment rate of wind (%) 11.18 8.89 6.55 12.29 8.23 5.76

Annual curtailment rate of solar (%) 11.44 9.46 8.54 12.43 9.39 9.22

Annual curtailment rate of wind and solar (%) 11.39 9.33 8.00 12.39 9.08 8.00

Share of wind and solar generationa (%) 9.50 11.12 12.62 10.58 11.65 13.91

Annual rate of load shedding (%) 0.15 0.09 0.03 0.20 0.13 0.04

Annual total carbon emission (million tCO2) 37.27 36.33 35.46 38.02 37.36 36.01

Carbon emission per unit electricity (tCO2/MWh) 0.36 0.35 0.34 0.36 0.35 0.34

aThis index denotes the percentage of the annual total generation from wind and solar power in the annual total generation from all generators.
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As illustrated in Figure 3, the trajectory of the total CCE Etk

much lie between the bounds ET+
tk and ET−

tk , i.e., the energy
boundaries Equation 11.

ET−
tk ≤Etk ≤ET+

tk , t � 1,/, 2NT (11)

Meanwhile, Etk is subject to the power boundaries in
Equation 12:

0≤Etk − Et−1,k ≤ ∑
n∈Ek

pnΔt, t � 1,/, 2NT (12)

According to the definition of Etk, the total adjustable charging
power PM,EV

tk can be expressed by Equation 13. Note that the
calculation of PM,EV

tk in day k needs to consider the overnight
charging sessions which start in day k − 1 but end in day k.

PM,EV
tk � Etk − Et−1,k + Et+NT,k−1 − Et+NT−1,k−1( )/Δt, t � 1,/, NT

(13)
Constraints Equations 11–13 will be incorporated into the proposed

GSEP model, with PM,EV
tk optimized with other decision variables (see

Section 3). Note that ifEtk is set toET+
tk ,P

M,EV
tk becomes a parameter and

it denotes the total charging power under no smart charging.

Remark 1: Constraints Equations 11–13 can be used to formulate
the adjustability of charging load in any given days, especially during
multiple consecutive days (e.g., 1 week). This overcomes the
shortcoming in (Li et al., 2021), which can only model the
adjustable charging load in separate days.

2.5 Modelling of the reserve provision
from EVs

EVs can provide upward spinning reserve by decreasing their
charging power. Let EU

tk denote the new profile of total CCE after the
deployment of upward reserve. Like Etk, EU

tk also needs to satisfy the
energy and power constraints of CCE, see Equations 14, 15. By
combining PM,EV

tk and EU
tk, the available upward reserve from EVs

can be defined by Equation 16, where the first four terms are used to
calculate the total charging power after the deployment of
upward reserve.

ET−
tk ≤EU

tk ≤ET+
tk , t � 1,/, 2NT (14)

0≤EU
tk − EU

t−1,k ≤ ∑
n∈Ek

pnΔt, t � 1,/, 2NT (15)

RU,EV
tk � EU

tk − EU
t−1,k + EU

t+NT,k−1 − EU
t+NT−1,k−1( )/Δt − PM,EV

tk , t

� 1,/, NT (16)

Note that since the deployment of reserve much not affect the
charging demand of all EVs, the reduced total charging power in
some time needs to be compensated by the increased total charging
power in some other time. As a result, RU,EV

tk can be positive, zero or
negative: a positive value denotes the amount of available up-reserve
at time t while a negative value represents the required increase of
total charging power at time t if all the up-reserve is called.

Likewise, EVs can provide downward reserve by increasing their
charging power, and the following constraints can be used to
formulate the available provision of downward reserve:

ET−
tk ≤ED

tk ≤ET+
tk , t � 1,/, 2NT (17)

0≤ED
tk − ED

t−1,k ≤ ∑
n∈Ek

pnΔt, t � 1,/, 2NT (18)

RD,EV
tk � ED

tk − ED
t−1,k + ED

t+NT,k−1 − ED
t+NT−1,k−1( )/Δt − PM,EV

tk , t

� 1,/, NT (19)

FIGURE 4
Breakdown of yearly operational costs under different scenarios.

FIGURE 5
Examples of the weekly total charging load and system net load
in scenarios Mod-0 and Mod-90. (A) Total charging load. (B) System
net load without EV load. (C) System net load with EV load.
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Remark 2: the formulations of adjustable charging load and reserve
provision fromEVs, i.e., Equations 11–19, involve only linear constraints
and their sizes do not increase with the number of EVs. Thus, these
formulations are adequate inmodelling the smart charging of large-scale
EVs in a tractable way. And the integration of these formulations into the
proposed GSEPmodel will not affect the computational efficiency of the
model. This is beyond the capability of the existing relevant methods in
(Taljegard et al., 2019)- (Carrión et al., 2019).

3 GSEP model incorporating the smart
charging of EVs

Based on the formulations of adjustable charging load and
reserve provision from EVs in Section 2, the proposed GSEP
model incorporating smart charging is introduced in this section.

3.1 Key properties

The general structure of the proposed GSEP model has been
presented in Figure 1. The objective of the model is to determine
how much new capacity should be invested for each generation and
each storage technology. Two levels of decisions are optimized in the
formulation. On the capacity expansion (first) level, the model makes
decisions on the new capacity of each thermal unit type, renewable type
and storage type in a specific target year. On the operational (second)
level, the decision variables include the power dispatch of generators
and storages and the total charging power of the entire EV fleet. The
second level aims to evaluate the adequacy of generation and storage
resources through the optimization of power system operation. And
inspired to the work in (Gómez-Villarreal et al., 2023) and (Chen et al.,
2018), the power system operation is optimized upon the historical data
of renewable energy and load. The objective function of the whole
model is to minimize the annualized total system cost in the target year.

Besides, a group of typical weeks are used to capture the
variability of renewable power and load in the target whole year.
The whole model is a large-scale mixed-integer linear optimization
(MIP) problem, which can be solved by off-the-shelf solvers, like
Gubori (Gurobi, 2023).

3.2 Model formulation

The formulation of the GSEP model is presented as below.

Minimize
Ω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
g∈G
[CI,G

g
�P
G
g NI,G

g −NEG
g( ) + CM,G

g
�P
G
gN

I,G
g ] +

∑
r∈R

CI,R
r PI,R

r − PER
r( ) + CM,R

r PI,R
r[ ] +

∑
m∈M

CI,E
m PI,E

m − PEE
m( ) + CemiΔyemi +

∑NW

w�1
ρw ∑7N

T

t�1

∑
g∈G

CO,G
g PO,G

gtwΔt + CU,G
g SUgtw( ) +∑

r∈R
CC,R

rtwP
C,R
rtwΔt

+ ∑
m∈M

CO,E
m PC,E

mtw + PD,E
mtw( )Δt + CLSPLS

twΔt
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(20)

Subject to:
Upper limits on investment:

NEG
g ≤NI,G

g ≤ �N
G
g ,∀g (21)

PER
r ≤PI,R

r ≤ �P
R
r ,∀r (22)

PEE
m ≤PI,E

m ≤ �P
E
m,∀m (23)

EEE
m ≤EI,E

m ≤ �E
E
m,∀m (24)

EI,E
m � δEmP

I,E
m ,∀m (25)

Unit commitment status equations for thermal units:

SUgtw − SDgtw � Ogtw − Og,t−1,w,∀g,∀t,∀w (26)

Restriction on the number of committed thermal units:

Ogtw ≤NI,G
g ,∀g ∈ G\GMO,∀t,∀w (27)

Ogtw � NI,G
g ,∀g ∈ GMO,∀t,∀w (28)

Minimum on/off time of thermal units:

∑t
t′�t−TU

g +1
SUgt′w ≤Ogtw,∀g,∀t,∀w (29)

∑t
t′�t−TD

g +1
SDgt′w ≤N

I,G
g − Ogtw,∀g,∀t,∀w (30)

Power output ranges of thermal units:

PO,G
gtw + RU

gtw ≤Ogtw
�P
G
g ,∀g,∀t,∀w (31)

PO,G
gtw − RD

gtw ≥OgtwP
G
g
,∀g,∀t,∀w (32)

PO,G
gtw � NI,G

g
�P
G
g ,∀g ∈ GFO,∀t,∀w (33)

Limitation on the reserve provision from thermal units:

0≤RU
gtw ≤Ogtw

�R
U,G
g ,∀g,∀t,∀w (34)

0≤RD
gtw ≤Ogtw

�R
D,G
g ,∀g, ∀t,∀w (35)

Ramping limits of thermal units:

PO,G
gtw − PO,G

g,t−1,w ≤ Ogtw − SUgtw( )ΔU
gΔt + SUgtw max ΔU

gΔt, PG
g

( )
− SDgtwP

G
g
,∀g,∀t,∀w (36)

PO,G
g,t−1,w − PO,G

gtw ≤ Ogtw − SUgtw( )ΔD
gΔt + SDgtw max ΔD

gΔt, PG
g

( )
− SUgtwP

G
g
,∀g,∀t,∀w (37)

Power dispatch and curtailment of renewable power:

PO,R
rtw + PC,R

rtw � AR
rtwP

I,R
r ,∀r,∀t,∀w (38)

PO,R
rtw , P

C,R
rtw{ }≥ 0,∀r,∀t,∀w (39)

Allowable charging/discharging power and reserve provision of
energy storages:

PC,E
mtw + PD,E

mtw ≤P
I,E
m ,∀m,∀t,∀w (40)

PC,E
mtw − RUC

mtw ≥ 0,∀m,∀t,∀w (41)
PC,E
mtw + RDC

mtw ≤P
I,E
m ,∀m,∀t,∀w (42)
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PD,E
mtw + RUD

mtw ≤P
I,E
m ,∀m,∀t,∀w (43)

PD,E
mtw − RDD

mtw ≥ 0,∀m,∀t,∀w (44)
RUC
mtw + RUD

mtw ≤ �R
U,E
m PI,E

m ,∀m,∀t,∀w (45)
RDC
mtw + RDD

mtw ≤ �R
D,E
m PI,E

m ,∀m,∀t,∀w (46)
RUC
mtw, R

UD
mtw, R

DC
mtw, R

DD
mtw{ }≥ 0,∀m,∀t,∀w (47)

Allowable energy level of energy storages:

γ0,Em EI,E
m +∑t

τ�1
PC,E
mτw + RDC

mτw( )ηCmΔt −∑t
τ�1

PD,E
mτw − RDD

mτw( )
×/ηDmΔt≤EI,E

m ,∀m,∀t,∀w (48)

γ0,Em EI,E
m +∑t

τ�1
PC,E
mτw − RUC

mτw( )ηCmΔt −∑t
τ�1

PD,E
mτw + RUD

mtw( )
×/ηDmΔt≥ γE

m
EI,E
m ,∀m,∀t,∀w (49)

Daily usage cycles of energy storages:

∑kNT

t�NT k−1( )+1
PC,E
mtwη

C
m − PD,E

mtw/ηDm( ) � 0,∀k � 1,/, 7,∀m,∀w (50)

The adjustable charging load and reserve provision from EVs:
(Equations 11, 12, Equations 14, 15, Equations 17, 18),

∀k � Κ 1, w( ) − 1,Κ 1, w( ),/,Κ 1, w( ) + 6,∀w (51)
(Equation 13, Equation 16, Equation 19),

∀k � Κ 1, w( ),/,Κ 1, w( ) + 6,∀w (52)
System-wide power balance:

∑
g∈G P

O,G
gtw +∑

r∈R PO,R
rtw +∑

m∈M PD,E
mtw − PC,E

mtw( )
� PL

tw − PLS
tw + PM,EV

Τ t,w( ),Κ t,w( ),∀t,∀w (53)
PLS
tw ≥ 0,∀t,∀w (54)

System-wide upward and downward reserve requirements:

∑
g∈G\GFO R

U
gtw +∑

m∈M RUC
mtw + RUD

mtw( ) + RU,EV
Τ t,w( ),Κ t,w( ) ≥ ζ

U,LPL
tw

+∑
r∈R ζU,Rr PO,R

rtw ,∀t,∀w (55)
∑

g∈G\GFO R
D
gtw +∑

m∈M RDC
mtw + RDD

mtw( ) + RD,EV
Τ t,w( ),Κ t,w( ) ≥ ζD,LPL

tw

+∑
r∈R ζD,R

r PO,R
rtw ,∀t,∀w (56)

Upper limit on the total carbon emission from power
generation:

Yemi �∑NW

w�1ρw∑7NT

t�1 ∑g∈G π
emi
g PO,G

gtwΔt (57)

Yemi − Δyemi ≤ εemi∑NW

w�1ρw∑7NT

t�1 ∑
g∈G P

O,G
gtw +∑

r∈R
PO,R
rtw

⎛⎝ ⎞⎠Δt (58)

Δyemi ≥ 0 (59)
The objective function Equation 20 formulates the annualized

total system cost, where the 1st, 3rd and 5th terms evaluate the
annualized investment costs on thermal units, renewable power and

storages, respectively; the 2nd and 4th terms give the fixed
operational & maintenance (O&M) costs of thermal units and
renewable plants, respectively; the 6th to 11th terms defines the
penalty cost for exceeding the total carbon emission limit,
generation and start-up costs of thermal units, cost of renewable
curtailment, operational cost of storages, and cost of load shedding,
respectively. Here, the yearly operational cost is defined as the sum
of the 2nd, 4th and 6th to 11th terms.

The investment constraints are given by Equations 21–25,
which enforce the caps on the number of installed units for each
thermal unit type, the installed power capacity of each renewable
type and the installed power and energy capacities of each
storage type.

The operational constraints of thermal units are stated in
Equations 26–37, where Equation 26 expresses the unit
commitment status equations, Equation 27, 28 restrict the
number of units which are on-line, Equation 29/Equation 30
enforces the minimum on/off time if a thermal unit is start-up/
shut-down, Equations 31–33 limit the power output, Equations
34, 35 bound the provision of up- and down-reserve, Equations
36, 37 represent the upward and downward ramping limits.

The available power dispatch and curtailment of renewable
generation is expressed through Equations 38, 39. The
operational constraints of all storage types are given in Equations
40–50, where Equations 40–47 limit the charging and discharging
power as well as the provision of upward and downward reserves of
each storage type, Equations 48, 49 indicate that the energy level of
each storage type must stay within the safe range after the execution
of up- and down-reserves, Equation 50 denotes the daily usage cycles
in the energy level of each storage type. In this paper, the pumped
storage units and batteries are considered. The fast response of these
storages makes them adequate for providing upward reserve
through the decrease of charging power, RUC

mtw, or through the
increase of discharging power, RUD

mtw (Carrión et al., 2019).
Likewise, downward reserve can be provided by increasing the
charging power, RDC

mtw, or by decreasing the discharging power,
RDD
ntw.
The constraints for the smart charging of EVs are given in

Equations 51, 52, which account for the adjustable charging load,
i.e., Equations 11–13, and reserve provision, i.e., Equations 14–19,
from EVs during all typical weeks. Note that for the tth time step in
thewth typical week, it corresponds a specific day and a specific time
in the original target year. The functions to search the specific day
and time are denoted by Κ(t, w) and Τ(t, w), respectively. For
example, Κ(1, w) and Κ(1, w) + 6 denote the first day and last
day of the wth typical week, respectively.

The system-wide power balance, upward and downward
reserve requirements are given by Equations 53–56,
respectively. Inspired by (Ramirez et al., 2016), (Zhao et al.,
2022), the carbon emission-related constraints are presented in
Equations 57–59, where Equation 57 calculates the power
generation-related carbon emission Yemi considering the
carbon emission is mainly from coal and gas units, Equation
58 enforces an upper limit on the total carbon emission through
the maximum allowed carbon emission per unit electricity εemi,
Equations 57, 59 are used to define the possible exceedance to the
emission limit.
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4 Case studies

The proposed GSEP model is applied to a real provincial power
system in south China. The objective is to investigate the impact of
smart charging on local GSEP and test the effectiveness of the GSEP
model. The numerical study focuses on the year of 2035, when the
target province is expected to have a high level of EV penetration.
The time resolution is 1 hour.

4.1 System overview

The peak power generation in the target province is 6430MW in
2022. By the end of 2024, the installed capacity of coal-fired, nature-
gas and nuclear power units will be 2760 MW, 5520 MW and
1300 MW, respectively. In 2024, the installed capacities of onshore
wind power, solar power and hydropower are 290 MW, 5090 MW
and 930 MW, respectively. The power capacities of pumped hydro
units and batteries are 600 MW and 247MW, with energy capacities
of 3,600 MWh and 494 MWh, respectively.

EVs have been promoted vigorously by the local government. By
the end of 2023, there are 1.99 million cars in the target province,

increased by about 10% from 2022. And 14.69% of local cars
(i.e., 0.29 million) are EVs, with 83.59% of them belonging to
BEVs and the rest PHEVs. In 2023, about half of the new cars
are EVs. According to the local government’s development
planning, more than 60% of new cars will be EVs in 2025, and
more than 45% of cars on road are expected to be EVs in 2030, with
all public buses, taxis and e-hailing cars powered by electricity or
other clean energy in the same year.

4.2 Case settings

By analyzing the historical yearly peak load and future possible
economic gain of the target province, the annual growth rate of local
power demand is assumed as 7.81%, with the peak load in
2035 expected to reach 17,100 MW. As the utilization of
hydropower resources in the target province has reached a high
level, the possibility of increasing further the hydro capacity is not
considered here. Under the background of promoting the utilization
of clean energy, the target province will not build any new coal-fired
power units. And according to the development plan of the local
government, the maximum potentials to build new natural-gas
power, nuclear power, offshore wind power and solar power
from 2024 to 2035 are 2938 MW, 2400 MW, 6000 MW and
3500 MW, respectively. This shows that the local government is
ambitious in developing renewable power. Note that due to the
limitation of land resource and adequacy of marine wind energy
resource in the target province, only offshore wind power will be
developed in the future. The potentials for new pumped storage
units and batteries are both 1500 MW.

Besides, the parameters of thermal unit types, renewable types
and storage types can be found in Supplementary Tables S1-S3, and
they are provided by the power grid company in the target province,
except CM,G

g from (Chen et al., 2021), (IRENA, 2012) and (Tidball
et al., 2010), πemi

g from (Ramirez et al., 2016) and (Chen et al., 2021).
The investment costs of all generation and storage types are then
annualized by an interest rate of 8% (Zheng et al., 2023). Based on
the maximum potentials and technical parameters of various
generation and storage types, the investment limits in constraints
Equations 21–24 can be easily determined. For example, the existing
and maximum possible new capacities of wind and solar power
determine the parameters �PR

r in Equation 22.
According to the operational practice in the target province,

nuclear plants are set to keep the maximum output, and the penalty
price for load shedding is 15,000 CNY/MWh. For the reserve factors,
ζU,L and ζU,L are set to 5%, and ζU,Rr = ζD,R

r = 20% for both wind and
solar power (Chen et al., 2018). For the factors about carbon

TABLE 7 Some indices for the year-round total charging load.

Simulation method Case 1 Case 2

Annual total charging demand (GWh) 5792.57 5797.54

Average daily charging demand (GWh) 15.87 15.88

Annual charging power peak (GW) 2.65 3.19

Average daily charging power peak (GW) 2.17 2.71

FIGURE 6
Examples of the weekly total charging load under Case 1 and
Case 2. (A) January 31st to February 6th. (B) August 1st to 7th.
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emission limit, εemi is set to 0.4859 tCO2/MWh according to (Zhao
et al., 2022), (Baseline emission factors, 2024), Cemi = 120 CNY/
tCO2 (Zhao et al., 2022). The target year is represented by six typical
weeks, which are characterized by the hourly data of system load and
wind, solar and hydro availability. These hourly data are extracted
from the historical datasets in the target province, which are
provided by the local grid company. The hourly data are also
plotted in Supplementary Figure S3.

According to the promotion plan of EVs in the target province,
the predicted population of each EV fleet in 2035 is shown in
Table 3, in which two different levels of EV uptake are considered.
The driving and charging frequencies of each EV fleet are set
according to the specifications in Section 2.2. The typical
technical parameters of each EV fleet are given in Supplementary
Table S4, which are obtained by aggregating the parameters of hot-
selling EV models in China. The charging parameter-related PDFs
are shown in Supplementary Figure S1 and Table 5, which are
constructed based on the statistical information in (Wang and Liang,
2022) and (Ma et al., 2023). The PDFs of the daily average driving
distance for all EV types are fitted based on the relevant histograms
in (Wang and Liang, 2022) and (Ma et al., 2023), and they are plotted
in Supplementary Figure S2.

In this numerical study, the following scenarios are considered:

1) Mod-α: the moderate level of EV uptake (see Table 3), with the
smart charging implemented at the participation rate α.

2) Agg-α: the aggressive level of EV uptake (see Table 3), with the
smart charging implemented at the participation rate α.

Note that smart charging is not implemented if α is set to 0.
All numerical cases are coded in MATLAB via YALMIP on a

laptop with Intel Core i5-1240P CPU and 16GB RAM, and all the
optimization problems are solved by GUROBI with the MIP gap
tolerance set at 0.02%.

4.3 Impact of smart charging on
expansion planning

Table 4 compares the capacities of newly installed generation
and storage types under different scenarios. It can be seen that under
the moderate or aggressive level of EV uptake, the optimal additions
of wind and solar power both increase as the participation rate of
smart charging increases from 0% to 45%, while the new battery
capacity drops to a very low level or even zero. As the participation
rate further improves to 90%, more wind and solar are newly
installed while no batteries need to be built. The new
installations of other generation and storage technologies remain
unchanged under different participation rates.

Table 5 lists the breakdown of costs for different scenarios.
Under the moderate level of EV uptake, the yearly operational cost
and annualized total system cost decrease by 7.82% and 5.11%,
respectively, as the participation rate of smart charging improves
from 0% to 90%. For the aggressive level of EV penetration, these
two percentages are 9.67% and 7.57%, respectively. These results
imply that the application of smart charging helps reduce the
operational cost and total system cost, and such benefit is larger
under higher level of EV uptake. Also, Table 5 shows that the
reduction in total system cost mainly comes from the decrease in
operational cost.

Table 6 gives the indices about the renewable accommodation,
load shedding and carbon emission under different scenarios. It is
found that the renewable curtailment rates decrease as more EVs
participate into smart charging, together with an increase of
3.12–3.33 percentage points in the share of wind and solar
generation. The post-simulation analysis finds that the renewable
curtailment is reduced by 10.34%–19.64% as the participation rate of
smart charging improves from 0% to 90%. These results reveal that
the implementation of smart charging can enhance the utilization

FIGURE 7
Examples of the bounds of total CCE for Case 1 and Case 2 in
scenario Mod-90. (A) February 6th. (B) August 4th.

TABLE 8 Charging times of private and logistics EVs.

Indices Case Private EVs Logistics EVs

Average monthly charging times for a single EV 1 8.9 25.5

2 30.4 36.0

Average daily total charging times for an EV fleet (103) 1 654.4 75.5

2 2236.3 106.5
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level of wind and solar power. Also, it is seen from Table 6 that the
promotion of smart charging is helpful in reducing the annual rate of
load shedding. In addition, the total carbon emission is reduced by
4.86%–5.29% when the participation rate of smart charging
increases from 0% to 90%.

Actually, the increased generation of wind and solar power and
decreased load shedding through the use of smart charging are two
main reasons for the reduced operational cost. With more generation
from wind and solar, the fossil fuel-based generation can be reduced,
decreasing the operational cost from thermal units. Meanwhile, the
lower amount of load shedding can also noticeably reduce the
operational cost due to its high penalty price. These two points are
more clearly depicted in Figure 4, where the breakdown of yearly
operational cost is plotted. Besides, the less use of fossil fuel also
contributes to the lower carbon emission from power generation.

To explain why smart charging allows for more wind and solar
to be installed, the total charging loads and system net loads during
two typical weeks under scenarios Mod-0 and Mod-90 are extracted
and plotted, see Figure 5. Here, the system net load is defined as the
sum of total system load (with or without EV load) minus the
available wind and solar power from existing renewable plants.
Figure 5 shows that after the application of smart charging, a large
portion of charging load at night (18:00–24:00, when the system net
load without EVs is high) is shifted to the early morning (2:00–7:00,
when the system net load without EVs is low). As a result, the peak of
the system net load with EVs is reduced. Also, the system net load in
the early morning is increased, yielding less steep ramp of the net
load from the peak to the valley. That is, the system net load is
smoothed. The lower peak and less steep ramp of the net load means
lower operational pressure for other controllable generating and
storage units, such as fewer thermal units required to run at their
upper/lower limits of output. Therefore, these controllable units can
have larger spare capability to accommodate the volatile wind and
solar power. In other words, more wind and solar power can
be installed.

Furthermore, the smoothed net load through smart charging
means that EVs can partially play the role of storages in decreasing
the fluctuation of net load. Thus, the need to build new storages is
reduced. Meanwhile, pumped storage units have lower annualized
investment cost per MW than batteries, so the capacity of new
batteries drops noticeably after the use of smart charging.

4.4 Impact of the settings about the driving
and charging frequencies of EVs

To test the impact of the settings about the driving and charging
frequencies of EVs, the following two cases are compared:

1) private and logistics EVs may not drive and charge every day,
see the specifications in Section 2.2.

2) private and logistics EVs are set to drive and charge every day.

The other settings remain the same under the two cases. To enable
a fair comparison, the annual total driving distance of each private or
logistics EV does not change with the simulation case.

Considering the scenario Mod-0, the year-round total charging
load under the two cases are calculated and some indices for the

calculation results are listed in Table 7. Examples of the total
charging loads under the two cases are plotted in Figure 6.
Meanwhile, the charging times of private and logistics EVs are
extracted from simulation results and presented in Table 8.

From Table 7, it is observed that Cases 1 and 2 have very close
results in terms of annual total and average daily charging demand.
This is mainly because the annual total driving distance of each
private or logistics EV is not affected by the simulation case.
However, the values of annual peak and average daily peak of
charging power for Case 2 are 20.66% and 24.72% higher than
those for Case 1, respectively. A more intuitive presentation is given
in Figure 6, where the daily charging power peaks for Case 2 are
obviously higher than those in Case 1. These results reveal that the
traditional settings that EVs drive and charge every day can cause
noticeable overestimation on charging power peak.

The results in Table 8 show that the private EVs in Case 2 charge
muchmore frequent than those in Case 1. Considering that private EVs
account for 93.1% of the EV population, it can be speculated that the
difference in the charging frequencies of private EVs is the main reason
for the difference in the daily charging power peak under the two cases.

The traditional setting that EVs drive and charge every day may
also mislead the evaluation of adjustable charging load. This is
presented in Figure 7, where the bounds of the total CCE for Cases
1–2 in scenario Mod-90 are plotted. Clearly, there is overall larger
room to schedule the total CCE in Case 2 than that in Case 1. In
other words, the adjustability of charging load is overestimated in
Case 2. The underlying main reason is that nearly all private EVs
charge every day in Case 2, significantly increasing the number of
controllable EVs for smart charging in each day.

5 Summary

This paper presents a novel GSEP model which explicitly accounts
for the adjustable charging load of large-scale EVs enabled by smart
charging. A random simulation-based method is also developed to
formulate the adjustable charging load during consecutive days in a
tractable way. The weekly adjustable charging load is incorporated into
the proposedGSEPmodel and co-optimized with other investment and
operational decisions. Based on the case studies on a provincial power
system in south China, some valuable observations are drawn:

• The implementation of smart charging can significantly alter the
optimal decisions of GSEP. As the participation rate of smart
charging improves from 0% to 90%, there is an increase of around
1800 MW in the total installation of wind and solar power,
together with a 5.11%–7.57% decrease in the annualized total
system load. Moreover, smart-charging EVs can partially play the
role of batteries in smoothing the system net load, thus decreasing
the need of installing new batteries.

• Smart charging can also affect the utilization level of wind and
solar power and the carbon emission. As the participation rate
increases from 0% to 90%, the overall curtailment of renewable
power decreases by 10.34%–19.64%, and the total carbon
emission from power generation is reduced by 4.86%–5.29%.

• The settings about the driving and charging frequencies of
private EVs have a non-negligible impact on the evaluation of
charging load, and the traditional assumption that private EVs
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drive and charge every day can cause the overestimation of
both daily charging power peak (averagely by 24.72%) and the
adjustability of charging load.

• The proposed random simulation method and GSEP model
can serve as decision-support tools for power system planners
who aim to leverage the flexibility from smart-charging EVs in
a tractable and efficient way.
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Nomenclature

Abbreviations

EV Electric Vehicle

BEV Battery Electric Vehicle

PHEV Plug-in Hybrid Electric Vehicle

GSEP Generation and Storage Expansion Planning

GEP Generation Expansion Planning

PDF Probability Density Function

SOC State-of-charge

CCE Cumulative Charging Energy

MIP Mixed-integer Linear Programming

Nomenclature

Indices

i, n Indices for individual EV and charging session, respectively

t, k,w Indices for time step, day and typical week, respectively

g , r,m Indices for thermal unit, renewable and storage types,
respectively

Sets

G,R,M Sets of thermal unit types, renewable types and energy storage
types, respectively

GMO ,GFO Sets of must-on and fixed-output thermal unit types,
respectively

Ek/EM
k

Set of charging sessions/manageable charging sessions that
begin in day k

Ω Set of decision variables in the proposed GSEP model

Parameters

cik Battery capacity of EV i in day k

hik Electricity consumption per km of EV i in day k

SOC
i

SOC threshold for EV i to charge

Iik Indictor for EV i to drive or not in day k

di Average daily driving distance of EV i

eik Electricity usage of EV i for the driving in day k

Dik Charging demand of EV i after the driving in day k

Ts
n/T

le
n

Start time/the allowable latest end time of charging session n

pn/ηn Charging power/efficiency in charging session n

Te
n End time of charging session n

E+
tn/E

−
tn The upper/lower bound of the CCE at time t for charging

session n

Δt/NT Duration of a time step (in hour)/Number of time steps in
1 day

ET+
tk /E

T−
tk The upper/lower bound of the total CCE at time t for all the

charging sessions that begin in day k

CI,G
g /CI,R

r Annualized capital cost per MW of thermal unit type
g/renewable type g

CI,E
m Annualized capital cost per MW of storage type m

NEG
g Number of existing units of thermal unit type g

PER
r Existing power capacity of renewable type r

PEE
n /EEE

n Existing power/energy capacity of storage type m

NW Number of typical weeks

ρw Weight of typical week w

CO,G
g /CU ,G

g Generation cost per MWh/start-up cost of thermal unit type g

CM,G
g /CM,R

r Fixed operational & maintenance cost per MW for thermal
unit type g/renewable type r

CC,R
r /CO,E

m Curtailment cost per MWh of renewable type r/operational
cost per MWh of storage type m

CLS Penalty price of load shedding

�NG
g /�P

R
r

Maximum number of installed units of thermal unit type
g/installed capacity of renewable type r

�PE
m/�E

E
m

Maximum power/energy capacity of storage type m

δEm Ratio of the energy and power capacities for storage type m

TU
g /T

D
g Minimum up/down time of thermal unit type g

�PG
g /P

G

g
Maximum/minimum output of each unit for thermal unit
type g

�RU ,G
g /�RD,G

g
Upper limit of the upward/downward reserve of each unit for
thermal unit type g

ΔU
g /Δ

D
g Upward/downward ramping rate of each unit for thermal unit

type g

AR
rtw Availability factor of renewable type g at time t in typical

week w

�RU ,E
m /�RD,E

m
Factor for the maximum available upward/downward reserve
from storage type m

ηCm/η
D
m Efficiency of charging/discharging of storage type m

γ0,Em Ratio of the energy level in the initial state to energy capacity
for storage type m

γ E
m

Ratio of the minimum allowable energy level to energy
capacity for storage type m

PL
tw System load at time t in typical week w

ζU ,L/ζD,L Factor of the upward/downward reserve requirement related
to system load

ζU ,R
r /ζD,Rr

Factor of the upward/downward reserve requirement related
to renewable type r

πemi
g Carbon emission intensity per MWh for thermal unit type g

εemi Maximum allowed carbon emission per unit electricity

Integer Variables

NI,G
g Number of installed units of thermal unit type g

SUgtw/S
D
gtw Number of start-up/shut-down events of thermal unit type g

at time t in typical week w

Ogtw Number of committed units of thermal unit type g at time t in
typical week w

Continuous
Variables

Etk Total CCE at time t for the charging sessions beginning in
day k
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PM,EV
tk

Total charging power at time t in day k

EU
tk/E

D
tk Total CCE at time t considering the upward/downward

reserve from the charging sessions beginning in day k

RU ,EV
tk /RD,EV

tk
Available upward/downward reserve from EVs at time t in
day k

PI,R
r Installed power capacity of renewable type r

PI,E
m /EI,E

m Installed power/energy capacity of storage type m

PO,G
gtw Power output of thermal unit type g at time t in typical weekw

PO,R
rtw /P

C,R
rtw Dispatched power/power curtailment of renewable type r at

time t in typical week w

PC,E
mtw/P

D,E
mtw Charging/discharging power of storage type m at time t in

typical week w

PLS
tw Load shedding at time t in typical week w

RU
gtw/R

D
gtw Upward/downward reserve provided by thermal unit type g at

time t in typical week w

RUC
mtw/R

DC
mtw Upward/downward reserve provided by storage type m in

charging mode at time t in typical week w

RUD
mtw/R

DD
mtw Upward/downward reserve provided by storage type m in

discharging mode at time t in typical week w

Yemi Total amount of annual carbon emission

Δyemi Exceedance to the upper limit of total carbon emission
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