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Thermodynamic modeling of metal oxide reduction is crucial for optimizing
chemical processes and materials in systems dependent on off-stoichiometric
reduction/re-oxidation cycling. Two prevalent methods for extracting reduction
thermodynamics from thermogravimetric data are linearized van ‘t Hoff (VH)
analysis and the compound energy formalism (CEF). This work evaluates the
accuracy of these methods by constructing invertible ground truth
thermodynamic models, generating hypothetical thermogravimetric data, and
determining the reduction thermodynamic using both VH and CEFmethods. Our
findings reveal that the VH method produces absolute errors 3–5 times higher
than the CEF in kJ/mol O or J/mol O K for enthalpy and entropy of reduction,
respectively. In contrast, the CrossFit CEF (CF-CEF) method yields errors often
less than 10 kJ/mol O or J/mol O K. Moreover, the CF-CEF method provides
models based on mole fraction, temperature, and extent of reduction, while a
typical VH analysis provides thermodynamics of only the specific compositions
measured. Although simple to implement, the VH method suffers from
significant, non-systematic errors due to entropy/enthalpy compensation and
defect modeling. Consequently, we recommend the more complex but robust,
CF-CEF method for extracting redox thermodynamics from thermogravimetric
measurements.
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Introduction

Many chemical processes exploit the flexible cationic oxidation states of metal oxides
(MxOz) to drive desired chemical reactions. These reactions occur through the facile
formation and annihilation of O-vacancies during off-stoichiometric reduction/re-
oxidation (redox) reactions (Equations 1, 2 respectively). This mechanism is
fundamental in various applications including gas reforming (Guo et al., 2023; Ahmad
et al., 2021; LeValley et al., 2014), gas separation and pumping (Bulfin et al., 2019;
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Krzystowczyk et al., 2021; Cai et al., 2022; Gu et al., 2018; Xu et al.,
2020; Bulfin et al., 2017; Vieten et al., 2016; Bush et al., 2021; De
Souza, 2015), thermochemical energy storage (Mane et al., 2023;
Wexler et al., 2023; Hashimoto et al., 2023; Bayon et al., 2021a; Sai
Gautam et al., 2020a; Park et al., 2023; van de Krol et al., 2008;
Mastronardo et al., 2020; Chen et al., 2021; Babiniec et al., 2015; Jin
et al., 2021; Abraham et al., 2016; Tahir et al., 2023), thermochemical
water and carbon dioxide splitting (Singh et al., 2015; Brendelberger
et al., 2019; Bork et al., 2019; Zhu et al., 2002; Muhich et al., 2018;
Tran et al., 2024; Arifin et al., 2020), nuclear energy production and
safety (Moore et al., 2013; Sundman et al., 2011), and numerous
catalytic processes (Liu et al., 2021; Fuks et al., 2013; Barry et al.,
1992; Kolodiazhnyi et al., 2016; Rousseau et al., 2020; Teh et al.,
2021; Young et al., 2023). By leveraging the redox properties of metal
oxides, these processes achieve efficient and effective chemical
transformations.

MxOz−δ1 → MxOz−δ2 + δ1 − δ2( )
2

O2 (1)

MxOz−δ2 + δ1 − δ2( )
2

O2 → MxOz−δ1 (2)

The selection and optimization of redox active metal oxides,
(MxOz), in chemical processes rely heavily on well-characterized
redox thermodynamic data (Mastronardo et al., 2020; Zhang et al.,
2023; Qian et al., 2021; Yoo et al., 2017). This characterization is
typically achieved through thermogravimetric analysis (TGA),
which involves measuring the mass loss of the material as a
function of temperature and O2 pressure (Hoes et al., 2017;
Takacs et al., 2016; Panlener et al., 1975; Bayon et al., 2021b;
Krug et al., 1976). From this data, the enthalpy and entropy of
reduction can be extracted.

The solid state oxygen chemical potential, μsolidO , and thus the
reduction free energy, is inferred from the gas phase oxygen
chemical potential, μgasO , and the equilibrium condition, as shown
in Equation 3 (Hoes et al., 2017; Takacs et al., 2016; Panlener et al.,
1975; Bayon et al., 2021b; Krug et al., 1976). In this context, x
represents the mole fraction vector of various cations in the MxOz

composition, where δ denotes the extent of oxygen off-
stoichiometry; T is the temperature, and pO2 is the
O2 partial pressure.

1
2
GO2 T, pO2( ) � μgasO T, pO2( )5eq. μsolidO T, δ, x( ) � −∂G T, δ, x( )

∂δ
(3)

Although the route to converting measured data points into
thermodynamic quantities is well defined in principle, i.e., Equation
3, the method for reliably extracting the δ, T, pO2, and mole fraction,
x, (TpOX) relationship into thermodynamic quantities remains
unclear. While the chemical potential alone dictates the
spontaneity of the reaction, the extraction of enthalpy and
entropy of reduction from the chemical potential provides crucial
information necessary for processes design. Particularly, the
enthalpy of reduction is required for managing heat flows and
determining if a material carries sufficient energy to drive a
desired oxidation reaction. Therefore, accurate extraction of these
thermodynamic properties is the key to elucidating controlling
properties for the off stoichiometric reactions (i.e., composition,
temperature, pressure, etc.). We note that although calorimetry can
measure enthalpies of reaction, doing so with solids is complex and

would require extensive experimentation to build a compositional or
non-stoichiometric dependent model (Yoo et al., 2017).

Currently, one of the most widely used techniques for extracting
reduction thermodynamics from experimental data is linearized van
‘t Hoff (VH) analysis (Hashimoto et al., 2023; Yoo et al., 2017; Bayon
et al., 2021b; Van’t Hoff and Hoff, 1884). This approach relates the
equilibrium constant of redox at a constant δ, Kδ(T), to changes in
temperature (T) as shown in Equation 4.

ln Kδ( ) � ln
PO2

Po
( )

1
2 � −

∂H
∂δred

RT
+

∂S
∂δred

R
(4)

The slope and intercept of a VH plot correlate 1/T and ln (pO2)
to the enthalpy (∂H∂δred) and entropy (∂S∂δred) of reduction, respectively.
To achieve this correlation, data must be determined for constant δ
across various T and pO2 values. Nonlinearized VH approaches are
more rigorous and usually lead to a more accurate results, but often
require higher fidelity data outside of TGA results or extremely fine
TpOX meshes (Yoo et al., 2017). Such TpOX meshes are
experimentally expensive and therefore often prohibitive. For
detailed studies on the limitations of VH analysis please see these
excellent reviews (Chaires, 1997; Zhukov and Karlsson, 2007; Liu
and Sturtevant, 1997).

Deploying the VH method presents four main challenges:

1) Delineating entropy and enthalpy from only free energy
information.

2) Assuring thermodynamic quantities are temperature
independent.

3) Collecting sufficient δ data to mitigate errors associated with
constant δ interpolations.

4) Characterizing each composition X independently.

Since only the chemical potential of the oxygen is known and
experimental error introduces ambiguity in line fitting, determining
the slope and intercept of the VH plot can lead to compensation or
trade-off, between entropy and enthalpy terms of the free energy
(Yoo et al., 2017). This issue is exacerbated when the experimental
temperature range is small, increasing the error in the extrapolated
intercept (Hoes et al., 2017). The most commonly adopted approach
to VH analysis of TGA redox materials assumes that ∂H∂δred and

∂S
∂δred

are temperature independent. While this assumption may hold over
small temperature ranges (tens of K), metal oxide reduction
experiments and thermochemical cycling typically occur over
temperature ranges of hundreds of K, where temperature
dependence can be significant.

The collection of constant δ data is challenging as the off-
stoichiometry is unknown a priori; therefore, generally one
approximates either by interpolation or by fitting a defect model
to predict the points. Arriving at T and pO2 operating points with
constant δ is unreliable using interpolation given the high non-
linearity of reaction equilibria. Furthermore, correctly and
confidently implementing a defect model is also challenging,
arising because one can construct defect models in multiple ways
(Zhang et al., 2023; Qian et al., 2021; Bergeson-Keller et al., 2022)
and depend on making assumptions that may or may not reflect the
thermodynamic and reactions occurring. Often, defect models also
assume no temperature dependence, which may be the faster/easier
estimation of thermodynamics, but, unbeknownst to the analyzer,
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may deviate vastly from the true thermodynamic trends (Chaires,
1997). These underlying assumptions and interpolated fits of T and
pO2 required to construct the defect model exacerbate the errors
inherent within the linearized VH method, i.e., an assumed
temperature independence of ∂H

∂δred
and ∂S

∂δred
. Repeating this

construction for multiple values of δ determines ∂H
∂δred

and ∂S
∂δred

as
a function of δ and compounds the error even further. The error
resulting from these interpolations could be minimized via extensive
data collection through extremely fine TpOX meshes. Extrapolation
should be avoided, requiring even further data collation to report
reduction thermodynamics across wide temperature ranges
(100s of K).

Finally, each composition must be characterized individually
(i.e., each x in MxOz), because the thermodynamics of one
compound does not inform those of similar compositions.
Despite these known deficiencies, the VH method remains the
leading reduction thermodynamic analysis method for MxOz

material characterization due to its ease of implementation.
The Compound Energy Formalism (CEF) (Hillert and

Staffansson, 1970) overcomes many of the VH method
limitations in characterizing the reduction thermodynamics of a
family of MxOz materials, by fitting a more nuanced and
temperature dependent free energy form. While the CEF also
correlates the system Gibbs free energy through the oxygen
chemical potential of the gas phase and the solid phase, as
Equation 3 shows, it represents the Gibbs free energy as a
combination of solid solutions on a set of sub-lattices. The free
energy is described via the summation of three terms (Equation 5):
1) a linear combination of the Gibbs free energies of the so-called
endmember compounds representing the composition of the solid
solution, 2) a configurational entropy term, and 3) an excess term
that accounts for interactions on and between the sub-lattices.

Gsoln � Gendmembers − T p Sconfig + Gexcess (5)

The sub-lattices represent the unique sites in the crystal lattice,
each with fractional occupancy by different elements, oxidation
states, and/or vacancies. Equations 6–9 show how to calculate
these terms.

Gendmembers � ∑N
i

∏ γzMG
endmember
i (6)

Sconfig � −R∑
z

nz ∑
X

γzM p ln γzM( ) (7)

Gexcess � ∑
h

γh1γ
h
2 ∑

k≠h
∑2
M�1

γkM ∑
l≠h≠k

∑2
M�1

γlMLh: k: l (8)

Lh: k: l � ∑1
]�0

γh1 − γh2( )]L]
h: k: l (9)

where γ is the site fraction of a species on a sublattice site, N is
the total number of endmember terms, n is the total number of sites,
z is a particular sub-lattice, and M counts over the components that
can occupy a site on sublattice z. The excess term of Equation 5, is
the most complex. A three sublattice model with two possible
components per sublattice is used as an example in Equations 8,
9, where h, k, and l are the sublattices. The L]h: k: l terms in Gexcess are
described by a Redlich-Kister (RK) expansion Redlich and Kister
(1948) of the γ site fraction terms up to order m, shown here (as is

typical) with an upper limit of ν = 1. Depending on the construction
of the site fraction terms, the CEF method makes no assumptions
about the material aside from being a continuous function; meaning
if there is a step change in the thermodynamics due to a phase
change the CEF will model “through” the step change and two
models may be necessary depending on the magnitude of the step
change. The construction of the CEF allows for all possible
controlling factors to be considered (i.e., interactions with O
vacancies, cation vacancies, and reducing species) if the site
interaction terms are allowed to account for those factors. For a
more complete description of CEF construction, we refer the readers
to Refs (Bayon et al., 2021a; Hillert and Staffansson, 1970; Wilson
et al., 2023; Sai Gautam et al., 2020b; Wilson and Muhich, 2024).

The key drawback to the CEF model approach in fitting
thermochemical data is the large number of degrees of freedom
(DOF) inherent in the construction of the CEF model. Linear, or
near linear, dependencies in the excess term parameters and
enthalpy and entropy can arise from the large parameter space.
The former makes it challenging to find a global minimum when
fitting, while the latter can result in compensation, or tradeoffs,
between enthalpy and entropy, which equate to the same free energy.
These challenges have prevented the widespread use of the CEF for
thermochemical fitting. To solve these problems, we recently
developed the CrossFit CEF(CF-CEF) method (Wilson et al.,
2023), which reformulates the CEF fitting procedure to
circumvent the challenges of linear dependence between some
excess terms and delineate entropic and enthalpic contributions
to the free energy. The CF-CEF optimizes the CEFmodel parameters
using both computational (ab initio methods) and experimental
(TGA) data. The experimental data informs the model via Equation
3, while we incorporate the computational data via the non-
derivative free energy relationship G(T � 0, δ, x) ≈ H(T � 0, δ, x).
We fit the shared parameters between ∂G(T,δ,x)

∂δ and G(T � 0) using a
combined objective function resulting in one model informed by
both data sets.

As outlined above, the advantages and disadvantages of the VH
and CEF methods, i.e., simplicity but potential ambiguity in
accuracy versus complexity but robustness of fit, are well known.
However, to the best of our knowledge, no one has reported a
quantification of the relative (in-)accuracy of these methods.
Therefore, this work compares the accuracy of the linear VH
analysis and CF-CEF method using a perfectly invertible,
thermodynamic data set based on an Einstein solid model of heat
capacity (Rogers, 2005), selected reduction enthalpies, and
randomly generated sub-lattice interaction terms. Thus, the
ground truth reduction thermodynamics are known exactly
providing a means for error analysis between the two methods.
In this work, we only examine hypothetical data sets because directly
measured experimental data enthalpies and entropy, as opposed to
extracted quantities, are not widely available. Three sets of
hypothetical perovskite materials (AxA1−x′ ByB1−y′ O3−δ) are
compiled: 1) a material with high reduction enthalpies capable of
splitting water via solar thermochemical water splitting with
compositional change in x; 2) a thermochemical energy storage
material Hashimoto et al. (2023) withmoderate reduction enthalpies
with compositional change in y; and 3) a complex high and low
reduction energy material that varies in both x and y (Wexler et al.,
2023). The range in hypothetical thermodynamic and compositional
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data tests the flexibility of each of the methods. The complexity of
the ground truth materials is kept simple (no phase changes or
cation vacancy formation) so that one need not determine if those
factors are contributing to the error in the models. Validation of
these methods via experimental means is already well studied (in the
case of VH) or the subject of current studies (Wilson et al., 2023;
Wilson and Muhich, 2024) (in the case of CF-CEF) and is outside
the scope of this work. Overall, this work shows that the VHmethod
has errors as high as 105 kJ/mol O and 70 J/mol O K for ∂H

∂δred
and

∂S
∂δred

respectively for some material compositions. Conversely, the
maximum error in the CF-CEF method is 3 times smaller across
all compositions studied in both ∂H

∂δred
and ∂S

∂δred
, having maximum

error of 36 kJ/mol O and 21 J/mol O K respectively. These
findings suggest that the metal oxide redox community should
transition to thermodynamic characterization by the CEF to
ensure accuracy.

Methods

This section first briefly describes the VH analysis and CF-CEF
fitting methods. Then, we explain the construction of the
hypothetical ground truth thermodynamic data generated using
the heat capacity modeled as an Einstein solid for subsequent
fitting by both the VH and CF-CEF approaches. Finaly, we
explain how we constructed realistic but hypothetical ground
truth thermodynamics data sets. The comparison between
methods presented here focuses on the quinary metal oxide
perovskite material (AxA1−x′ ByB1−y′ O3−δ). We use the variables x
and y to develop unique hypothetical materials representing
different application spaces, further described below.

Van ‘t Hoff method construction and
implementation

We define a defect model that assumes redox activity occurs only
on the B-site of the perovskite as shown in Equation 10. Using
Kröger–Vink notation (Kröger and Vink, 1956), we describe the
defect reaction charge transfer in Equation 11. We write the
equilibrium constant at a constant T (KT) by utilizing the free
energy relationship with O2 chemical potential, as indicated in
Equation 3, and apply Kröger–Vink notation for the perovskite
redox reaction in Equation 12. Finally, we expressKT in terms of δ in
Equation 13 for use in a VH analysis.

ABO3 → ABO3−δ + δ

2
O2 (10)

2B×
B + O×

O → 2B′
B + V

..

O (11)

KT � VO[ ] B′
B[ ]2

O×
O[ ] B×

B[ ]2pO2

1
2 (12)

KT � 1 − δ
3( ) 1 − 2δ( )2
δ
3 2δ( )2 p

O2

1
2 (13)

The defect model allows the determination of constant δ values
across many T and pO2 points, Figure 1 (right). For each δ of
interest, one must solve for ∂H

∂δred
and ∂S

∂δred
utilizing Equation 4. One

generally fits KT using the data pairs of δ and pO2 at a each
temperature, and then extracts its temperature dependence from
linear fits, as shown in Figure 1 (left). The slope of the line in Figure 1
(left) is ∂H

∂δred
and the intersect is ∂S

∂δred
. One completes the ln (Kδ) fit

for every constant δ value and repeats the process for each mol
fraction x in the MxOz−δ material.

CrossFit CEF construction and
implementation

The CEF construction depends on which sublattice the
substitutions sit, i.e., A or B, and will vary in the generic
AxA1−x′ ByB1−y′ O3−δ. Based on the specific construction, Equations
5–9 change to generate the overall solution model. A purpose built
MATLAB code, based on the CF-CEF implementation (Wilson
et al., 2023), constructs the CEF model for any
AxA1−x′ ByB1−y′ O3−δ composition with reduction on the B site. The
partial interaction free energies used to describe Gendmember

i in
Equation 5 and the L]h: k: l in Gexcess, each term generically
referred to as gj, are described via a constant heat capacity
expansion derived in Equations 14–17, where Ho and So are used
as fitting parameters to estimate the first integral in Equations 15, 16.

Cp � A (14)

ΔH � ∫
To

0

CpdT + ∫
T

To

CpdT � Ho + AT − ATo (15)

ΔS � ∫
To

0

Cp

T
dT + ∫

T

To

Cp

T
dT � So + Aln

T

To
( ) (16)

Δgj � Ho
j + Aj − Soj( )T − ATo − AjTln

T

To
( ) (17)

Note that due to the definite integration of Cp from a reference
temperature To to T, Ho and So provide a thermal correction from
the hypothetical DFT data at T = 0 K to the temperature data found
in the hypothetical experimental data set. Equation 17 represents the
best, most physical, first order expansion. For further development
and fundamental analysis of the CEF model see Ref. (Hillert and
Staffansson, 1970; Wilson et al., 2023; Hillert, 1996; Hillert, 2001;
Spencer, 2008; Ji et al., 2022; Cacciamani, 2016).

While the consideration of a constant heat capacity may seem
overly simplistic, we find that this expansion describes the enthalpy
and entropy of these MxOz materials well, as the heat capacity is
relatively constant within the temperature range of interest.
Supplementary Figure SI-1 illustrates the accuracy of the
enthalpy and entropy from the integrations of Cp � A as
compared to CEin

p and CEmp
p .

Constructing the CEF state function with a definite integral
provides a more physical fit, especially with respect to temperature
trends, and aids in preventing tradeoff between H and S. However, it
causes an inherent error in the fit to the DFT data since
Gsoln(T � 0) � Ho ≈ EDFT because Ho carries some temperature
information. This issue is of minimal concern because the CF-CEF
method uses DFT information solely to localize the free energy
space, i.e., delineate H and S contributions. The Δgj in Gendmember

i

and Gexcess contain the parameters of the model to be optimized via
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the use of a sum of residual squared errors (RSS) objective function
relating ∂G(T,δ,x)

∂δ and G(T � 0) as constructed in previous work
(Wilson et al., 2023) and shown in Equation 18. We weight the
error in the objective function such that the model cannot move too
far away from the DFT localization but favors the deviation from
experimental data to correct for temperature trends and
curvature (ω1 � 0.1,ω2 � 0.9).

Error � ω1 ∑
DFT data

Gsoln T � 0( ) − EDFT( )2

+ ω2 ∑
exp data

−∂G
soln

∂δ
− μexp( )

2

(18)

Ground truth model construction, data
generation using einstein solid, and error
determination

In this section we discuss the construction of an invertible
data set by selecting end member reduction energies, imposing a

temperature dependence and randomly selecting excess terms.
We generate “data points” from the ground truth model with
random noise added. We generate a temperature dependent
heat capacity (CEin

p ) using the Einstein solid model Rogers
(2005) as shown in Equation 19. θT is varied for each
hypothetical material, as Figure 2 (top) shows. We use N = 5
(for ABO3) or N = 4.5 (for ABO2.5) to construct the endmember
heat capacity. To both simplify and extract specific Cp

parameters, we performed a fit of an empirical heat capacity
(CEmp

p ), Equation 20, to (CEin
p ) as shown in Figure 2 (bottom),

thus, deriving the ground truth parameters utilized in the
reduction thermodynamic model in the form of a CEF
model. The fit of the empirical model to the Einstein heat
capacity (CEin

p ) results in a maximum difference in heat
capacities of <1 J/mol in the temperature range of interest
(>300 K), Supplementary Figure S1 found in the SI. Using
the empirical fit enables a direct comparison of the
underlying heat capacity and the extracted models. Given
that the difference between CEin

p and CEmp
p is essentially 0 and

this enables direct comparison, we choose to model the heat
capacities with the empirical fit, CEmp

p .

FIGURE 1
(left) ln (KT ) versus 1,000/T plot from which one can derive thermodynamic properties. (right) -ln (pO2) versus 100/T for constant delta curves
enables the interpolation/extrapolation of the delta dependence of enthalpy and entropy of reduction.
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CEin
p � 3Nkb

θT
T

( )
2 exp θT

T( )
exp θT

T( ) − 1( )2 (19)

CEmp
p � A + BT + CT2 +DT3 + E

T2
(20)

We generated three different ground truth models based on
three different materials with varying thermodynamic trends. The
materials vary in three ways: 1) the substitutions on the A and B
lattice, 2) the reduction energy values for the ternaries (ABO3

→ABO2.5), and 3) the temperature dependence (via θT as
described below) for each ABO3 or ABO2.5 composition. Table 1
shows the selected values for reduction energy and θT. We adjust the

Einstein temperature values for each material to mimic different
heat capacities for materials with different compositions and
reduction extents. To impart non-linearities in δ, we adopt
interaction terms between sublattices along the lines of the CEF
as it is a more extensive model and enables direct invertibility.
Without the use of these interaction terms, one would need to
model CEin

p for every mol fraction and δ value in the desired
data set size.

We construct the first model material, Model 1, with reduction
enthalpies in a range (1.5–2.2 eV) that enables thermochemical
water or CO2 splitting (WS/CDS) with compositional variation on
the A sublattice only. We selected the reduction energy values for the

FIGURE 2
(top) Einstein heat capacity (CEin

p ) dependence on T and θT . Higher θT meansCEin
p reaches theoretical maximum (3Nkb) faster. (bottom) empirical heat

capacity (CEmp
p ) fit to CEin

p at θT = 500.
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unsubstituted and fully substituted material such that the material
becomes easier to reduce as x increases from zero to one. The
second, Model 2, represents a thermochemical energy storage
(TCES) material with lower reduction energies (0.5–1.5 eV) than
Model 1. The Model 2 material has substitutions on the B sublattice
such that the reduction energy decreases as y increases from zero to
one. The final material, Model 3, is a quinary material with
compositional variation on both the A and B sublattices. This
material’s reduction energies increase from 0.7 to 2.2 eV as x
and/or y increases from zero to one.

We randomly select three L terms to include in the model as the
controlling excess terms. The SI contains the full list of possible L
terms. We include three excess terms as previously done in our
earlier work (Wilson et al., 2023; Wilson and Muhich, 2024), which
fit real data but showed overfitting characteristics when using more
than three excess terms. We did not investigate selecting more or
fewer controlling terms, as doing so would only complicate or
simplify the model’s curvature without altering the VH/CEF
comparison. Selecting fewer or more excess terms to represent
the ground truth model would simply create a different material

TABLE 1 Ground truth CEin
p (θT ) and reduction energy settings for generated models.

Chem. Eq Model 1 Model 2 Model 3

A1-xA′xBO3-δ AB1-yB′yO3-δ A1-xA′xB1-yB′yO3-δ

ΘT (K) ABO3 700 700 700

A′BO3 600 - 600

AB′O3 - 600 500

A′B′O3 - - 400

ABO2.5 450 450 450

A′BO2.5 500 - 500

AB′O2.5 - 500 350

A′B′O2.5 - - 400

ΔHfull red (eV at 0K) ABO3 → ABO2.5 + ½O: ΔH = 2.6 eV
A′BO3 → A′BO2.5 + ½O: ΔH = 1.5 eV

ABO3 → ABO2.5 + ½O: ΔH = 1.5 eV
AB′O3 → AB′O2.5 + ½O: ΔH = 0.5 eV

ABO3 → ABO2.5 + ½O: ΔH = 0.7 eV
A′BO3→ A′BO2.5 + ½O: ΔH = 1.2 eV
AB′O3 → AB′O2.5 + ½O: ΔH = 1.5 eV
A′B′O3 → A′B′O2.5 + ½O: Δ H = 2.2 eV

FIGURE 3
Generatedwater (or CO2) splittingmaterial, Model 1, ground truth thermodynamic trend (solid), andmodel fits to the ground truth datawith standard
deviation noise of 1 × 10-3 added to δ to simulate experimental error, CF-CEF (dashed), VH (circles).
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altogether. Further investigation into the CEF functional form and
its intricacies is left to future work. A normal distribution with a
mean of zero and a standard deviation of 1 × 10−3 kJ/mol defines the
parameters. Randomly selecting excess terms can result in some
constructed models being wildly unphysical. Although we could
have fit these hypothetical materials, inaccuracies would obscure
whether the method is flawed or the thermodynamic trends are
unreasonable. Therefore, we constructed 50 random perturbations
and randomly selected models from the physically reasonable
constructions. The chosen models met expected physical criteria:
1) ∂H

∂δred
and ∂S

∂δred
are positive from δ = 0–0.5; 2) ∂H

∂δred
and ∂S

∂δred
temperature dependence at any δ value is <0.1 kJ/K; 3)
∂2Hred

∂δ2 (0≤ δ ≤ 0.5) crosses zero at most once (i.e., the ∂H
∂δred

curve
does not oscillate).

We added random noise in the δ dataset generated from the
model thermodynamics to simulate experimental error. The random
deviations were based on a normal distribution with a mean of zero
and a standard deviation set to a desired noise value. For the work
here, we consider two noise (standard deviation) values: 1 × 10−3 and
2 × 10−3.

To quantify the accuracy of VH and CF-CEF methods, we first
determine the average and standard deviation of ∂H

∂δred
and ∂S

∂δred
across the temperature range of the ground truth data. Next, we
calculate the absolute error relative to the average ground truth ∂H

∂δ red
and ∂S

∂δred
value at each constant δ value considered using the VH

method. Then we average the errors across all δ values to determine
the average absolute ∂H

∂δred
and ∂S

∂δred
errors for each composition x.

Although the CF-CEF method includes temperature dependence,
for consistency, we compare only the averages of the ground truth
thermodynamics to the average CF-CEF predicted thermodynamics
across the temperature range of the data. While we report the error
for the CF-CEF at the same mole fractions as VH, it is important to
note that the CF-CEF method produces results for all compositions,
T, and δ values.

Results and discussion

For each hypothetical material, the CF-CEF method
outperforms the VH analysis, having error values of tens of
kJ/mol or J/Kmol for enthalpy and entropy, respectively. The
VH method was inconsistent in either over or underestimating
both ∂H

∂δred
and ∂S

δred
across most compositions tested, having

absolute errors on the order of multiple tens of kJ/mol or J/
Kmol, respectively. This section first discusses the base case
Model 1, the water splitting material. It then examines the
effect of the underlying thermodynamics through the other
two test cases. The TCES material case, Model 2, is an
example of where VH should perform well, being that it has
smaller compositional and off-stoichiometric dependency.
Lastly, we investigate a complex material varying in x and y
with curvature in the reduction enthalpy. Then we consider the
effect of varying the noise and quantity of the hypothetical
experimental data.

FIGURE 4
(Left) Enthalpy (top) and Entropy (bottom) of reduction thermodynamics prediction by VH analysis for Model 1. (Right) Enthalpy (top) and Entropy
(bottom) of reduction thermodynamics prediction by CF-CEF method for Model 1.
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Dependence of underlying thermodynamics
on the effectiveness of VH and CEF

Base case model 1
Model 1 compares the CF-CEF and VHmodel performance of a

hypothetical WS/CDS material varying in composition on the A
sublattice only (A1−xA′

xBO3−δ). Figure 3 shows the ground truth
thermodynamic trends with solid lines across the mole fractions x
equal zero to one in 0.2 increments. The excess L terms, randomly
selected for this model, are L8, L68, and L74; L8 accounts for an
interaction on the A sublattice while L68 and L74 account for
interactions on the oxygen sublattice. TpOX data from the
ground truth thermodynamics of this model was generated from
six evenly spaced points: T = [800, 1,000, 1,200, 1,400, 1,600, 1800]
K, x = [0, 0.2, 0.4, 0.6, 0.8, 1.0], and pO2 = [1 × 10−10, 7.32 × 10−9,
5.36 × 10−7, 3.92 × 10−5, 2.87 × 10−3, 0.21] Bar. We note that the
pO2 points are evenly distributed in logspace. The unique TpOX
combinations resulted in 107 total data points after removing TpOX
points that resulted in δ < 0.005 or δ > 0.495 as it is difficult to
accurately measure δ < 0.005, and materials are likely to decompose
at δ > 0.495. Additionally, we duplicated the data by, and separately
added in noise with a standard deviation of 1 × 10−3 to simulate
multiple samplings of experimental data collection.

We individually extracted the ∂H
∂δred

and ∂S
∂δred

of the WS/CDS
hypothetical material using the VHmethod at each mol fraction x in
the generated data set. Figure 3 (black dashed lines) and Figure 4

(left) show the predicted thermodynamic trends. The VH method
estimates ∂H

∂δred
and ∂S

∂δred
at all δ values having an average absolute

error across δ of 38 ± 28 kJ/mol O and 20 ± 16 J/mol O K ,
respectively. Table 2 displays the complete, unaveraged error
analysis for every mole fraction x. Overall, the VH method
performs poorly with a large absolute average error,
comparatively, for both ∂H

∂δred
and ∂S

∂δred
and large deviations in

that error. These large errors would likely lead to mis-
categorizing materials as good (or bad) performers for the WS/
CDS application. Thus, in this case, VH is not a reliable or consistent
measure for the reduction of thermodynamic determination.

The CF-CEF method predicts the thermodynamics of Model
1 much more accurately than the VH method with an error of only
7 ± 4 kJ/mol O and 6 ± 0.5 J/mol O K for ∂H

∂δred
and ∂S

∂δred
, respectively.

Table 2 shows the complete error analysis for the CF-CEF
predictions for compositions used in the VH analysis.
Furthermore, the CF-CEF produces a model as a function of x,
T, and δ as compared to VH trends that are only a function of δ.
Therefore, the CF-CEF yields a more complete thermodynamic
picture of the hypothetical WS/CDS material as Figure 4
(right) shows.

Using the CF-CEF method, we can make a direct comparison
between the optimized and ground truth constructed model
parameters. The excess terms found in CF-CEF method are L8,
L22, and L68. The linear combination of the CF-CEF excess terms is
different by one term, predicting L22 instead of the ground truth
term L74. However, the linear combination of the ground truth
excess terms as compared to the optimized CF-CEF excess terms has
a max difference of ~20 kJ/mol at T = 1200K. We find that the
temperature dependence difference in excess terms (∂(∂Gexcess)

∂δ∂T ) is
negligible (<1 kJ/mol). Figure 5(top) shows similar curvature in the
linear combination of excess terms. while Figure 5 (bottom) shows
the absolute difference in excess free energy at T = 1200K. As
discussed in previous work (Wilson et al., 2023), the excess free
energy primarily influences the curvature of the total free energy
surface and generally contributes ≤10% to the total. We hypothesize
that this difference arises because the CF-CEF method fits the
endmember terms separately from the excess terms leading to
some curvature dependence across x and δ being captured by the
endmember fit parameters. To test this hypothesis, we held the
endmember parameters constant at the ground truth values and
optimized only the excess terms. In this case, the CrossFit method
yielded the exact same excess terms as the ground truth model.

Effectiveness of the methods on model two data
To ensure that the better performance of the CEF over the VH

method was not coincidental, we generated and analyzed additional
data sets. Model 2 compares the CF-CEF and VHmodel performance
of a hypothetical TCES material varying in composition on the B
sublattice only (AB1−yB′

yO3−δ). This TCESmaterial is meant to be one
that easily reduces (reduction eV≤1.5 eV). Thus, an experimentalist
would be able to measure δ values at more easily accessible T and
pO2 points (T values <1000 K and pO2 > 1 × 10−2) than that for WS/
CDS. Therefore, we construct this material to maximize the likelihood
that the VH analysis could accurately extract the thermodynamics,
even with a simplistic defect model.

Figure 6 shows the ground truth thermodynamic trends as solid
lines across the mole fractions x = 0, 0.2, 0.4, 0.6, 0.8, 1.0. The

TABLE 2 Model 1 error in CF-CEF and VH analysis.

∂H/∂δ error [kJ/mol O]

mol Frac Cross Fit CEF Van ’ t Hoff

0.00 2.98 67.56

0.20 2.56 8.71

0.40 5.45 4.36

0.60 8.35 79.56

0.80 11.25 41.69

1.00 14.15 24.06

Average 7.46 37.66

STD ± 4.24 28.28

∂S/∂δ Error [J/mol O · K]

mol Frac Cross Fit CEF Van ’ t Hoff

0.00 7.43 26.64

0.20 6.46 3.37

0.40 6.29 3.03

0.60 6.13 46.26

0.80 5.97 28.56

1.00 5.81 10.23

Average 6.34 19.68

STD ± 0.53 15.63
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randomly selected excess L terms are L35, L43, and L51. We
generated TpOX data from six evenly spaced points in each: T =
[400, 560, 720, 880, 1,040, 1,200] K; x = [0, 0.2, 0.4, 0.6, 0.8, 1.0]; and
pO2 = [1 × 10−2, 1.84 × 10−2, 3.38 × 10−2, 6.21 × 10−2, 0.11, 0.21] Bar,
again evenly distributed in log space. Following the same process as
Model 1, we generated 266 data points (133 unique TpOX points
with replicated random noise) with 0.005 < δ < 0.495.

Table 3 shows the errors in the VH and CF-CEF methods. VH
extracted thermodynamics display average errors of 24 ± 13 kJ/mol
O and 20 ± 12 J/mol O K ∂H

∂δred
and ∂S

∂δred
, respectively, which are

lower than the error found for materials from Model 1. The lower
error was expected because it provided a greater number of data
points. Although this error is lower, the expected variation in the

error is approximately 60% of the error itself, again indicating the
non-systematic nature of the error.

Even with a material designed for easy thermodynamic
extraction by VH analysis, the CF-CEF method outperforms it in
predicting ∂H

∂δred
and ∂S

∂δred
. The CF-CEF produced model achieved an

error of only 6 ± 2 kJ/mol O and 9 ± 5 J/mol O K ∂H
∂δred

and ∂S
∂δred

,
respectively. Thus, the CEF had one-third to one-sixth the error of
the VH method on the same data. The CrossFit method converged
to L33, L35, and L49 as the three-contributing excess terms. One of
the three ground truth excess terms, L35, match. Again, as with the
Model 1 case, we compare the linear combinations of excess terms
between the ground truth and the CF-CEF terms. Figure 7 illustrates
similar trends between models and a maximum difference in excess

FIGURE 5
Model 1 comparison of (top) excess free energy (Gex) for the ground truth (blue) compared to the CF-CEF derived excess free energy (green).
(bottom) The absolute difference between Gex for the ground truth and CF-CEF models.
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free energy of <3 kJ/mol at T = 800K. We can attribute this small
mismatch to the optimization of the endmember parameters as
discussed with Model 1. Again, we verified the attribution to the
decoupled optimization scheme when holding the endmember
parameters constant at the ground truth value and the CrossFit
method converges to the same excess terms. Despite errors in
capturing the excess terms, the thermodynamic data extracted by
the CEF fits very well.

Effectiveness of the methods on
model 3 data

Model 3 compares the CF-CEF and VHmodel performance of a
complex hypothetical quinary material that varies in composition on
the A and B sublattices (A1−xA′

xB1−yB′
yO3−δ). The thermodynamic

trends of this material are complex and change significantly with
variations in x and y. The SI shows all ground truth thermodynamic
trends as solid lines across the mol fractions x = 0, 0.2, 0.4, 0.6, 0.8,
1.0 and y = 0, 0.2, 0.4, 0.6, 0.8, 1.0, resulting in 36 compositions.
Figure 8 shows the best and worst fits, for simplicity, derived from
the VHmethod compared to CF-CEF. The excess L terms, randomly
selected, are L27, L42, and L74. We generated the TpOX points from
the thermodynamics of this model with six evenly spaced variables:
T = [800, 1,000, 1,200, 1,400, 1,600, 1800] K, x and y = [0, 0.2, 0.4,
0.6, 0.8, 1.0], and pO2 = [1 × 10−10, 7.32 × 10−9, 5.36 × 10−7, 3.92 ×
10−5, 2.87 × 10−3, 0.21] Bar. The result is a total of 1,582 data points
(791 unique TpOX points, with two sets of random noise added)
following the same process as Model 1.

The error for VH across all 36 compositions can be found in the
SI, Tabel SI-1, and achieved an average accuracy of 40 ± 28 kJ/mol O

FIGURE 6
Generated TCES splitting material, Model 2, ground truth thermodynamic trend (solid), and model fits to the ground truth data with standard
deviation noise of 1 × 10-3 added to δ to simulate experimental error, CF-CEF (dashed), VH (circles).

TABLE 3 Model 2 errors in CF-CEF and VH analysis.

∂H/∂δ error [kJ/mol O]

mol Frac Cross Fit CEF Van ’ t Hoff

0.00 3.73 42.69

0.20 7.30 22.84

0.40 8.38 34.81

0.60 6.96 19.45

0.80 3.24 21.95

1.00 3.36 0.32

Average 5.49 23.68

STD ± 2.10 13.25

∂S/∂δ Error [J/mol O · K]

mol Frac Cross Fit CEF Van ’ t Hoff

0.00 7.14 40.16

0.20 12.11 15.61

0.40 13.85 28.11

0.60 12.35 15.53

0.80 7.61 20.94

1.00 0.37 0.02

Average 8.90 20.06

STD ± 4.55 12.32
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and 29 ± 22 J/mol O K ∂H
∂δred

and ∂S
∂δred

respectively across all
compositions. With this material family, VH analysis varied in
accuracy extensively with some compositions having errors as
high as 105 kJ/mol O and 70 J/mol O K for ∂H

∂δred
and ∂S

∂δred
respectively. At best, the VH analysis achieved an error of 3 kJ/
mol O and 4 J/mol O K, ∂H

∂δred
and ∂S

∂δred
respectively. Again, the

variability in accuracy is a major challenge as it suggests large
uncertainty as to the accuracy of any extracted data set.

The CF-CEF method achieved an average error of 17 ± 10 kJ/
mol O and 9 ± 5 J/mol O K ∂H

∂δred
and ∂S

∂δred
respectively for Model 3.

The CrossFit method converged to L27, L42, and L76 as the three
contributing excess terms. Two of the three ground truth excess
terms, L27 and L42 match those of the true ground state model and
the linear combinations of excess terms had a max difference in free

energy of ~30 kJ/mol. The dimensionality of the excess free energy
prevents visualization of the free energy surface (a function of x, y
and δ), nonetheless, SI Supplementary Figures S1-8 shows a 3-D
volume plot of the difference between the ground truth and CF-CEF
excess free energy. The CF-CEF method performs consistently
across all compositions with Model 3 having a maximum
absolute error of 36 kJ/mol O and 21 J/mol O K for ∂H

∂δred
and

∂S
∂δred

, respectiviely, which significantly outperforms the VH
approach. Thus, as material complexity increases, VH gets
substantially worse, but the CEF retains accuracy.

Noise sensitivity
We next examine the sensitivity of both the CF-CEF and VH

models to noise in the data by doubling the normally distributed

FIGURE 7
Model 2 comparisons of (top) excess free energy (Gex) for the ground truth (blue) to the CF-CEF derived excess free energy (green). (bottom) The
absolute difference between Gex for the ground truth and CF-CEF models.
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random valuations used in creating the data. Here, we use only the
base case Model 1 for the invertible data set. We regenerated data at
the same TpOX points as done with Model 1 but with a normal
distribution of noise double that used for Model 1. The error in the
CF-CEF method is effectively unchanged by additional noise in the
data with a difference of <1 kJ/mol O and J/mol O K, ∂H∂δred and

∂S
∂δred

respectively from the lower noise dataset fit. Conversely, the VH
model absolute error increases by 8 kJ/mol O on average in ∂H

∂δred
to

45 kJ/mol and by 10 J/mol O K to 29 J/K mol O in ∂S
∂δred

. Table 4 lists
the new error values at every mol fraction for the increased noise in
the data. Thus, small increases in noise have a larger effect on VH
than the CEF method.

Data amount sensitivity
The sensitivity of CEF and VH methods to the number of

available data points is examined by altering the number of evenly
spaced TpOX points on a mesh grid from six to either four or seven:
T = [800, 1,133, 1,467, 1800] K, x = [0, 0.33, 0.67, 1.0], and pO2 = [1 ×

10−10, 1.28 × 10−7, 1.64 × 10−4, 0.21] or T = [800, 967, 1,133, 1,300
1,467, 1,633, 1800] K, x = [0, 0.17, 0.33, 0.50, 0.67, 0.83, 1.0], and
pO2 = [1 × 10−10, 3.58 × 10−9, 1.28 × 10−7, 4.58 × 10−6, 1.64 × 10−4,
5.90 × 10−3, 0.21] respectively. After applying the off-stoichiometry
restrictions of 0.005 < δ < 0.495, the mesh grid of four TpOX
resulted in 32 unique points and the mesh grid of seven points
resulted in 168 unique points, ~30% or ~168% percent de/increase,
respectively, in TpOX points from the original dataset. Again, we
duplicated the data with the noise standard devotion equal to 1 ×
10−3 as previously discussed for Model 1. Table 4 lists the new error
values at every mol fraction for the changes in mesh grids of the
data generated.

As expected, with less data available the error in ∂H
∂δred

increased
in both models by +4 kJ/mol O CF-CEF and VH analysis. The ∂S

∂δred
predicted by the CF-CEF method had a smaller error decreasing by
3.1 J/mol O Kwhile VH analysis error increased in ∂S

∂δred
by 2 J/mol O

K. While the CF-CEF method shows a consistent increase in the
error across all mol fractions with less available data, VH analysis

FIGURE 8
Worst (left) and best (right) VH fit (circles) to Model 3, A1−xA′

xB1−yB′
yO3−δ , ground truth (solid) compared to CF-CEF fits (dashed).
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shows an inconsistent response with varying the maximum and
minimum errors achieved at various compositions and number of
data points as compared to the base case Model 1.

Again, as expected, in the case with more data available, the error
in ∂H

∂δred
decreased in the CF-CEF, being −2 kJ/mol O, but increased

by +31 kJ/mol O CF-CEF for van ‘t Hoff analysis respectively

(7.26 and 69 kJ/mol O average error, respectively) almost
doubling. The ∂S

∂δred
followed the same trend decreasing for CF-

CEF and increasing for VH: −0.7 J/mol O K and +23 J/mol O K for
the CF-CEF and VH analysis respectfully (5.66 and 43 kJ/mol O
average error, respectively). In the CF-CEF method, the model is
relatively unaffected, showing little change in average error across all

TABLE 4 Model 1 error in CF-CEF and VH analysis. (left) Nosie in data doubled, (middle) decrease in data available, (right) increase in data available. Percent
change is relative to the average errors reported in Table 2.

Incresed noise (2×10−3) Decresed data (32 unique TpOX) Incresed data (168 unique TpOX)

∂H/∂δ Error [kJ/mol O] ∂H/∂δ Error [kJ/mol O] ∂H/∂δ Error [kJ/mol O]

mol Frac Cross Fit CEF Van ’ t Hoff mol Frac Cross Fit CEF Van ’ t Hoff mol Frac Cross Fit CEF Van ’ t Hoff

0.00 6.70 5.18 0.00 12.99 N/A 0.00 7.19 98.59

0.20 1.84 15.39 0.33 14.27 80.61 0.17 5.44 8.96

0.40 2.85 62.42 0.67 5.21 20.59 0.33 4.02 64.05

0.60 7.20 95.23 1.00 14.19 25.40 0.50 4.53 50.40

0.80 11.03 65.59 0.67 7.20 181.73

1.00 14.48 27.95 0.83 9.87 35.60

1.00 12.55 43.80

Average 7.35 45.29 Average 11.66 42.20 Average 7.26 69.02

STD ± 4.39 31.63 STD ± 3.76 27.23 STD ± 2.83 52.52

% Change −1.5% 16.9% % Change 36.1% 10.8% % Change −2.8% 45.4%

∂S/∂δ Error [J/mol O · K] ∂S/∂δ Error [J/mol O · K] ∂S/∂δ Error [J/mol O · K]

mol Frac Cross Fit CEF Van ’ t Hoff mol Frac Cross Fit CEF Van ’ t Hoff mol Frac Cross Fit CEF Van ’ t Hoff

0.00 7.14 11.86 0.00 3.81 N/A 0.00 6.90 69.76

0.20 5.53 8.50 0.33 2.81 45.79 0.17 5.96 8.10

0.40 5.58 35.34 0.67 0.56 7.55 0.33 5.24 38.57

0.60 5.64 60.02 1.00 5.64 11.73 0.50 5.29 28.42

0.80 5.73 43.15 0.67 5.34 109.77

1.00 5.72 12.51 0.83 5.39 24.64

1.00 5.47 23.65

Average 5.89 28.56 Average 3.20 21.69 Average 5.66 43.27

STD ± 0.56 19.09 STD ± 1.83 17.13 STD ± 0.55 32.37

% Change −7.7% 31.1% % Change −98.1% 9.3% % Change −12.2% 54.5%

TABLE 5 Statistical analysis of KT fits for VH at mol fractions x = [0.2,0.4,0.6,0.8,1.0].

X = 0.2 X = 0.4 X = 0.6 X = 0.8 X = 1.0

Variance of intercept 0.08 0.77 15.44 0.19 0.11

Variance of slope 0.20 1.90 32.44 0.39 0.20

Covariance between intercept and slope −0.13 −1.20 −22.13 −0.27 −0.15

Correlation between intercept and slope −0.99 −0.99 −0.99 −0.99 −0.98

# of T Points 3 3 4 4 5
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x values while VH shows a notable fluctuation in the average error
and standard deviation of error indicating markable sensitivity to
the quantity of data specifically the unexpected trend of becoming
worse on average with more data. In all, the CF-CEF method
outperforms VH analysis and shows a more robust response to
dataset sizes and noise. This finding is significant because it
illustrates the unreliable nature of VH analysis and exemplifies
the need to shift the practice of the metal oxide thermodynamics
field towards a more robust thermodynamic modelling technique,
such as the CF-CEF.

Statistical analysis of VH and CF-CEF
methods on model 1

In this section we perform a statistical analysis of the VH and
CF-CEF methods again utilizing Model 1 as the base case. First, we
will discuss the linear models associated with VH analysis and their
effects on the prediction of thermodynamic properties and
replication of data. This will be followed by an analysis on the
robust nature of the CF-CEF by analyzing 20 additional ground
truthmodels. The additional ground truthmodels are constructed in
the same fashion as was done with the Model 1 case albeit a different

random selection of controlling excess terms therefore creating
20 unique models with different thermodynamic trends and
properties.

Table 5 shows the statistical values of intercept variance, slope
variance, slope/intercept covariance, correlation, and number of
points for each fit KT for Equation 13. Note x = 0 is not present
in Table 5 as there were only 2 T data points at that mol fraction
leading to a perfect linear fit. The covariance of the linear models is
of interest as non-zero values indicate dependence between the slope
and intercept. For example, if the data has a specific range andmean,
changes in the estimate of the slope is compensated by adjustments
in the intercept to maintain the overall fit of the regression line
(i.e., the tradeoff between the predicted enthalpy and entropy of
reduction). This compensation is apparent in the fit of KT at x =
0.6 in Model 1. Of note, however, is how well the defect model fits
the δ data but still has large errors in enthalpy and entropy of
reduction, shown in Figure 9. Conversely, the linear fit of KT at x =
1.0 is almost perfect, leading to good predictions of enthalpy and
entropy of reduction, but poor recreation of the δ data. This
inconsistency and trade-off is the achilleas heal of VH analysis
which the CF-CEF method mitigates.

The CF-CEF method was evaluated on 20 additional variations
of Model 1. The enthalpy and entropy of reduction error is evaluated

FIGURE 9
(A, B) linear regression of defect model to find KT for x = 0.6 and x = 1.0 respectively) and (C, D) defect models (dashed lines) based on extracted KT
for x = 0.6 and x = 1.0 respectively.
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across an extremely fine mesh of 125,000 TpOX points derived from
the same T, P, and X bounds of Model 1. The cumulative
distribution function (CDF) of each model is plotted in
Figure 10. The CDF is a fundamental concept in probability and
statistics that applies to any type of distribution, whether unimodal,
bimodal, or multimodal. The CDF indicates probabilities F(X) of
finding value X at or below F(X). We apply the CDF to the mean
absolute error (MAE) of enthalpy and entropy of reduction as well as
the precited δ value at all 125,000 TpOX points. We show that the
MAE across 125,000 data points for each of the 20 CF-CEF has an
error ranging 3.35–10.95 kJ/mol O and 2.52–8.97 J/mol O K of
enthalpy and entropy of reduction respectively. Furthermore, 90% of
the MAE is ≤20 kJ/mol O for reduction enthalpy and ≤17 J/mol O K
for reduction entropy. The long tails of the CDF exist due to some
outlier points of the model predicting incorrect values at the large
delta extremes of the ground truth model (i.e., δ > 0.48). The outliers
represent <1% of the total 125,000 data points. Similarly, the CDF of
the CF-CEF error in predicting δ for each of these models is very low
where over 99.99% of the predicted δ values is <1 × 10−2, as shown in
Figure 10C inlay. Note these errors are near the imposed noise level
of 1 × 10-3 indicating that the CF-CEF method has a superior ability
in predicting reduction thermodynamics and delta values accurately.

Conclusion

Overall, this work demonstrates that the linearized VH
approach is insufficient for reliably extracting thermodynamic
information from TGA data. In contrast, the CF-CEF method
proves to be highly accurate, offering a comprehensive

thermodynamic picture (i.e., ∂H
∂δred

and ∂S
∂δred

as a function of mole
fraction, T and δ). In all cases tested, the CF-CEF method
outperforms VH analysis, with errors of at most, tens of kJ/mol
O or J/mol O K for ∂H

∂δred
and ∂S

∂δred
respectively. Conversely, the VH

method exhibits errors 2–5 times higher than that of CF-CEF. We
find that VH analysis performs better on lower enthalpy materials
often where there is more TpOX data. The CF-CEF method
consistently performs well across varying levels of
thermodynamic complexity, whereas the VH method is only
effective for the simplest material. Additionally, the CF-CEF
method shows minimal sensitivity to dataset size or noise with
average variations of less than 5 kJ or J in ∂H

∂δred
and ∂S

∂δred
, respectively.

Although larger datasets with multiple temperature points
temperature points should improve VH fits, they still underfund
and widely vary as compared to the CF-CEF method. Furthermore,
the CF-CEF method provides a model that accounts for
composition, T, and δ. Overall, this work quantifies the errors
associated with VH analysis and highlights the robustness of the
CF-CEF methodology. Moving forward, researchers should use the
more robust CEF method for thermodynamic extraction. To this
end, the development of a generic, open-source, and user-friendly
interface for the CF-CEF would greatly benefit the field by enabling
simple and reliable thermodynamic data extraction.

Associated content

Contains Cpmodel comparisons. A list of Redlich-Kister expansion
of L terms. A table of errors for Model 3 and Model 3 thermodynamic
plots versus van ‘T Hoff analysis for the same dataset.

FIGURE 10
(A) CDF of MAE of enthalpy of reduction (Hred) for 20 models. (B) CDF of MAE of entropy of reduction (Sred) for 20 models. (C) CDF of MAE of
predicted δ for 20 models plotted on a log scale. Blacked dash line represents the imposed noise in δ. Inlays are included for each plot for ease of
visualization of probability values 0.9–1.0.
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