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Compared to traditional resources, user-side resources are of various types and
have more significant uncertainty about their regulatory capacity, leading to
difficulties in coordinating decisions about their simultaneous participation in the
electric energy and peaking ancillary servicesmarkets. This paper proposes a joint
bidding decision-making method for the day-ahead electricity energy and peak
shaving auxiliary service market based on distributed robust opportunity
constraints, which addresses the problem of difficulty in using an accurate
probability density distribution to represent the uncertainty process of user-
side resources. Firstly, a data-driven method for characterizing the uncertainty of
load regulation capacity is investigated, and fuzzy sets are constructed without
assuming specific probability distributions of random variables. Then, tominimize
the risk expectation of the joint bidding cost on the customer side, a bidding
strategy that considers the uncertainty is proposed. Finally, an example simulation
verifies the reasonableness and effectiveness of the proposed joint bidding
method, and the results show that the constructed model overcomes the
problem of over-conservatism of the robust model, and the computational
adaptability is better than that of the stochastic model, which achieves a
better balance between robustness and economy.
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1 Introduction

Proposals for “carbon peak and carbon neutrality” have
promoted the use of new energy sources, such as wind power, as
the main power source in new power systems of the future (Xie et al.,
2023). However, the integration of large-scale new energy sources
into the grid has resulted in serious challenges to the flexible peaking
of the power grid (Hasan et al., 2023). In addition, the proportion of
traditional regulation resources, such as thermal power, in the grid is
decreasing gradually such that it has become difficult to meet system
demands by relying only on traditional regulation resources (Li
et al., 2023a). Given the continuous improvements in user-side
automation, user-side distributed energy storage and other
adjustable resources have gradually become a new type of flexible
resource to alleviate the pressure of power system peaking (Zhang
et al., 2022). User-side adjustable resources not only respond to the
demands of grid peak shaving and valley filling but also provide
diversified services such as electrical energy, peak shifting, and
improvement of new energy consumption through their flexible
and adjustable characteristics (Lin et al., 2023).

At present, experts and scholars have conducted numerous
studies on the participation of customer-side adjustable resources
in electricity market transactions. Khodadadi et al. (2022) proposed
bidding and auctioning strategies for flexible load aggregators to
participate in the day-ahead and real-time markets, in addition to
using stochastic scenarios and robust optimization methods to study
the uncertainties in electricity prices and new energy sources,
respectively. Bai et al. (2023) noted that customer-side adjustable
resources not only participate in the electrical energy market to
promote new energy consumption but also provide peaking
auxiliary services as flexible interactive resources.

At present, some regions in China, such as North China,
Shanghai, and Central China, have issued trading rules for the
participation of user-side resources in the peaking market, thus
encouraging the participation of user-side resources in flexible
peaking through a market-based approach (Cao and Zhang,
2023). Datta and Das (2023) proposed an optimal peak shifting
bidding strategy for charging operators by considering the
adjustable characteristics of different types of charging stations,
with the optimization objectives of minimizing the net operating
costs as well as allocation errors. Zhang and Liu (2023) designed a
trading strategy for a virtual power plant (VPP) to participate in the
peaking market based on the regional trading mechanism in North
China. VPP is a special kind of load integrator that can aggregate
distributed energy sources, especially energy storage and distributed
power sources, to participate in market trading (Alahyari
et al., 2019).

Among the power spot pilot units, Gansu, Northeast, Shanxi,
and other regions in China are exploring methods to jointly
optimize the operations of the peaking auxiliary service and
power spot markets (Guo et al., 2020). For example, Shanxi
Power Grid now has a preliminary mechanism for integrating
the peaking auxiliary service with the spot market and has carried
out a settlement trial run (Qin et al., 2023). Customer-side
resources often interact with each other when participating in
energy trading and flexible peaking auxiliary services, based on
which the bidding strategies for their simultaneous participation in
both the energy and peaking markets needs to be investigated

(Khorasany et al., 2022). A few studies have explored this issue; for
example, Li et al. (2023b) investigated a joint trading strategy for
VPP participation in the electrical energy and peaking markets,
where the VPP participates in peak shaving and peak filling
through distributed energy storage and flexible loads. However,
this approach ignores the impacts of user-side adjustable resource
uncertainties on the decision-making behaviors of the VPPs. Alabi
et al. (2021) and Mei et al. (2023) explored VPP participation in
direct power trading and flexible peaking operation modes. Here,
Alabi et al. (2021) describe the tariffs and new energy output
uncertainties using stochastic and robust optimization methods,
respectively. Mei et al. (2023) proposed a VPP day-ahead bidding
strategy based on the conditional value-at-risk theory by
considering wind power uncertainties. Customer-side adjustable
resources include not only new energy but also several
temperature-controlled loads, electric vehicles, and other
adjustable loads (Cheng et al., 2023). Owing to multiple
uncertainties such as market tariffs, environment, and customer
participation willingness, the actual and predicted customer-side
regulation capacities may have large deviations, and the bidding
strategies must consider the revenue expectations under these
deviated responses; however, none of the above works have
considered the impacts of uncertainty of customer-side
regulation capacity on the bidding strategy.

Current optimization methods for handling user-side regulation
capacity uncertainties mainly include stochastic optimization (SO)
and robust optimization (RO), among others. SO generally entails
scenario generation through a probability distribution function,
which ensures that the random variables satisfy the set
constraints in each scenario, such as maximum or minimum
response capacity limits (Sarfarazi et al., 2023).

Roald et al. (2023) assumed that the actual regulation capacities
of incentive-based demand–response loads obey a truncated normal
distribution, and they used a scenario-based SO approach to analyze
the impact of user-side regulation capacity uncertainty on the
economic dispatch of the system. Chassin and Rondeau (2016)
proposed an electric energy market bidding strategy that takes into
account the demand–response load uncertainty by assuming that
the residential demand–response load participation rates obey
normal, uniform, and skewed distributions. The performance of
an SO method is determined by the accuracy of the probability
distribution function of uncertain variables. However, given the
diverse types of customer-side resources and large differences in
their uncertainty characteristics, it is difficult to accurately describe
the probability distribution of the actual regulation capacities of
different types of customer-side resources. RO generally describes
the range of variation of user-side response capacity through the
uncertainty set and makes decisions based on the worst-case
scenario (Li et al., 2023c). Du et al. (2024) investigated the
demand–response load uncertainty based on real-time tariffs
using an RO approach. The difficulty of RO lies in the
construction of a suitable uncertainty set, and the commonly
used uncertainty sets are the box, polyhedron, and ellipsoid sets,
among others (Zhang et al., 2023). The customer-side regulation
capacity uncertainty is related to multiple factors, such as the load
participation rate, load type, and weather, while the uncertainty set is
difficult to determine, leading to overly conservative results and lack
of economy if the RO method is used directly.
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In recent years, the distributionally robust chance constrained
(DRCC) optimization method has garnered attention as it neither
assumes a probability distribution function nor completely ignores
information on probability distributions (Schwidtal et al., 2023). The
DRCC model is based on a data-driven approach to construct a
fuzzy set containing all possible probability distributions that is then
solved on the basis of the worst probability distribution fuzzy set and
worst-case probability distribution (Al-Jabouri et al., 2024).
Compared with SO and chance constraints, the DRCC model
does not assume that the uncertain variables obey specific
probability distributions, which is more robust; compared with
RO, the DRCC method considers all possible probability
distribution data, which is less conservative (Liang et al., 2023).
At present, DRCC methods have been studied for unit combination
and economic dispatch; it is mostly used to handle the uncertainties
of wind power, photovoltaic output, and load demand (Pan et al.,
2023). There are very few studies on the application of the DRCC
method to solve the bidding decision problem by considering
uncertainty. For example, Jin et al. (2023) used the DRCC
method to describe electric vehicle regulation capability
uncertainty and proposed a bid-allocation decision method for
electric vehicle aggregators. However, there are not many studies
on applying the DRCC method to cope with user-side regulation
capacity uncertainty in the user-side bidding decision problem. The
use of the DRCC approach to handle user-side response uncertainty
enables characterization of not only the uncertainty features of
multiple types of user-side resources but also the variability of
the uncertainty features. The constructed data-driven fuzzy set
based on DRCC covers the uncertainty features of different types
of loads and can solve the multitype user-side regulation capacity
uncertainty problem more effectively.

This paper presents an integrated study of the joint optimization
bidding strategy for user-side resources in both the day-ahead energy
market and peaking ancillary services market. Initially, the DRCC
method is used to establish an uncertainty model for user-side
regulation capacity. In addressing the issue of diverse user-side
resource types with significant differences in the uncertainty
characteristics, which cannot be accurately described with a precise
probability density function, this study employs a data-driven approach
to construct fuzzy sets that characterize the load uncertainties without
assuming a specific probability distribution for the random variables.
Subsequently, to tackle the bidding risks arising from the user-side
regulation capacity uncertainty, a risk-aware trading decision-making
method is proposed that incorporates risk expectations and opportunity
constraints. This method transforms the problem into a linear
programming problem by applying a strong duality theory with a
conditional value approximation method that can be solved using a
commercial solver. Finally, the effectiveness of the risk-based bidding
strategy grounded in the DRCC model is validated through numerical
simulation.

2 User-side load modeling

Loads can participate in market transactions through tariff-
based demand–response; they can independently choose the time to
participate in regulation and the corresponding regulation capacity
based on the tariff signal. Given the uncertainties in the response

behaviors of different types of loads at different tariff levels, there are
large deviations between the regulation capacities of the loads,
i.e., the actual regulation capacity available for participating in
the market and predicted value, which in turn pose revenue risks
to the design of customer-side bidding strategies. Accordingly, the
uncertainty in customer-side regulation capacity is modeled first.
Section 2.1 provides an overview of the load deterministic model to
measure the regulation capacities of loads participating in the
market bidding, and Section 2.2 portrays the load regulation
capacity uncertainty characteristics using the data-driven
DRCC approach.

2.1 Load deterministic modeling

Tariff-based demand–response shifts the load demand by
differentiating the purchase price of electricity, e.g., by increasing
the price of electricity during peak hours and lowering it in the
trough, thereby achieving peak shaving, valley filling, and smoothing
of the load curve. The sensitivity of a load to changes in the
electricity price is generally described by the elasticity coefficient.
To reflect the sensitivities of different types of loads to price changes,
we model the uncertainties of the user-side resources through the
opportunity constraints of the SemBleu samples and construct the
load deterministic model using the dynamic elastic coefficient to
represent the variation in electricity prices during different periods.
Assuming that the load demand Pi is linearly related to the price ρi
(Pi � −aiρi + bi), the dynamic elasticity coefficient can be
expressed as

Eii � −aiρi
−aiρi + bi

(1)

Eij �
−2a2i ρj + aibi

b2i + 4 −a2i ρ2j + ρ2k( ) + aibi ρj + ρk( ) − aiI + ∑N
L�1

L ≠ i,j

− a2i ρ
2
L + aibiρL

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

1/2

*
ρj

−aiρj + bi
L � 1 . . . , i . . . , j . . . , N, (2)

where in Equations (1, 2), Eii denotes the dynamic self-elasticity
coefficient for a single time response, i.e., the load change is only
related to the price at that time, and is generally set to a value less
than or equal to 0. Eij denotes the dynamic cross-elasticity
coefficient for the multitime response, i.e., the price change in
one time period causes load changes in other periods, and is
generally set to a value greater than 0. ρj and ρk denote the
tariffs at the corresponding moments, ai and bi denote the
demand function parameters, I denotes the cost of purchasing
electricity for the load, and N denotes the number of tariff-based
demand–response items.

Based on the dynamic elasticity factor, the load regulation
capacity is expressed as

PDR
i � ηρ0,i Ei,i

ρi − ρ0,i
ρ0,i

∑24
j�1
i ≠ j

Ei,j

ρj − ρo,j
ρo,j

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
, (3)

ρmin ≤ ρi ≤ ρmax , (4)
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PDR
min ≤PDR

i ≤PDR
max , (5)

where P0,i and PDR
i denote the load demand and load regulation

capacity before participating in demand–response, respectively; η
denotes the participation rate that ranges from 0 to 1—the larger this
value, the higher is the possibility that the load is willing to
participate in the demand–response program; ρ0,i and ρ0,j denote
the prices of electricity at the corresponding moments before
participation in the demand–response program; ρmax and ρ0,j
denote the upper and lower limits of the power purchase price
and are given by the trading center to ensure reasonable price levels;
PDR

max and PDR
min denote the maximum and minimum allowed

regulation capacities, respectively.

2.2 Load regulation capacity
uncertainty modeling

Based on the deterministic model given in Equations (3–5), the
uncertainty model based on the DRCC method is explored herein.

Considering that the load regulation capacity is related to
multiple influencing factors, such as user participation rate and
price, the regulation capacity is difficult to accurately predict in
reality; hence, the actual regulation capacity of the load is
expressed as

~P
DR � PDR + ξDR , (6)

where in Equation (6), ~P
DR

is the form of uncertainty in the
regulation capacity, and ξDR denotes the prediction error.

There are various types of loads, including industrial loads
(e.g., steel industry) and residential loads (e.g., electric vehicles).
In practice, it is difficult to accurately describe the specific
probability distribution of the load prediction errors owing to
the stochastic nature of their response behaviors and differing
sensitivities of different types of loads to different influencing
factors. To address this issue, we use a data-driven DRCC model
to regulate the capacity uncertainties of multiple types of loads.
The basic idea of this method is to construct a fuzzy uncertainty
set containing all possible probability distributions based on
historical data to describe the load regulation capacity
differentiation uncertainty. The method not only utilizes the
probability distribution information characterized by real
historical data of the loads fully but also avoids the
arbitrariness of setting a particular probability
distribution directly.

2.2.1 Fuzzy sets based on Wasserstein distance
The Equation (7) based on the historical load-regulated capacity

data, the set of samples of N groups ~ξ1, ~ξ2, . . . , ~ξN{ } is selected
randomly with probability distributions P1, P2, . . . , PN{ },
respectively; the probability distribution of the mean of the
samples ξμ is used as the empirical distribution PN of the
load prediction error ~ξ

DR
as well as estimate of the true

distribution P:

ξμ � 1
N

∑
n∈N

~ξn. (7)

The probability distance between the empirical and true
distributions, i.e., the Wasserstein distance can be expressed as

W PN, P( ) � inf ∫ d ξμ, ξt( )∏ dξμ, dξt( ){ }, (8)

d ξμ, ξt( ) � ξμ − ξt
���� ����, (9)

where in Equations (8, 9), ξμ and ξt denote the load prediction errors
obeying the empirical distribution PN and true distribution P,
respectively; d(ξμ, ξt) represents the Euclidean norm between ξμ
and ξt; ∏(dξμ, dξt) denotes the joint distribution of PN and P; inf
is the lower bound function.

A spherical fuzzy setD0 was built with the empirical distribution
of load forecasting errors centered on the Wasserstein probability
distance as the radius:

D0 � Pi ∈ M Ξ( ) W PN, P( )≤ ρ∣∣∣∣{ }, (10)

where in Equation (10), M(Ξ) is the set of all probability
distributions on the uncertainty set Ξ; M represents the fuzzy set
centered on the empirical distribution of the load forecasting error
PN with radius ρ, which contains all possible probability
distributions, including the empirical distribution of load
forecasting error with a certain level of confidence. ρ can be
obtained by a dichotomous search based on the sample data.

2.2.2 Uncertainty sets based on the data-
driven approach

In practical scenarios, the uncertainty set is constructed by
analyzing the boundaries of the load forecast error; first, the
sample set of historical data is normalized as

~θn � ~Σ−1
2 ~ξn − ~μ( ), n � 1, 2, . . . , N, (11)

where in Equation (11), ~μ and ~Σ denote the sample mean and
variance, respectively. The uncertain set ~θ of Ξ is then expressed as

Ξ � ~θ∈ RN −l≤ ~θ
i
≤ l

∣∣∣∣∣∣{ } (12)

where in Equation (12), l denotes the restricted range of the
parameter ~θ. According to Fan et al. (2023a), we have

min
l< lmax

l

s.t. sup
pstd∈Pstd

Pstd ~θ ∉ Ξ( )≤ 1 − η,

⎧⎪⎪⎨⎪⎪⎩ (13)

where pstd and Pstd denote the probability distribution and fuzzy set
of ~θ; η is the confidence level of the uncertainty set. Based on dyadic
theory, Equation (13) can be transformed into Equation (14), which
is then solved with the nested dichotomy method:

min
l< lmax

l

s.t. κ · ε + 1
N

∑N
n�1

1 − κ l − ~θn
���� ����( )+( )+⎧⎨⎩ ⎫⎬⎭ ≤ 1 − η,

κ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(14)

where (·)+ � max(·, 0), κ, ε denote the dyadic variables in the
transformation process.
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3 Modeling of joint bidding for user-
side participation in the electrical
energy and peaking ancillary
services markets

This section presents the construction of a joint bidding decision
optimization model for customer-side participation in the day-
ahead electrical energy and peaking ancillary services markets to
improve the market returns from customer-side resources. First, we
construct a user-side preparticipation market deterministic bidding
model and study the relevant constraints. Then, we construct a user-
side preparticipation market risk bidding model by accounting for
uncertainty and the risk bidding strategy of user-side participation
in the joint market. The model effectively handles the uncertainty of
user-side resources and reflects the changes in the user-side returns
by adjusting the risk parameters and confidence levels.

3.1 Deterministic bidding model for the
market before the day of user-side
participation

3.1.1 Objective function
Customer-side resources, including distributed generation

resources, distributed energy storage, and demand–response
loads, can gain revenue by participating in the electrical energy
and peaking ancillary services markets; however, they also have to
bear the costs for purchasing electricity from the grid and
operations. In this work, the optimization objective is to
minimize the bidding cost for the user side to participate in the
joint market a few days prior, and the bidding cost F includes the
cost of purchasing and selling electricity in the energy market Ce,
operating cost for distributed energy storage CES, and peak shifting
revenue Bf . These details are summarized in Equation (15):

F � min Ce + CES − Bf( ). (15)

The cost for participating in electricity purchase and sale
transactions in the electricity energy market Ce is given by

Ce � ∑
t

ρbt P
b
t − ρstP

s
t( )Δt, (16)

where in Equation (16), ρbt and ρst , respectively, denote the prices of
electricity purchased and sold during time slot t; Pb

t and Ps
t ,

respectively, denote the capacities purchased and sold during
time slot t; Δt denotes the time interval, which is set as 1 h in
this study.

The operating cost for distributed energy storage CES is given by

CES � ∑
t

∑
i

cch,i P
ES
ch,i,t + PES,vf

i,t( )Δt + cdis,i P
ES
dis,i,t + PES,pf

i,t( )Δt. (17)

where in Equation (17), cch,i and cdis,i represent the respective unit
charging and discharging costs of the energy storage at i; PES

ch,i,t and
PES
dis,i,t represent the corresponding charging and discharging

capacities of the energy storage at t; PES,vf
i,t and PES,pf

i,t denote the
participation of energy storage in peak filling and peak shaving
power at time period t, respectively.

The peak shifting revenue Bf is given by

Bf � ∑
t

ρpfP
pf
t + ρvfP

vf
t( )Δt, (18)

Ppf
t � PREN,pf

t + ∑N
ES

i�1
PES,pf
i,t + ∑N

DR

j�1
PDR,pf
j,t , (19)

Pvf
t � PREN,vf

t + ∑N
ES

i�1
PES,vf
i,t + ∑N

DR

j�1
PDR,vf
j,t , (20)

where in Equations (18)–(20), ρpf and ρvf denote the compensation
prices of auxiliary services for peak shaving and valley filling,
respectively; PDR,pf

t and PDR,vf
t denote the peak shaving and peak

filling bidding capacities submitted for time t, respectively; PREN,pf
t

and PREN,vf
t denote the downward and upward capacities of new

energy resources participating in peak shaving and valley filling,
respectively; NES and NDR denote the number of distributed
storage and demand–response loads, respectively; PES,pf

i,t and PES,vf
i,t

denote the number of discharges of distributed storage units
participating in peak shaving and the charging amount of valley
filling, respectively; PDR,pf

j,t and PDR,vf
j,t denote the amount of reduction

in loads participating in peak shaving and increase in loads
participating in valley filling, respectively.

3.1.2 Constraints
The constraints are formulated using the internal power and bid

capacity limits for new energy and storage.
The following constraints need to be met for the user side to

participate in the joint market trading of day-ahead energy and
peaking ancillary services:

3.1.2.1 Internal power balance constraints

Pb
t − Ps

t � Dt − ∑N
ES

i�1
PES
i,t − ∑N

DR

j�1
PDR
j,t − PREN

t , (21)

where in Equation (21),Dt denotes the power demand during time t
before the load participates in demand–response; PREN

t and PES
i,t

denote the total bidding capacities of new energy and energy storage
participating in the joint market, respectively.

3.1.2.2 New energy bidding constraints

PREN,e
t + PREN,pf

t ≤PREN,max ,
t (22)

PREN,e
t − PREN,vf

t ≥ 0, (23)
where Equations (22, 23) represent the bidding capacity constraints
for new energy to participate in both the electrical energy
and peaking ancillary services markets, i.e., the upward change
of the new energy is no more than the maximum projected
output on a generation basis and the downward change is no
less than 0.

3.1.2.3 Distributed energy storage bidding constraints

0≤PES
ch,i,t, P

ES
dis,i,t ≤P

ES
i,max. (24)

PES,e
i,t � PES

dis,i,t − PES
ch,i,t. (25)
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PES,e
i,t + PES,pf

i,t ≤PES
i,max. (26)

PES,e
i,t − PES,vf

i,t ≥ − PES
i,max . (27)

Ei,t � Ei,t−1 + PES
ch,i,tηcΔt −

PES
dis,i,t

ηdΔt
+ PES

vf ,i,tηcΔt −
PES
pf ,i,t

ηdΔt
. (28)

Emin ≤Ei,t ≤Emax . (29)
Ei,t0 � Ei,T. (30)

Here, Equation (24) represents the charging and discharging power
limitation constraints for distributed energy storage, and Pi,max

represents the maximum charging and discharging power; Equation
(25) represents the bidding capacity of distributed energy storage for
participation in the electrical energy market, where PES,e

i,t is equal to the
difference between the charging and discharging power. Equations (26,
27) represent the bidding capacity constraints of distributed energy
storage for participation in the joint electrical energy and peaking
markets; Equation (28) represents the energy balance constraints of
distributed energy storage, where Et and Et−1 represent the storage
energies at t and t − 1, respectively. Equation (29) represents the storage
energy constraints, where Emax and Emin represent the maximum and
minimum storage energy limitations, respectively. In Equation (30),
Ei,t0 and Ei,T represent the energy at the initial and end moments of
energy storage, respectively. The energy storage has two states as
charging and discharging, and the 0–1 values representing the
charging and discharging states should be added to the operating
constraints of Equation (24) while considering the logical
constraints, i.e., to avoid charging and discharging the energy
storage at the same time. However, considering that the operating
constraints of the energy storage will be applied to the objective function
to solve the minimum transaction cost of the integrator, if the charging
and discharging behaviors of the energy storage occur at the same time,
some of the effective values will be canceled out at the corresponding
moments, and the optimal solution cannot be derived; therefore, the
0–1 values and logical constraints are not added in the optimization
model of the energy storage in this work, which will help speed up the
solution and reduce the running time.

3.1.2.4 Demand–response load bidding constraints

−PDR
i,max ≤PDR,e

i,t ≤PDR
i,max . (31)

0≤PDR,pf
i,t ≤Upf

i,tP
DR
i,max. (32)

0≤PDR,vf
i,t ≤Uvf

i,tP
DR
i,max . (33)

Uvf
i,t + Upf

i,t ≤ 1. (34)
PDR,e
i,t + PDR,pf

i,t ≤PDR
i,max . (35)

PDR,e
i,t − PDR,vf

i,t ≥ − PDR
i,max . (36)

Here, Equation (31) indicates that the demand–response load i
participates in the bidding capacity constraint of the electrical
energy market, and PDR

i,max is the maximum adjustment capacity
allowed for the demand–response load on the day before. Equations
(32, 33) indicate that the demand–response load participates in the
bidding capacity constraints for peak shaving and valley filling, and
Upf

i,t and U
vf
i,t indicate the states for participating in peak shaving and

valley filling, respectively, with the value 1 indicating participation.
Equation (34) indicates that the load cannot participate in peak

shaving and valley filling at the same time, while Equations (35, 36)
indicate that the demand–response load participates in the bidding
capacity constraint of the joint market.

3.2 Market risk bidding model for day-ahead
markets taking uncertainty into account

Based on the previous analysis, load uncertainty poses a revenue risk
to decision-makers when formulating bidding strategies. To address this
problem, we constructed a risky bidding decision model for user-side
participation in the day-ahead market based on the distributional robust
opportunity constrained optimizationmethod. To construct the user-side
day-ahead market risk bidding model that accounts for uncertainty, we
first reconstructed the objective function by considering risk expectation
and then analyzed the uncertainty of load capacity regulation with
opportunity constraints to build the model.

3.2.1 Objective function reconstruction
considering risk expectations

The load uncertainty variable error is set to ξDR, such that the
load ~P

DR
i,t containing the uncertainty variable can be expressed as

~P
DR

i,t � PDR
i,t + ξDRi,t . (37)

By substituting Equation (37) into the objective function of
Equation (15), we get Equation (38):

minC � min∑T
t�1

Ce + CES − ~Bf( ). (38)

The objective function of the risky bidding decision model is as
shown in Equation (39) and consists of two components: the bidding
cost of participating in the joint market and the expected cost of
coping with the risks associated with uncertainty.

min∑T
t�1

Ce + CES − Bf( ) +minmax
P∈D0

EPC ξDR( ), (39)

where EP denotes the expected probability.
For convenience, the objective function of the DRCC model is

written in the following abstract form:

min
x

aTx +min
x

max
P∈D0

EP bTξ{ }, (40)

where in Equation (40), x represents the decision variable, ξ

represents the uncertainty variable, and aT and bT are the
corresponding coefficients.

3.2.2 Opportunity constraint construction
Owing to uncertainty in the load regulation capacity, the bidding

process for load participation in the joint electricity markets
(i.e., electrical energy, peak shaving and peaking, and valley
filling and peaking markets) has the same uncertainty. We
introduce chance constraints to handle optimization problems
containing random variables and increase the model robustness
by setting a confidence level that allows the constraints to remain
unsatisfied under a certain probability. There is also uncertainty in
the capacity for handling load regulation. Specifically, this work uses
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opportunity constraints to model and analyze these uncertainties, as
shown in Equations (41–45):

inf
P∈D0

EP −PDR
i,max ≤P

DR,e
i,t + ξDR,e ≤PDR

i,max( )≥ 1 − ε. (41)

inf
P∈D0

EP 0≤PDR,pf
i,t + ξDR,pf ≤Upf

i,tP
DR
i,max( )≥ 1 − ε. (42)

inf
P∈D0

EP 0≤PDR,vf
i,t + ξDR,vf ≤Uvf

i,tP
DR
i,max( )≥ 1 − ε. (43)

inf
P∈D0

EP PDR,e
i,t + PDR,pf

i,t + ξDR,e + ξDR,pf ≤PDR
i,max( )≥ 1 − ε. (44)

inf
P∈D0

EP PDR,e
i,t − PDR,vf

i,t + ξDR,e + ξDR,vf ≥ − PDR
i,max( )≥ 1 − ε. (45)

Here, Equations (41–45) denote the load bidding opportunity
constraints for the electrical energy, peak shaving, and peak filling
markets that are guaranteed to fail in the fuzzy set D0 space with
probability EP less than the set confidence level ε, where ε denotes the
risk probability of the load bidding constraints overstepping the limit.
ξDR,e, ξDR,pf , and ξDR,vf are the load forecast errors of the electrical
energy, peak shaving, and peak filling markets, respectively.

4 Model solution

In the DRCC model considering risk expectation, the objective
function contains a min–max two-layer structure and non-linear
chance constraints that make it difficult to solve directly. First, we
transformed the inner max problem of the model into a min problem
based on the strong duality theory and then transformed the two-layer
optimization to a single-layer optimization problem before solving the
model using the fuzzy uncertainty set of load regulation capacity.

4.1 Objective function pairwise
transformation

The objective function of the risk expectation DRCC model
contains a min–max two-layer structure, which makes it difficult
to solve directly. According to Slater’s theorem, the strong duality
theory describes a special relationship between the primal and duality
problems; if the primal and duality problems both have feasible
solutions, then as long as one problem has an optimal solution,
the other problem must also have an optimal solution, where the
objective function values of the two optimal solutions are equal.
Conditional value at risk refers to the average loss of the portfolio
under the condition that this loss exceeds a given VaR value; it is
known that the strong duality of the model holds, so we transformed
the inner max problem to a min problem using the strong duality
theory; further, we transformed the double-layer optimization to a
single-layer optimization problem. The specific process is as follows:

min
x

aTx +min
x

max
P∈D0

EP bTξ{ }

�

min
λ0 ,s0i

aTx + λ0ρ + 1
N

∑N
i�1
s0i

s.t.

min
zn‖ ‖*≤ λ0

max
ξ∈Ξ

bTξ − zTi ξ − ξ i( )[ ]≤ s0i

zi‖ ‖p≤ λ0,∀i ∈ N

⎧⎪⎪⎪⎨⎪⎪⎪⎩ ,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(46)

where the random variable ξ denotes ξDRi,t ; a
Tx denotes the bid cost

in the deterministic model Ce + CES − Bf ; bTξ is equal to
ρpfu

pf ξDRi,t + ρvfu
vf ξDRi,t ; λ

0, s0i , and zTi denote the dyadic factors in
the transformation process; ‖‖p denotes the dyadic paradigm.

According to the fuzzy uncertainty set of the load regulation
capacity constructed in Section 2.2, the specific expression of the
probability distribution space Ξ is

Ξ � Hξ ≤ h{ }
H � I,−I[ ]T
h � l,−l[ ]

⎧⎪⎨⎪⎩ , (47)

whereH and h denote the coefficient matrix and right-end vector of
the polyhedron, respectively.

The constraint inner layer function in Equation (46) can only
take its maximum value at the boundary of the load uncertainty set,
which can be obtained by substituting Equation (47) into
Equation (46):

min
zi‖ ‖*≤ λ0

max
Ξ� ξ Hξ ≤ h|{ }

bTξ − zTi ξ − ξ i( )[ ]
� min

zi‖ ‖*≤ λ0
min

γ0i ∈ γ0i HTγ0i �bT−zi|{ } hTγ0i + zTi ξ i[ ], (48)

where in Equation (48), γ0i denotes the decision variable.
In summary, considering the risk expectation DRCC model, the

objective function can be pairwise transformed into a single-layer
optimization model, as shown in Equation (49):

min
λ0 ,s0i

aTx + λ0ρ + 1
N

∑N
i�1
s0i

s.t.

bTξi + γ0i h −Hξ i( )≤ s0i .

HTγ0i − bT
���� ����

p
≤ λ0

γ0i ≥ 0,∀i ∈ N

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(49)

Then, the objective function is transformed into the expression
of Equation (50) as Equation (55):

min
λ0 ,s0i

Ce + CES − Bf + λ0ρ + 1
N

∑N
i�1
s0i

s.t.

ρpfu
pf ξdri,t + ρvfu

vf ξdri,t + γ0i ξ i ≤ s
0
i

−λ0 ≤ γ0i − ρpfu
pf − ρvfu

vf ≤ λ0

γ0i ≥ 0,∀i ∈ N

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
.

(50)

4.2 Conditional value-at-risk approximation

The general form of the opportunity constraints in Equations
(41–45) of the model can be expressed as

inf
P∈D0

EP αk x( )ξ i ≤ βk x( ){ }≥ 1 − ε, (51)

where k denotes the number of chance constraints, and αk(x) and
βk(x) denote the coefficients of the constraints and right-end vector,
respectively.

The opportunity constraints are non-linear inequality
constraints and are difficult to solve directly. In this work, the
conditional value-at-risk concept is used to approximate the
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opportunity constraints, which are then transformed into a linear
programming model for processing. The specific process is
as follows.

The chance constraint inequality of Equation (51) can be
expressed as

sup
P∈D0

EP − CVaRε αk x( )ξ i ≤ βk x( ){ }≤ 0. (52)

According to Theorem 1 in Ordoudis et al. (2021), the
conditional value-at-risk not only considers the potential
maximum loss at a given confidence level but also measures the
average loss exceeding this threshold. By introducing appropriate
variables and constraints, the risk measure of the conditional VaR is
transformed to a part of the linear programming model, which is
then solved using the standard linear programming technique; thus,
Equation (52) can be transformed into the linear constraint given in
Equation (53):

λkρ + 1
N

∑N
i�1
sik ≤ 0

τk ≤ sik

αk x( )ξ i − βk x( ) + ε − 1( )τk + εγTik h −Hξ i( )≤ εsik,

εHTγik − αk
���� ����

p
≤ ελk

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(53)

where λk, sik, and τk denote the dyadic variables in the
transformation process, and γik denotes the introduced
decision variables.

By taking Equation (41) as an example, we have

inf
P∈D0

EP PDR,e
i,t + ξDR,e ≤PDR

i,max( )≥ 1 − ε. (54)

Then, the constraint Equation (54) is transformed into the
expression of Equation (53) as Equation (55):

λkρ + 1
N

∑N
i�1
sik ≤ 0

τk ≤ sik

ξDR,e + PDR,e
i,t − PDR

i,max + ε − 1( )τk + εγTikξ
DR,e
i ≤ εsik.

−ελk ≤ γTik − I≤ ελk

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(55)

5 Example analysis

5.1 Parameter settings

The customer-side resources mainly include wind power,
photovoltaic output, distributed energy storage, and
demand–response loads, among which wind power,
photovoltaic output, and load demand forecast are as shown in
Figure 1. The relevant parameters of the distributed energy storage
are shown in Table 1 (Fan et al., 2023b). The maximum adjustment
of the demand–response load at each moment in time does not
exceed 10% of the base load value. The dynamic elasticity
coefficient of the tariff-based demand–response is referred from
Tan et al. (2017), and the parameters are set as shown in Figure 2.
Load-side participation in the electricity market purchase and sale
of the peak and valley prices of the electricity transactions for each
time period are shown in Table 2. The peaking market peak filling,
peak shaving/peaking time division, and tariffs are shown in
Table 3. Our parameters are set on the basis of the forecast
outputs of distributed energy storage and demand–response
load mentioned in literature, while utilizing the relevant
electricity price data published by the grid company.

5.2 Analysis of optimized bidding decisions
in the previous day’s market

To verify the effectiveness of the bidding model constructed
herein, the following four scenarios are established for comparative
analysis. The purpose of Scenario 1 is to establish a baseline case that
does not consider the uncertainty of user-side adjustment capacity;
based on Scenario 1, Scenario 2 additionally includes the case that
the user-side participates in the auxiliary service market for peak
regulation at the same time. Scenario 3 focuses on user-side
resources when only participating in the electricity market
bidding, and the uncertainty of user-side regulation capacity is
considered. Scenario 4 entails simulating the operating
environment closest to the actual scenario and evaluates the
effectiveness and robustness of the proposed strategy under dual
uncertainty from market and regulatory capacities.

FIGURE 1
Predicted output curves for new energy sources and loads.
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Scenario 1: The user side participates only in the electrical
energy market bidding and does not account for the uncertainty
of the user-side regulation capacity.

Scenario 2: The user side participates in both the electrical
energy and peaking ancillary services markets while adopting the
strategy devised herein, but does not account for the user-side
regulation capacity uncertainty.

Scenario 3: The user side participates only in the electrical
energy market bidding, and the uncertainty of the user-side
regulation capacity is considered.

Scenario 4: The user side participates in both the electrical
energy and peaking ancillary services markets while adopting the
strategy devised herein and taking into account the user-side
regulation capacity uncertainty.

TABLE 1 Parameters of distributed energy storage.

Rated
capacity (MWh)

Rated charge/discharge
power (MW)

Charge state
range

Initial charge
state

Charge and discharge
efficiency

5 1 0.1–0.9 0.2 0.95

FIGURE 2
Electricity-pricing-based load-related parameters.

TABLE 2 Market prices for electrical energy.

Time slot Time Electricity purchase price (yuan/MWh) Electricity sales price (yuan/MWh)

Peak hour 8:00–12:00, 17:00–21:00 920.3 460.15

Weekday period 12:00–17:00, 21:00–24:00 622.6 311.3

Valley time 0:00–8:00 324.9 162.45

TABLE 3 Market prices for peaking ancillary services.

Peaking filling periods Peaking filling price
(yuan/MWh)

Peaking shaving
periods

Peaking shaving price
(yuan/MWh)

0:00–8:00 350 8:00–12:00, 17:00–21:00 500
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Comparisons of the market returns on the customer side for
different scenarios are shown in Table 4. The negative electrical
energy market gains indicate that the costs of purchasing electricity
on the load side are greater than the gains from selling electricity.
From Table 4, it is seen that participating in the peak load balancing
auxiliary service market (Scenarios 2 and 4) can significantly
improve the total revenue of users compared to participating
only in the electricity and energy markets (Scenarios 1 and 3).
The operating costs of energy storage are relatively high in Scenarios
2 and 4, and Scenario 4 achieves the best total benefit through the
strategy proposed herein when considering the uncertainty of user-
side regulation capacity. It can be seen that the benefits are greatest
in the scenario where the customer side participates in both the
electrical energy and peak shaving auxiliary service markets. The
customer side calls adjustable resources to participate in peak
shaving and peak shifting to obtain peak shifting benefits while
reducing the cost of purchasing electricity in the electrical
energy market.

Figure 3 shows the trading strategy for the participation of user-
side resources in the electrical energy market of Scenario 1, where
the positive and negative values of the distributed energy storage
represent the discharging and charging processes, while the positive
and negative values of demand–response load adjustment represent
the load curtailment and load increase, respectively. From the figure,
it is seen that the user side reduces the power purchase costs through
coordinated scheduling of the internal adjustable resources.
Considering the high purchase prices of power in the market, the
internal load supply source on the user side is mainly new energy.
The energy storage is charged during the valley hours of 3:00–5:
00 and discharged during the peak hours of 19:00–21:00, thus

reducing the amount of power purchased during the high-price
hours. As seen from the demand–response bidding bar chart, the
demand–response load cuts the loads during the peak hours of 9:
00–12:00 and 18:00–21:00 while increasing the loads during the
valley hours of 0:00–8:00 and 22:00–24:00 to achieve peak cutting
and valley filling that reduce the cost of purchasing power on the
customer side.

Figure 4 shows the bidding results of Scenarios 1 and 2 for user-
side participation in electrical energy trading, where a positive
bidding power indicates that the user side purchases power from
the electrical energy market, and a negative value indicates that the
user side sells power to the market. From the figure, it is seen that the
user side mainly focuses on selling electricity to the grid from 8:00 to
12:00 because the market price of electricity is higher at this time. In
addition, compared with Scenario 1, the user side purchases less
power in the valley time, sells more power in the peak time, and
purchases more power in the normal time in Scenario 2. Figure 5
shows the optimization strategy for Scenario 2 with adjustable loads
for participating in the peaking auxiliary service market. The results
show that when the customer side participates in both the electrical
energy and peaking auxiliary service markets, the adjustable
resources will preferentially participate in the market with higher
returns. For example, the participation of adjustable resources in
valley filling and peaking during the valley hours of 01:00–08:00 not
only increases the peaking revenue but also reduces the amount of
power purchased in the electrical energy market. The energy storage
discharges to participate in peak shaving and peak regulation during
the peak hours of 9:00–12:00 and 18:00–21:00, while charging
during the flat hours. Demand–response loads participate in
valley filling and peak shaving by increasing their electricity

TABLE 4 User-side benefits under different scenarios.

Market gains (yuan) Scenario 1 Scenario 2 Scenario 3 Scenario 4

Electricity market −12,685 −9,608.7 −14,274 −10,179

FM ancillary services market 0 20,871 0 21,593

Energy storage operating costs 221.5 1,238.4 228.9 1,247.5

Aggregate return −16,754 5,115.9 −18,287.3 5,278.7

FIGURE 3
Optimization results for user-side resources under Scenario 1
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consumption during the valley hours and load curtailment during
the peak hours as the benefits gained from participating in peak
shaving at this time are greater than the cost reductions from
participating in electrical energy trading.

The optimization results for Scenarios 3 and 4 involve adjustable
resources participating in the day-ahead energy market, as shown in
Figures 6, 7, respectively. The bidding results for adjustable resource
participation in the peaking ancillary services market for Scenario

FIGURE 4
Bidding results for user-side participation in the electricity market under Scenarios 1 and 2

FIGURE 5
Bidding results for load-side participation in the peaking market under Scenario 2.

FIGURE 6
Optimization results for user-side resources under Scenario 3
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4 are shown in Figure 8. Compared to Scenarios 1 and 2, the
demand–response load participation in the market is lower in the
uncertainty scenarios, while the amount of electricity purchased in
the energy market increases, thus leading to lower customer-side
revenues. This is because the customer-side bidding strategy is more
conservative when considering the risk of demand–response
uncertainty on bidding revenues, which is preferably
compensated by purchasing power in the electrical energy market
or calling other flexible resources with higher controllability. In
addition, the results of the comparisons between Scenarios 3 and
4 show that when more uncertainty is considered, the bidding
strategy of the customer side is more conservative and capacity
of the demand–response load to participate in market bidding
is reduced.

5.3 Comparative analysis of uncertain
optimization methods

To verify the DRCCmodel proposed herein under consideration
of risk expectation, SO is used for comparison and analysis against
RO. The SO-based decision-making method assumes that the

prediction error of the demand–response load obeys a Gaussian
distribution with a mean of 0 and standard deviation of 0.2;
accordingly, 1,500 sets of data are sampled by the Monte Carlo
method selected for analysis.

Figure 9 shows how the load-side gains vary with confidence
levels and sample numbers across the models. The SO model yields
the highest gains, while the RO model yields the lowest. The DRCC
model’s gains fall in between these and increase with more samples
as the estimated distribution becomes more accurate, thus reducing
decision conservatism. Moreover, the gains obtained by the user side
based on the DRCC model increase with the number of samples; as
more samples are included, the fuzzy centralized probability
distribution tends to be closer to the true distribution, and the
decision conservatism decreases. In addition, it is seen from the
figure that the user-side gain decreases gradually with increase in
confidence level. When the confidence level is low, the gain obtained
by the DRCC model tends to be close to that of the SO model, and
when the confidence level is high, the results gradually converge to
those of the RO model. This is because, when the confidence level is
0, the uncertainty set includes only the empirical distribution such
that the DRCC model degenerates into the SO model. As the
confidence level increases, the uncertainty in the system

FIGURE 7
Optimization results for user-side resources under Scenario 4

FIGURE 8
Bidding results for user-side participation in the peaking market under Scenario 4.
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increases, which makes the model more robust and bidding strategy
on the user side more conservative, thereby decreasing the
corresponding gain and converging toward the RO model. The
SO-based approach assumes that the demand–response prediction
error obeys a given probability distribution in the fuzzy set of the
DRCC model, so the conservatism is low and the user-side gains are
higher. The RO-based approach considers the worst-case scenario in
the demand–response uncertainty set, resulting in overly
conservative RO decision results and lowest user-side gains. The
DRCC model in this work does not require a specific probability
distribution of the demand–response uncertainty variable and
considers all possible probability distribution information to
make an optimization decision based on the worst probability
distribution, such that the conservatism is between those of the
RO and SO approaches.

Table 5 shows the computation times of the RO, SO, and DRCC
models for different numbers of samples; the results show that as the
number of samples increases, the solution times of all three models
increase. The computation time of the DRCC model is within 15 s
and does not change drastically with a change in the number of
samples, indicating that the model has good computational
adaptability.

5.4 Analysis of the impact of model
parameters

The confidence level β in the DRCC model indicates the level of
confidence in the probability distribution of the uncertainty set, and
the risk factor ε indicates the level of risk that can be tolerated by the

opportunity constraints. Table 6 shows the effects of different
values of the confidence level β and risk factor ε on the user-side
gains. After data verification, when the confidence level increases,
the user-side returns decrease; when the risk factor increases, the
user-side returns increase. The results also show that the user-side
gain decreases with increases in the confidence level and risk
factor. This is because, as the confidence level increases and risk
factor decreases, the decision-maker’s risk appetite decreases, such
that more controllable flexibility resources are invoked to cope
with the demand–response uncertainty and the model robustness
improves the gain decrease. From the above analysis, it is noted
that the decision-maker can effectively balance the economy and
reliability of decision-making by flexibly adjusting the confidence
level and risk factor of the fuzzy uncertainty set. The policy
environment of the power market, such as the pricing policies
and market reforms, will also affect the selection and optimization
results of the parameters in the DRCC model. For example,
dynamic adjustment of the time-of-use tariff policy will directly
affect the consumption behaviors and costs of the power users,
thereby affecting the strategy choices of the users in the
DRCC model.

6 Conclusion

In the context of the electricity market, this work proposes a
joint bidding method for user-side resources to participate in both
the electrical energy and peaking auxiliary service markets; we
constructed a day-ahead market bidding decision model based on
risk expectation and distributional robust opportunity constraints in

FIGURE 9
Variation of user-side returns with confidence level and sample size.
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response to load uncertainties. The main conclusions of this study
based on numerical validation are as follows:

1) The user-side joint bidding strategy for participation in the
electrical energy and peaking auxiliary service markets based
on the distributional robust opportunity constraints
proposed herein can effectively cope with the bidding risk
caused by user-side resource uncertainty. The user side can
balance the economy and reliability of decision-making by
adjusting the confidence level and risk coefficient of the fuzzy
uncertainty set, which provides a high degree of flexibility.
This promotes optimal allocation of power resources in the
market and improves the overall energy efficiency; effective
management of the user-side resource uncertainty thus helps
reduce market volatility and promote long-term
market stability.

2) The DRCC model constructed herein by considering risk
expectation achieves better balance between robustness and
economy. Compared with the RO and SO models, the DRCC
model overcomes the problem of the RO model that is too
conservative and has better computational adaptability than the
SO model. The DRCC model reduces conservatism, avoids the
problem of over-conservatism, and improves the computational
adaptability. At the same time, in the power system, it enables
better dispatch of the power resources, balanced supply and
demand, reduction of the cost problem caused by uncertainty,
enhanced adaptability of the system to different situations, and
improved robustness of the entire system.

3) The present study focuses on the impacts of demand–response
load uncertainties on user-side revenue; however,
incorporating uncertainties regarding different types of
user-side resources into the user-side bidding decision
models will be the focus of subsequent research efforts. We
intend to handle the uncertainty of user-side resources
through SemBleu stick optimization and opportunity
constraints as well as address the problems thereof using
conditional risk-based approximation; we will also
incorporate the uncertainties of different types of user-side
resources into the user-side bidding decision model.
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