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In a fuel cell, flow channels are crucial components responsible for various
essential functions that enable the system to operate effectively. The design
of a directly coupled flow channel in a Proton Exchange Membrane Fuel Cell
(PEMFC) system, assuming deterministic parameters, has been extensively
studied. However, this deterministic approach neglects the inherent
uncertainties in system performance during real-life operation, resulting in
potentially unreliable and suboptimal performance. To address this issue, we
propose a reliability-based design optimization (RBDO) of the PEMFC’s channel
structure, considering uncertainties in operating parameters. This paper presents
a numerical model of the PEMFC in COMSOL, deterministic designs, reliability-
based designs and a global sensitivity analysis on the PEMFC cell’s potential
output and average water activity on the membrane. Although the RBDO
approach shows a reduction in cell efficiency compared to the deterministic
design, it significantly improves reliability, with increases from 60.92% to 95.10%
for cell potential and from 79.31% to 96.85% for water activity.

KEYWORDS

proton exchange membrane fuel cell, reliability-based design optimization, surrogate
model, sobol sensitivity analysis, flow channel

1 Introduction

Fuel cells are a type of alternative energy technology that generates electricity by
utilizing the reaction between hydrogen and oxygen. Because of their great efficiency in
comparison to conventional combustion engines and their negligible emissions, these
devices are particularly intriguing. The only waste products that they generate are heat and
water, however, several challenging issues stand in the way of the extensive implementation
of the PEMFC (Raj and Shamim, 2014; Hu et al., 2014). This calls for an improvement in
PEMFC performance. A significant number of scholars have been working to improve the
performance of PEMFCs throughout the last few decades. Two different approaches for
PEMFC optimization were suggested such as the operating situation and the geometric
structure of the device considering a single or multiple performance of the PEMFC.

Considering a single objective optimization (single performance), Peng et al. (2017)
suggested a deterministic optimization algorithm to find the best operating configuration
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for PEMFC that would maximize its power density using a support
vector machine surrogate model. Li et al. (2020) proposed an
optimization approach that pairs a genetic algorithm with a
three-dimensional, two-phase PEMFC model to optimize the
partially blocked channel design for a PEMFC with a parallel
flow field. The purpose of this study was to explore the impact
that a blocked channel design with an increasing height arrangement
has on the overall performance of the PEMFC as well as the local
distributions. Fathy et al. (2021) suggested a new maximum power
tracker configuration for PEMFC based on a proportional-integral-
derivative controller tuned using a recent metaheuristic method of
the salp swarm algorithm. Furthermore, they proposed a new
formulation for the constraint objective function of the error
between the fuel cell’s real input voltage and the voltage at
maximum power. Al-Baghdadi and Al-Janabi (2007) introduced
an algorithm that accurately computes local activation
overpotentials, leading to an improved prediction of the local
current density distribution. Wang et al. (2021) also offers a real-
time power optimization technique based on active temperature
control to maximize PEMFC output power under varying ambient
circumstances. They also develop an enhanced temperature perturb
and observe (P&O) system to consistently obtain maximum power
while maintaining an appropriate temperature reference.

Furthermore, in various responses to system performance
evaluations, researchers proposed a multi-objective optimization of
the PEMFC system. Such as, Li et al. (2021), developed a framework
for multi-objective optimization that can improve three PEMFC
performance indicators at the same time: power density, system
efficiency, and O2 distribution uniformity on the catalyst layer. A
multi-objective genetic algorithm was also proposed by Liu et al. (2017)
to optimize the operating conditions and channel structure of PEMFC.
Liu et al. (2023) also used NSGA-II to find the optimal three PEMFC
performance indicators: reactant flow uniformity, diffusion flux, and
ohmic resistance, while considering both operating and geometric
parameters. This study also developed a neural network as a
surrogate model to replace PEMFC’s numerical model in COMSOL.
Sohani et al. (2016) defined different optimization scenarios for a
PEMFC, considering efficiency, power density, the levelized cost,
and size as key performance criteria, and compared the optimum
results together. This study then employed a proposed approach to find
the best optimization scenario, considering the preferences for both
transportation and stationary applications. Wu and Luo, 2023
developed a gray correlation analysis and response surface approach
for a multi-objective PEMFC performance optimization design.
Optimization goals for this approach included current density,
oxygen distribution homogeneity, and system efficiency. Compared
to the basic model, the three-performance metrics improve significantly
with optimal operating conditions. Xu et al. (2024) also introduced a
comprehensive performance assessment of a high-power PEMFC
system that considers the diffusion of substances in the catalyst layer
under variable loading. They also proposed an NSGA-based strategy to
optimize the PEMFC system’s comprehensive performance.

Numerous researches also attempt to find an optimized channel
structure to improve the geometric structure. Such as, Manso et al.
(2011) investigated the performance of a PEMFC with a serpentine
flow field design to determine how the channel cross-section aspect
ratio, defined as the ratio of height to width, affects operation
(performance). Furthermore, the results demonstrate that a higher

channel cross-section aspect ratio leads to improved performance
capabilities. To improve the cell performance of a PEMFC, Perng et al.
(2009) also look into installing a transverse rectangular cylinder along
the gas diffusion layer in the flow channel. The PEMFC effectiveness
was investigated concerning the width of the cylinder and varying gap
sizes. In summary, all the above studies investigated different ways to
improve PEMFC’s performance in a deterministic manner without
considering the uncertainty effect of the operating parameters.
However, there were also a few studies conducted to examine the
effect of operational parameter uncertainty on PEMFC performance.

Kannan et al. (2020) investigated the impact of a wide variety of
input parameters, including electrochemical, physical, material,
operating, and design parameters, on the performance of the
PEMFC cell, as well as the management of water and thermal
energy in all three regions of PEMFC operation: the activation
loss region, the ohmic loss region, and the concentration loss region.
Mawardi and Pitchumani (2006) also described a way to simulate
how a fuel cell works when there is uncertainty, using a one-
dimensional, non-isothermal description of the physical processes
that control it. This study also created a sampling-based stochastic
model and showed a parametric analysis to show how uncertainty in
several operating parameters affects the fuel cell’s power density
variation. Zhu et al. (2023) proposed a model that integrates
Bayesian theory and the Gated Recurrent Unit (GRU) to
determine how the fuel cell voltage decay trend varies according
to operating parameter uncertainty. The results show that the
proposed uncertainty quantification prediction method can help
hydrogen energy devices to make better decisions. These studies
show that the operating parameter’s uncertainties of PEMFC have a
significant effect on the fuel cell’s performance.

This study suggests a reliability-based design optimization for the
PEMFC channel structure, considering the operating parameter’s
uncertainty. The cell potential is one of the most quantified effects
of PEMFC due to the variability of the input parameters. In addition,
this study considered investigating water management variability. As
known, PEMFCs are categorized as high-temperature and low-
temperature (LT) PEMFCs based on the membrane materials. In
the LT-PEMFC, the oxygen reduction reaction has the slowest
electrochemical kinetics. The LT-PEMFC’s cell voltage losses are
caused by the overpotential at the cathode as a result of the
sluggish reaction kinetics. A dual-phase water system is also
presented in the fuel cell while it is running at a lower temperature
and atmospheric pressure. This dual-phase water system must be
tightly controlled due to the membrane’s stringent humidification
needs, making water management complex. Flooding may also occur
at this stage. Therefore, in addition to the cell potential, this study
investigates the uncertain effect of operating parameters on the average
water activity at the membrane during LT-PEMFC operation.

First, we developed the numerical model of the serpentine flow
channel PEMFC in the COMSOLMulti-physics 6.1 version software
and validated it using an experimental case, and the RBDO
framework was developed. The primary contribution or novelty
in this study takes the following form: (i) Gaussian processing
regression (GPR) surrogate model is utilized to replace the
computationally expensive COMSOL’s numerical model of
PEMFC. This model could be used for each response, such as
cell potential, efficiency, and the average amount of water in the
membrane. (ii) Sobol’s global sensitivity analysis method is performed
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to identify and select the significant operating parameters. (iii) Using a
genetic algorithm (GA), the optimal settings of the design variables are
determined, and Monte Carlo simulations (MCS) are performed to
determine how the input uncertain parameters affect PEMFC
performance (cell potential and average water activity in the
membrane). Furthermore, employing the GPR surrogate model
will reduce the computational time while performing an MCS in
the reliability analysis. When compared to the deterministic
optimization, the proposed RBDO model shows more significant
improvements in the performance reliability of the PEMFC due to the
modification of the design variables.

The rest of the manuscript is also structured as follows: Section 2
discusses the numerical model in COMSOL, along with the
governing equation. In Section 3, the proposed methods,
including the surrogate model, sensitivity analysis, and RBDO
formulation, have been explained. The results are discussed in
Section 4, and finally, the conclusion is given in Section 5.

2 Materials and methods

2.1 Physical model

In this study, a three-dimensional geometry of a four-
serpentine channel PEMFC is built in COMSOL (Figure 1). The
geometric parameters are presented in Table 1. The model includes
seven components, i.e., cathode gas channel, anode gas channel,
gas catalytic layer, GDL, and proton exchange membrane. In the
anode catalytic layer, hydrogen is catalytically decomposed into
protons, which reach the cathode through the proton exchange
membrane. The electrons generated by hydrogen decomposition
go to the cathode through the load, which can generate
electric power.

2.2 Governing equations

The models are assessed using the Batteries and Fuel Cells
Module of COMSOL Multiphysics 6.1, and physical fields, such
as Secondary Current Distribution, and Transportation of
Concentrated Species, are used for the computational analysis.

First, the model introduces several simplification assumptions. 1)
All processes operate under steady-state conditions; 2) The gas
phase adheres to the ideal gas law; 3) Anisotropic electronic
conductivities are used in gas diffusion layers, which have
conductivities that are about an order of magnitude larger in the
in-plane (x and y) directions than in the through-plane (z); 4) We
assume a laminar and incompressible flows in the channels and
porous layers; 5) The solid-phase electronic potential andmembrane
ionic potential, respectively, control the transportation of electrons
and protons. The Governing equations of the model in Equations
1–16 are discussed as follows:

The convection and diffusion terms for the gaseous species in
the channels, gas diffusion layers, and catalyst layers are given as:

∇ · −Di∇Ci + ujCi( ) � Si, (1)

where S is a specific surface area (m−1), C is the molar concentration
(molm−3),D is diffusivity (m2S−1), u is velocity (ms−1), the subscript
i is a gaseous species, and j can be gas or liquid.

The diffusion coefficient of gaseous species in the diffusion layer
is expressed as:

D � Deff · ε( )1.5, (2)

where the subscript eff represents effective value, and ε represents a
gas pore volume fraction.

Momentum equation for the gaseous species in channels, gas
diffusion layers, and catalyst layers:

uj · ∇( )uj � F − 1
ρj
∇Pj +

μj
ρj
∇2uj, (3)

∇ · u � 0, (4)
where u is velocity (ms−1), P is a pressure (Pa), ρ denotes density
(kgm−3), F is Faraday’s constant (Cmol−1), μ is a dynamic
viscosity (Nsm−2).

A continuous function that is based on Darcy’s law is used to
compute the average velocity of phase j, which is given as follows:

∇ · ρj −κkr,j
μj

∇Pj
⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � Hj, (5)

uj � −κ
μ
∇Pj, (6)

FIGURE 1
PEMFC 3D model.
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whereH is a mass source term, κ represents gas permeability, kr is a
relative permeability.

Since there is no electrochemical reaction occurring in the gas
diffusion layers, the source term of the electronic current has been
set to zero, and it is expressed as:

−∇ −σs∇∅s( ) � 0, (7)
where ∅ is a cell potential (V), and σ is electronic
conductivity (Sm−1).

In the same way, the source term for the ionic current in PEMFC
is also zero, which is also given as follow:

−∇ −σ l∇∅l( ) � 0. (8)

The catalyst layer is the region in which the reaction takes place,
and the ionic balance and electron balance can be defined in the
following way:

−∇ −σ l,eff∇∅l( ) � −S · iloc, (9)

−∇ −σs,eff∇∅s( ) � S · iloc, (10)

where iloc is the local current density. According to the Bulter-
Volmer equation, the local current density by the porous electrode
reaction in the catalyst layer is defined as:

iloc � io exp αaF
η

RT
( ) − exp −αcF η

RT
( )( ), (11)

where i0 is exchange current density (A cm−2), αa and αc are anode
and cathode transfer coefficient, respectively, and R is a gas
constant (mol cm3 s−1 ).

MH2 ,in � MH2 +
AI

2F
, (12)

MO2 ,in � MO2 +
AI

4F
, (13)

whereA is the total active area of the MEA (cm2),M is the molar flow
rate (mol s−1). Hydrogen and oxygen consumption are represented by
the second termon the right side of Equations 12, 13, respectively. The

TABLE 1 List of the investigated parameters.

No Input
parameters

Input parameters name Mean
value

Remark

1 wplate Minimum plate width[m] 0.054

2 wrib Rib width [m] 9.48E-4

3 wch Channel width[m] 9.48E-4

4 Hgdl Gas diffusion layer (GDL) height [m] 2E-4

5 Hmem Membrane thickness [m] 10E-5

6 stoichH2 Hydrogen flow stoichiometry 1.2

7 stoichO2 Oxygen flow stoichiometry 2.5

8 RHan Inlet relative humidity in anode side [%] 0.70

9 RHca Inlet relative humidity in cathode side [%] 0.70

9 O2N2 Oxygen molar fraction in cathode compared
with nitrogen

0.21 N2O2 � 1 − O2N2

10 T Cell temperature [°c] 60

11 LCL Catalytic layer thickness [m] 1E-5

12 ioH2ref Reference exchange current density at
hydrogen oxidation [A/m2]

100

13 ioO2ref Reference exchange current density at
oxygen reduction [A/m2]

1E-4

14 aCL Specific area of catalytic layers[1/m] 5E7

15 sigmasGDL,IP Electric in-plane conductivity, gas diffusion
layer[S/m]

5,000

16 sigmasGDL,TP Electric thru-plane conductivity, gas
diffusion layer [S/m]

200

17 kappagGDL Gas permeability, gas diffusion layer [m2] 5E-12

18 alphaO2 Anodic transfer coefficient, oxygen
reduction

3

19 epssGDL Solid phase volume fraction, gas diffusion
layer

0.4 Gas phase volume fraction, gas diffusion layers (Macroscopic porosity
between agglomerates) (epsgGDL) � 1 − epssGDL
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hydrogen and oxygen molar flow rates that enter the channels are
defined by their respective stoichiometric ratios (λ).

MH2 ,in � λH2 +
AI

2F
, (14)

MO2 ,in � λO2 +
AI

4F
. (15)

In polymer electrolytes, there is an interconnection between
ion transport and water transport. Because of this intercoupling,
water content affects polymer electrolyte conductivity. When
modeling the water-ion-polymer system, the transport
equations for both ions and water molecules must also consider
the water-ion friction forces. COMSOL used Weber-Newman’s
(2004) concentrated solution theory to show how the three pairs of
water molecules, the charge-carrying ion, and the immobilized
polymer matrix talk to each other. The model uses the chemical
potential of water in the polymer μ0 (J/mol) as dependent
parameter, and then the polymer water flux, N0 (mol/(m2 · s))
is defined as:

N0 � −σ lξ
F
∇∅l + α + σ lξ

2

F2
( )∇μ0, (16)

where ξ is the electroosmotic coefficient and α (mol2/(J ·m · s)) is
the water transport coefficient, with the mass balance of ∇N0 � 0 in
the domain.

2.3 The study’s objective functions

2.3.1 Cell potential
The cell potential (voltage) can be conveyed as the difference

between the thermodynamically reversible cell voltage and the losses
caused by overpotential,

V � Voc + R 273 + T( )
2F

ln
PH2P

0.5
O2

PH2O
( ) − R 273 + T( )

1/2F
ln

I

i0PO2

( ) − Itm
σm

− βIk ln
I

IL − I
( ),

(17)
where R is a gas constant
(8.314 Jmol−1K−1 or 82.057 cm3 atmmol−1 K−1), T is temperature
(℃), F is Faraday’s constant (96, 487C equiv.−1) (Ang et al.,
2010), tm is membrane thickness (cm), σm is membrane
conductivity (Ω−1 cm−1). Voc represents the open-circuit
potential, βIk the amplification term for total mass transit
overpotential in potential units (Squadrito, et al., 1999), and
IL denotes the limiting current density. According to the Nernst
equation (Golbert and Lewin, 2004), the first two terms on the
right of Equation 17 reflect the thermodynamic reversible
voltage. The third term is the activation overpotential
(Nguyen and White, 1993), which is voltage loss owing to
electrode reactions. The activation overpotential is assumed to
be mostly at the cathode. The fourth term is the ohmic
overpotential (Nguyen and White, 1993), the voltage drop
caused by electrolyte proton resistance. Finally, the
concentration overpotential (Squadrito, et al., 1999) is the
mass transport limitation-induced voltage loss.

2.3.2 Water activity
The water activity on either side of the membrane is computed

by dividing the partial pressure by the corresponding saturation
vapor pressure, which depends on the cell’s temperature.

aH2O � xH2O × P

Pvap
, (18)

where xH2O is the water molar fraction in the gas phase, P is gas
pressure (Pa), and Pvap is the saturated vapor pressure (Pa). The
saturated vapor pressure values were obtained from the cell
temperature (T) and it is empirical relation is defined as (Buck, 1996):

Pvap � 0.61121 × exp 18.678 − T

234.5
( ) ×

T

257.14 + T
( ){ } (19)

2.3.3 System efficiency
Efficiency is one of the key characteristics of a fuel cell used to

evaluate its performance. The system efficiency is defined as follows:

ηsys �
W −Wprs

Wfuel
, (20)

where W represents the power output of the PEMFC, Wprs denotes
the parasitic power, andWfuel is represents the fuel inherent power.
They are expressed as follows:

W � wA, (21)
Where w is a power density, which can be expressed as:

w � iV, (22)

where i is the current density and V is the corresponding cell
potential (voltage) of the PEMFC.

Wprs � Wcomp +Wothers, (23)

where Wcomp is the power consumption of the compressor and are
other power losses. They are also expressed as:

Wcomp � cpTe

ηcηmt

P

Pin
( )0.286

− 1⎡⎣ ⎤⎦mair, (24)

mair � 3.57 × 10−7λciA, (25)
Wothers � 0.05 × W, (26)

where mair the mass flow rate of air (kg s−1), ηc compressor
connecting efficiency, ηmt motor efficiency, cp specific heat
constant of air (J K−1 kg−1), Te entry air temperature (K), λc the
stoichiometric ratio of the cathode,

The fuel inherent power (Wfuel) also express as:

Wfuel � λa
iA

2F
LHV, (27)

where λa is a stoichiometric ratio of anode, LHV Lower heating value of
hydrogen (2.4 × 105 J mol−1),F Faraday’s constant (96,487C equiv−1).

2.4 Proposed methods

The proposed methods involved four main procedures, as
shown in the flow chart of Figure 2. Initially, we created a
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numerical model for the serpentine PEMFC using COMSOL multi-
physics software. To confirm the accuracy of this model, we
conducted an actual experiment using the same variables. The
study’s main goal is to develop a reliability-based design
optimization model for the serpentine PEMFC flow channel,
considering the fuel cell’s efficiency as an objective function, cell
potential (voltage), and average water activity in the membrane as a
constraint function. We initially examined 17 uncertain variables to
identify the most significant ones for cell potential and water activity
and then employed the surrogate-based Sobol’s sensitivity method.
After selecting the significant uncertainty parameter for the
respective constraint functions, the study conducted reliability-
based design optimization using Monte Carlo simulation. The
next section discusses the theory behind the proposed methods.

A surrogate model is an estimation of a high-fidelity model that
is computationally accurate. Using a surrogate model, you can
estimate the response for a given input without needing to carry
out any additional experiments or run a high-fidelity simulation
model. In other words, it can be used to estimate the output for a
given set of inputs. It is also essential that the surrogate model be
computationally effective. Gaussian processes (Rasmussen, 2003;
Chen et al., 2023), neural network (Tripathy and Bilionis, 2018), and
support vector machines (Xiang et al., 2017) are some of the most
common approaches to developing a surrogate model. In this study,
a Gaussian Process Regression (GPR) was employed as a surrogate
model to replace the computationally expensive numerical model of
PEMFC in COMSOL. We also used GPR to determine the feasibility
of estimating the propagation of uncertain responses with different
sets of uncertain operating parameters.

GPR is a type of supervised machine learning technique that
requires only a few parameters to yield a prediction. A Gaussian
process is defined as an endless extension of the multivariate normal
distribution. The relationship between the input vector and the
output parameter can be expressed as:

y � f x( ) + ε (28)
where f(x) is the function representing the independent variable for
observation, ε represents the noise added to the observed variables.
The aim is to use the GPR framework to model an unknown
function f(x), by assuming that f(x) at any point x is a
Gaussian random variable N(μ, σ2), where μ and σ are two
constants independent of x. For any x, f(x) is a sample of
μ + ε(x), where, ε ~ N (0, σ2n). For any x, x′ ∈ Rd, ψ(x, x′), the
correlation between ε(x) and ε(x′), depends on x − x′ .
More precisely

ψ x, x′( ) � exp −∑d
k�1

θk xk − x′k
∣∣∣∣ ∣∣∣∣pk⎛⎝ ⎞⎠, (29)

where the hyper-parameter pk is in between 1≤pk ≤ 2 which is
related to the smoothness of f(x) to xk, in this study, we took p � 2
and the hyper-parameter θk should be above zero (0), which
indicates the importance of the input variable xk on f(x). To
estimate the hyper-parameters μ, σ and θ1,θ2, . . . , θk, let’s
consider a set of N-number of input points (x1, x1, . . . , xN) ∈ Rd,
and their responses will be y � [y1, y2, . . . , yN]T. So, the hyper-
parameters can be estimated by maximizing the likelihood function
that f(x) � yk at x � xk, which is given as:

FIGURE 2
RBDO flow chart.
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L y μ, σ2, θ
∣∣∣∣( ) � 1

2πσ2( )N/2 Ψ‖ ‖ 1 /

2
exp − y − μ1( )TΨ−1 y − μ1( )

2σ2
( ),

(30)
where Ψ ∈ RN×N is an N × N correlation matrix whose elements
depend on ψ(xi, xj ), and 1 is an N-dimensional column vector of
ones. To facilitate the hyper-parameter estimation by the method of
maximum likelihood estimation, we can formulate a log-likelihood
function as follows:

lnL y μ, σ2, θ
∣∣∣∣( ) � −N

2
ln 2π( ) − N

2
ln σ2( ) − 1

2
ln Ψ‖ ‖

− y − μ1( )TΨ−1 y − μ1( )
2σ2

(31)

Out of the three hyper-parameters, we can use analysis to find
the maximum likely values for μ and σ2 by having the first
derivatives of lnL with respect to μ and σ2 as follow:

∂ lnL
∂μ

� 00 μ̂ � 1TΨ−1yN

1TΨ−11
(32)

∂ lnL
∂σ2

� 00 σ̂2 � yN − 1μ̂( )TΨ−1 yN − 1μ̂( )
N

(33)

By substituting Equations 32, 33 into Equation 31, the likelihood
function becomes dependent only on hyper-parameter θ,. Therefore,
Equation 31 can be optimized to estimate θ. In this study, MATLAB
2022b global optimization toolbox has been used to optimize the
likelihood function.

We can now generate the prediction of y(x) at a new point x
given the maximal likelihood estimates of the hyper-parameters
(μ, σ2, θ). Let r represent the correlation vector between the new
point and the N data points, which is the ith element of
r � (ψ(x, x1), . . . ,ψ(x, xN))T. The optimal linear unbiased
estimator for y(x) can be expressed as:

ŷ x( ) � μ̂ + rTΨ−1 y − 1μ̂( ), (34)
and its mean square error can be obtained using the
following equation:

s2 � σ̂2 1 − rTΨ−1r + 1 − 1TΨ−1r( )2
1TΨ−1r

[ ]. (35)

Based on this, the GPR models can predict y(x) at new points
using the observed sample data.

To check that the approximation model is accurate/precise
enough, we use numerical measures of the root mean square
error (RMSE) and coefficient of determination (R2). Both the
RMSE and R2 values quantify the degree to which a regression
model accurately fits a given dataset. The RMSE quantifies a
regression model’s accuracy in predicting the value of a response
variable, measured in absolute terms. However, R2 measures the
extent to which the predictor variables can account for the variability
observed in the response variable.

The RMSE formulation is given as:

RMSE �
�����������
1
n
∑n
i�1

ŷ − yi( )2√
, (36)

where n is the number of sample points, y is the actual value, and ŷ is
the predicted one.

The formulation for the R2 is also expressed as follows:

R2 � 1 − ∑ ŷ − yi( )2∑ �y − yi( )2, (37)

where �y is the mean value of the observed data.
The impact of uncertain input parameters on the cell potential

and water content on the membrane is measured by Sobol’ indices.
Sobol global sensitivity analysis method is a variance-based
sensitivity metrics (Sobol, 1993; Bergamini et al., 2019), which
can be easily derived from the surrogate model that casts the
input-output relationship. The Sobol’ indices simply represents
the ratio of partial variances to the total variance of y. For
instance, the Sobol’ index due to the Sth-order interactive effect
of the input variables xi1, . . . , xis{ } is estimated as
Si1 ,...is�Vari1 ,...is/Var, the value of which is always between 0 and
1. With a higher Sobol’ index, the contribution of the associated
parameters to the variance of y becomes more important. In
particular, the first order, and total Sobol’ indices can be derived
from Equations 38, 39 respectively. The first-order effect can be
defined as

Si �
Varxi Ex\i y

∣∣∣∣xi( )( )
Var y( ) , (38)

where xi indicates the ith input parameter and x\i represents all
parameters except xi. While maintaining xi constant, the inner
expectation value indicates that we can compute the mean of y over
all potential values of x\i. Then, the outer variance is calculated over
all possible xi values. The first-order Sobol’ index Si measures the
influence due to the parameter xi alone, which reflects the marginal
effect of xi.

The total effect is also derived as:

ST,i � 1 − Varx\i Exi y
∣∣∣∣x\i( )( )

Var y( ) , (39)

The total Sobol’s index, ST,i, summarizes the overall contribution
of the input parameter, xi, by taking into account its marginal effect
as well as its interactive effects. It should be noted that the more ST,i
deviates from Si, the more preponderant the interaction effects
among parameters. The second component in the equation can
be seen as the first-order influence of all parameters, except the ith

parameter. Thus, subtracting the second term from one yields the
contribution of all terms related to xi.

2.5 Formulation of reliability-based design
optimization

When there are uncertainties, the design optimization problem
may involve both probabilistic and deterministic design criteria.
Probabilistic criteria are frequently incorporated as constraints to
limit the likelihood of failure. However, one can also employ them to
establish objectives, like minimizing the cost’s function or
maximizing the probability of achieving a specific value.

Given a set of optimization design variables d and a set of
random (uncertain) parameters X, the fundamental RBDO
formulation can be expressed as follows:
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minimize f d, μX( )
s.t.

P gi d, X( )≤ 0{ }≤Pi
f

hj d( ) � 0
dL ≤d≤dU (40)

where, μX represent the mean value of the uncertain (random)
parameters, hj is the jth equality deterministic constraints, gi(d,X)
represents the ith non-equality deterministic constraint functions. If
the constrain function gi(d,Xk) is less than 0 at the design pointXk,
the design pointXk would be a performance failure point in terms of
ith constraint of gi. Furthermore, P denotes the likelihood of failure,
thus Pi

f means the target likelihood of failure in the ith constraint.
The probability of failure, Pf, can be expressed as follows:

Pf � P g X1, X1, . . . , Xn( )≤ 0[ ]
� ∫∫ . . .∫fX1 ,X1 ,...,Xn x1, x2, . . . , xn( )dx1 dx2 . . . dxn,

g X1, X1, . . . , Xn( )≤ 0 (41)
where (x1, x2, . . . , xn) are the uncertain (random) parameters and
fX1 ,X1 ,...,Xn(x1, x2, . . . , xn) is the joint probability density function.
Typically, it is not possible to obtain the analytical solution of
Equation 41. Various numerical methods, including Monte Carlo
simulation (MCS), importance sampling, and subset simulations,
have been developed to calculate the probability of failure. However,
this study has adapted the most well-known method, MCS, to
determine the failure probability.

The MCS approach provides for the estimation of the
probability of failure, which is provided by:

�pf � 1
N
∑N
i�1
I X1, X1, . . . , Xn( ), (42)

where I(X1, X1, . . . , Xn) is a function defined by

I X1, X1, . . . , Xn( ) � 1 if g X1, X1, . . . , Xn( )≤ 0
0 if g X1, X1, . . . , Xn( )> 0{ (43)

According to Equation 41, N independent sets of values
X1, X1, . . . , Xn are obtained by the probability distribution for

each random variable and the failure function is calculated for
each sample. Using MCS, an estimated probability of the failure
is obtained by N-independent sets of values, X1, X1, . . . , Xn are
derived from the probability distribution of each random variable in
accordance with Equation 41, and the failure function is calculated
for each sample. An estimation of the failure probability is produced
by using MCS.

�pf � Nf

N
, (44)

where Nf is the total number of cases where failure has occurred.

3 Results and discussion

3.1 Numerical model

The numerical model of the PEMFCwas developed in COMSOL
6.1 Multiphysics software, Figure 3 shows a 54 × 54mm2 three-
channel with four repeating units serpentine flow channels type. It is
demonstrated that the fuel cell MEA is positioned in a sandwich
configuration between two gas diffusion layers, as well as the
serpentine flow channels for hydrogen and oxygen. Both the air
side and the hydrogen side are placed lower than the MEA. The air
side is located above the MEA. In this study, the current distribution
in an LT-PEMFC is investigated for serpentine flow field patterns.
This is accomplished by operating the cell in counter-flow mode,
which ensures that the oxygen and hydrogen inlet flow streams are
situated on opposite sides of the cell relative to the membrane’s in-
plane direction, as depicted in Figures 3A, B also shows the bipolar
palate used for the simulation and testing.

This model solves for the electrode and electrolyte phase
potentials in the gas diffusion layers and the membrane,
furthermore, it solves for the molar fractions, the gas pressure and
the flow velocity on each side of themembrane. In addition, themodel
incorporates the permeability and electroosmotic drag mechanisms
that are responsible for the transport of water through the membrane.
We ran a single simulation to demonstrate the numerical model result
based on the initial operating parameter value shown in Table 1.

FIGURE 3
(A) PEMFC 3D Model; (B) Bipolar plate used in PEMFC stack.
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3.1.1 Boundary conditions
The gas flow channel inlet boundary conditions are set to mass-

flow rate at the anode and cathode inlets, as indicated in Figure 3,
and the inlet mass flow rate is determined using Equations 14, 15.
The pressures at the anode and cathode outlets have been set to the
operating pressure. In the case of the other variables, the gradients
are required to be zero. It is also assumed that all of the outer walls
are non-slip walls with zero fluxes.

In addition, as shown in Table 1, we set the cell temperature as
60 °C, with the relative humidities of the hydrogen and air inlet
streams humidified at 40% and 60%, respectively. We also set the
molar flow rates of hydrogen and oxygen proportionate to the total
current, with a 20% excess of hydrogen and a 150% excess of oxygen.
This resulted in a stoichiometry for the flow of hydrogen that was
1.2 and a stoichiometry for the flow of oxygen that was 2.5. In
addition to the operational parameters that are shown in Table 1, the
boundary conditions and operating conditions of the model are
summarized in Table 2.

3.1.2 Mesh independency study
Firstly, we conducted a convergence study to assess the mesh

independence of the developed numerical model. We examined five
different mesh element size models with an operating current

density of 0.6 A/cm2. The number of mesh elements employed
was 66,685, 184,754, 231,472, 324,857, and 414,841, as depicted in
Figure 4. As the result shows, the cell potential (voltage) values do
not show a significant change between 324,857 and 414,841 mesh
elements, so this study used 324,857 mesh elements for the
simulation. The computational time for a single simulation

TABLE 2 Summary of the boundary and operating conditions.

Description
Expression

Hydrogen molar flow rate MH2 ,in � λH2 + AI
2F

Oxygen molar flow rate Mo2 ,in � λO2 + AI
4F

Vapor pressure Pvap � 0.61121 × exp (18.678 − T
234.5) × ( T

257.14+T){ }
Vapor molar fraction in anode flow stream xH2O,an � (RHan × Pvap)/1 [atm]

Vapor molar fraction in cathode flow stream xH2O,ca � (RHca × Pvap)/1 [atm]

Hydrogen molar fraction in anode flow stream xH2 ,an � 1 − xH2O,an

Oxygen molar fraction in cathode flow stream xO2 ,ca � O2N2 × (1 − xH2O,ca)

Nitrogen molar fraction in cathode flow stream xN2 ,ca � 1 − xO2 ,ca − xH2O,ca

Vapor molar flow rate, anode side MH2O,an � MH2 ,in × xH2O,an/xH2

Vapor molar flow rate, cathode side MH2O,an � MO2 ,in × xH2O,ca × xO2 ,ca

Nitrogen molar flow rate MN2 � MO2 ,in × xN2 ,ca × xO2 ,ca

Hydrogen mass flow rate mH2 � MH2 × 2[g/mol]

Vapor mass flow rate, anode side mH2O,an � MH2O,an × 18[g/mol]

Vapor mass flow rate, cathode side mH2O,ca � MH2O,an × 18[g/mol]

Nitrogen mass flow rate mN2 � MN2 × 28[g/mol]

Oxygen mass flow rate mO2 � MO2 × 32[g/mol]

Anode total mass flow rate mtotal,an � mH2O,an +mH2

Cathode total mass flow rate mtotal,ca � mO2 +mN2 +mH2O,ca

Water mass fraction in anode flow stream ωH2O,an � mH2O,an/mtotal,an

Water mass fraction in cathode flow stream ωH2O,ca � ωH2O,ca/mtotal,ca

Nitrogen mass fraction in cathode flow stream ωN2 � mN2 /mtotal,ca

FIGURE 4
Mesh independency study of the numerical model.
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requires about 4 min on an AMD Ryzen Threadripper 1950X 16-
Core Processor with 3.40 GHz and 64.0 GB of RAM.

3.1.3 Numerical model result discussion
Figure 5A shows the contour plot of water activity across the

membrane while giving a 0.6 A/cm2 current density. As
demonstrated, the water activity rises as it approaches the
outflow. On the oxygen side, the increased water activity is a
direct result of the water that is being created within the cell.
Hydrogen depletion is the primary factor contributing to the
increase in water activity on the hydrogen side. The contour plot
of Figure 5A also shows that certain regions exhibit a water activity
(relative humidity) value greater than one, which indicates the
existence of condensation on the membrane. The membrane
water flux in the z-direction is also shown in Figure 5B, As was
seen, the flux is positive near the oxygen intake and the hydrogen
outlet. This is because the hydrogen side is more humidified than the
oxygen side, which indicates that water is carried from the hydrogen
side to the oxygen side. When the oxygen input and hydrogen outlet
are located near one another, the water is carried across the
membrane in the negative z-direction.

3.1.4 Model validation
We performed three operating conditions under different

temperatures and compared the numerical simulation results
with the experimental data under the same working conditions.
We evaluated the model for an initial case corresponding to a stack
with a MEA total active area of 54 × 54mm2 and an operating
temperature of 50℃, 60℃, and 70℃. As the initial geometry and
operating parameters in Table 1 show, we employed both hydrogen
and air at a relative humidity of 60%. The hydrogen stoichiometric
ratio is 1.25 (80% hydrogen utilization rate), whereas the air
stoichiometric ratio is 2.

Figure 6 displays the effects of current density for both
experimental and numerical results on the polarization and
power density curves. The polarization curve, a widely used
performance indicator for fuel cell systems, has a direct
relationship between system efficiency and current density. As

the current density goes up, the voltage and efficiency go down
because of the irreversible effects of activation, ohmic, and
concentration overpotentials. On the other hand, the power
density reaches a maximum at a specific current density value
and rises with increasing current density. Overall, we observe
that the simulation results under three different working
conditions are all in good agreement with the experimental data.
Given that the error falls within an acceptable range, the model
appears feasible in this case, leading to the use of a numerical model
for this study.

3.2 Sensitivity analysis

To investigate the uncertain effect and to choose the most
significant noise (random) parameters for cell potential and
average water activity at the membrane, first we developed a
GPR model for each response. To train the model
100 simulations were conducted by applying a Latin hypercubic
sampling method (Johnson et al., 1990). For testing 30 simulations
were also conducted by generating a random sample dataset. The
GPR model was developed for both cell potential and water activity.
We calculated the R2 and RMSE values to assess the accuracy of the
model. The results showed that the cell potential model had an R2 of
0.9909 and an RMSE of 0.0045, while the average water activity at
the membrane model had an R2 of 0.9896 and an RMSE of 0.0134.
Figure 7 displays the Actual vs. Prediction plot, which demonstrates
a perfect match between the predicted and actual values of both cell
potential and water activity. In addition, when we use the numerical
simulation, the computing time for a single simulation takes
approximately 4 min to yield the cell potential and water activity
results. However, the GBR model will return the result in 0.001 s for
a single run.

As discussed in Section 3, for sensitivity analysis, the study
applied the Sobol method, which is one of the global variance-based
sensitivity analysis methods. Figure 8 also displays the computed
Sobol indices, demonstrating that parameters such as cell
temperature (T), exchange current density at reference oxygen

FIGURE 5
Water activities: (A) water activity (relative humidity) in the membrane; (B) water flux in the z-direction of the membrane.
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reduction (ioO2ref), specific area, catalytic layers (aCL), and the
oxygen molar fraction in the cathode relative to nitrogen (O2N2),
significantly influence cell potential. Cell temperature (T), hydrogen
flow stoichiometry (stoichH2), oxygen flow stoichiometry (stoichO2),
inlet relative humidity at the anode side (RHan), and inlet relative
humidity at the cathode side (RHca) also significantly influence the
water content at the membrane.

3.3 Deterministic optimization

Deterministic optimization has been carried out after the
selection of the most significant random (uncertain) variables for
the respective target responses. The mean operating parameters are
applied in addition to the design variables in deterministic
optimization. The PEMFC’s channel structure is then optimized

using a multi-objective optimization technique. Genetic algorithms
and numerical simulation are combined in the multi-objective
optimization method. The height of the channel hch, the width of
the channel wch, and the width of the ribs wrib are chosen to be
variables of the optimization process. Additionally, the objective is to
maximize cell potential output and efficiency while minimizing the
average water activity at the membrane. The multi-objective
optimization is described by the following mathematical model.

min
s.t

−Ecell,−η,Wa[ ]
dL ≤d≤ dU (45)

where Ecell is cell potential, η is efficiency, Wa is the average water
activity at the membrane, and d is the design variables. The range of
the design variables is also given in Table 3.

FIGURE 6
Comparison of simulation and experimental results for polarization and power density curves at three operating temperatures.

FIGURE 7
Actual vs. Prediction result comparison: (A) cell potential; (B) water activity at the membrane.
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Based on the selected random and design variables the surrogate
model has been developed for each objective function which is cell
potential, average water activity at the membrane and efficiency.
Firstly, we developed the GPR surrogate mode for each objective
function by generating 100 training sample datasets using the hyper-
Latin cube sampling method. Additionally, we generated 30 random
datasets for model testing. Figure 9 shows the actual and prediction
correlation plots for the testing dataset, along with the R2 value,
demonstrating the accurate fitting of all three surrogate models.

As shown in Equation 45, the goal is to maximize cell potential
output and efficiency while minimizing the average water activity at
the membrane. In this investigation, we employed the multi-
objective genetic algorithm to determine the Pareto front among
the three objective functions. In this study, we utilize the Pareto
fraction and the distance function to regulate the elitism of the

genetic algorithm. By giving preference to candidates which are
placed relatively far away from the front, the Pareto fraction option
and the distance function both help to preserve variety on the front.
This is accomplished by giving preference to candidates which are
located at a distance. The Pareto fraction option places a limit on the

FIGURE 8
Sensitivity analysis with Sobol indices: (A) cell potential; (B) water activity.

TABLE 3 Design variables information.

No Input
parameters

Description Initial lb ub

1 wrib Rib width [mm] 0.948 0.4 1.5

2 wch Channel width [mm] 0.948 0.4 1.5

3 Hch Channel
height [mm]

0.948 0.4 1.5
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number of candidates which are located on the Pareto front. In this
study, we used a population size of 500 individuals, a Pareto
percentage of 0.3 (which is thirty percent of the population size)
and applied to 100 generations.

Several multiple-criteria decision-making methods have been
suggested for different fields to find the best combination to
choose from the Parato front result. Such as the analytical
hierarchy process (AHP), the technique for order of preference by
similarity to the ideal solution (TOPSIS), and the multi-level linguistic
decision-making methodology (multi-level LDM). Various studies
have also compared these methods from different perspectives (Kolios
et al., 2016). This specific study employs the TOPSIS method, which is
a widely used methodology in numerous fields that offers faster
computational time compared to other methods (Tzeng and
Huang, 2011). For the same weight the result shows that,
compared to the initial (mean value), the efficiency and cell
potential have increased from 0.5510 to 0.5796 and from 0.7273 to
0.7572 V, respectively. Additionally, the average water content at the
membrane has decreased from 1.3416 to 1.2872. Table 4 also
summarizes the TOPSIS result for different weight of weights of
efficiency, cell potential, and average water activity at the membrane.

3.4 Reliability-based design optimization

Following the completion of the sensitivity analysis and
deterministic optimization, we performed the RBDO by utilizing
the significant random variables for each constraint function. Here
we also employed the same surrogate model from the deterministic

optimization. The study’s RBDO formulation is also given
as follows:

minimize − f d, μX( )
s.t.

P GWa d,X( )≤GWa d, μX( ){ }≤PWa
f ,

X � T, ioO2ref, aCL, O2/N2[ ]P GEcell
d, X( ){

≥GEcell
d, μX( )}≤PEcell

f ,

X � T, stoichH2, stoichO2, RHan, RHca[ ]
dL ≤d≤ dU

X ~ N μX, COV
2( ) (46)

where d denotes the design variable, X is the respective chosen
random parameter, μX is the mean value of the random parameters,
f is the objective function (system efficiency), Gwc the average water
activity function, Gcp cell potential function, PWa

f and PEcell
f target

probability for average water activity and cell potential, respectively.
Each constraint function’s feasibility region, or limit state, is also
determined at each iteration. For instance, the cell potential’s limit
state( GEcell(d, μX)) is obtained from the design variables d and the
mean value of the random parameters μX; the failure state occurs
when it falls less than the limit, while the average water activity’s
failure value occurs when it falls above the determined limit value.
The study also sets the PWa

f and PEcell
f to 0.05 to target a probability

above 95% reliability for both average water activity at the
membrane and cell potential. Table 5 also shows the random
(uncertain) parameter values, assuming a normal distribution
with a covariance of 0.05 for all random operating parameters.

FIGURE 9
Actual vs. Predicted correlation for the selected parameters: (A) Cell potential; (B) Efficiency; (C) Water activity.

TABLE 4 TOPSIS results at different weights.

Scenario Weights TOPSIS results

System
efficiency

Cell
potential

Average water
activity

System
efficiency

Cell
potential

Average water
activity

1 0.333 0.333 0.333 −0.5796 −0.7572 1.2872

2 0.5 0.25 0.25 −0.5891 −0.7597 1.3429

3 0.25 0.5 0.25 −0.5803 −0.7594 1.3224

4 0.25 0.25 0.5 −0.5767 −0.7574 1.2868
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To determine the reliability index for the average water activity
in the membrane and the cell potential constraint, we used an MCS
method, which involves generating 10,000 samples based on their
distribution. For the objective function optimization, the study
applied a genetic algorithm. In this investigation, we employed a
maximum of 200 generations, a population size of 100, and a
function tolerance of 1e−6. Figure 10 depicts the evolution of the
fitness value for the objective function (system efficiency) across

generations until the genetic algorithm converges to the optimal
value. As the result shows, the optimization ends before reaching the
specified maximum number of generations. This demonstrates that
the specified maximum number of generations is adequate.

Table 6 also summarizes the results for the deterministic and
reliable optimal design variable, while Table 7 compares the optimal
results of the deterministic optimization and RBDO with the initial
values. The result demonstrates that the deterministic optimization
yields higher efficiency, however, the reliability for cell potential is
60.92% and 79.31% for water activity at the membrane. The optimal
system efficiency values obtained by RBDO are less than those
obtained by DO; However, the reliability for cell potential is 95.01%
and for water activity at the membrane is 96.85%, which is higher
than the deterministic or the initial values. This suggests that the
proposed RBDO provides a more reliable and robust design of the
serpentine flow channel cross-section.

Figure 11 also shows the histograms of constraints (cell
potentials and water activities) to show that the RBDO procedure
determines a feasible, reliable design. As shown in the figure, the safe
regions of the constraints are denoted by dashed black lines and an
arrow, which represent the areas where the design is feasible due to
the constraints being met. The histograms also demonstrate that the
RBDO approach successfully preserves the system’s level of
reliability despite randomness (uncertainty), which may occur at
any point in the system’s operation.

TABLE 5 Information on the significant uncertain variables.

No Input parameters Description Mean value COV Distribution

1 stoichH2 Hydrogen flow stoichiometry 1.2 0.05 Normal

2 stoichO2 Oxygen flow stoichiometry 2.5 0.05 Normal

3 RHan Inlet relative humidity at anode side [%] 0.60 0.05 Normal

4 RHca Inlet relative humidity at cathode side [%] 0.60 0.05 Normal

5 O2/N2 Oxygen molar fraction in cathode compared with nitrogen 0.21 0.05 Normal

6 T Cell temperature [℃] 60 0.05 Normal

7 ioO2ref Reference exchange current density at oxygen reduction [A/m2] 1e-4 0.05 Normal

8 aCL Specific area at catalytic layers[1/m] 5e7 0.05 Normal

FIGURE 10
History of the generation of the best fitness value.

TABLE 6 Optimal design variable results.

Method Ribs width [mm] Channel width [mm] Channel height [mm]

DO 0.715 0.707 0.978

RBDO 0.733 0.721 0.923

TABLE 7 Result comparison.

Efficiency [%] Cell potential [V] Water activity Reliability

Cell potential (%) Water activity

Mean (Initial) 0.5510 0.7273 1.3416 57.90 69.10%

DO 0.5796 0.7572 1.2872 79.31 60.92%

RBDO 0.5773 0.7485 1.3222 95.10 96.85%
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4 Conclusion

RBDO of the PEMFC was performed by applying an
uncertainty model to enhance the performance efficiency. It was
assumed that uncertainty models of the operating parameters for
the cell potential and average water activity in the membrane
calculation are statistical models with normal distributions. First,
we developed a numerical PEMFCmodel in COMOSL, followed by
a surrogate model to replace the computationally expensive model.
The GBR model demonstrates an efficient technique to solve the
problems of performance nonlinearity and relatively high
computing costs using numerical simulations, which
demonstrate that with the GBR model, the computation time
has been reduced from 4 min to 0.001 s. Then, a sensitivity
analysis was conducted to identify and select the most
significant operating parameters for the cell potential and
average water activity at the membrane responses. MCS was
executed to calculate the probability of failure of cell potential
and average water activity in the membrane. In addition, the GPR
model was adopted to determine the efficient performance levels of
MCS and RBDO.We also utilize the genetic algorithm to exploit its
advantages in the global optimization search process, making it
particularly well-suited for the optimization problem of PEMFC.

The result of RBDO for the PEMFC system efficiency was
compared with the result of deterministic optimization and the
initial design variables. Based on the result, RBDO serves as a good
alternative approach for nonlinear and uncertain design problems
like PEMFC design optimization. Moreover, RBDO can improve the
results of the initial channel cross-section and make up for the weak
points of deterministic optimization by considering the uncertainty
property of the serpentine PEMCF channel cross-section design.
The results show that the deterministic optimization yields higher
efficiency; however, the reliability for cell potential is 60.92% and
79.31% for water activity at the membrane. The RBDO gives us a cell
potential reliability of 95.01% and an average water activity at the
membrane of 96.85%, which is better than the initial or deterministic
values. As a result, RBDO with an uncertainty model can be a useful
and practical technique for obtaining a reliable and robust PEMFC
design. This method can also be used to investigate and design
reliability for any other fuel cell type by choosing the appropriate

objective functions (parameters). Further, in this study, water
management and cell potential were considered as objective
functions (parameters), but other parameters also need to be
considered when designing PEMFCs, so a future study can be
conducted to implement this study’s proposed method
considering other parameters, such as oxygen concentration in
the catalytic layer and pressure drop in the channel.
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