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A matching method based on a hybrid neural network is proposed to improve
the accuracy of online matching for a power grid fault handling plan. First, the
ERNIE 3.0 encoding and double-pointer decoding module are used to replace
the generative model in the universal information extraction (UIE) framework,
and the mapping relationship between entities and entity labels of the fault
handling plan is trained by adjusting the hyperparameters of the UIE framework.
Then, the semantic distance between the fault equipment, fault type, fault
phenomenon, and the entity of the fault handling plan is calculated based on
the residual vector-embedding vector-encoded vector (RE2). The hybrid neural
networkmodel for power grid fault handling planmatching is established. Finally,
by verifying the fault-related data of a regional power grid, the proposed fault
handling plan matching method shows higher matching accuracy and stronger
generalization ability than other algorithms. The average precision rate, recall
rate, and F1 value of the built fault handling plan matching model are 97.61%,
98.24%, and 97.91%, respectively, which can support auxiliary decisions for timely
and rapid treatment of power grid faults.

KEYWORDS

power grid fault handling plan, universal information extraction framework, residual
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1 Introduction

The operation characteristics and control mode of new power systems are highly
complex, the number of monitoring objects is growing geometrically, and the high
discreteness and uncertainty put forward higher requirements for fault handling (Guo et al.,
2021; Mingjie et al., 2020; Junbo et al., 2023). A power grid fault handling plan is needed
to deal with emergencies and abnormal faults. Such a plan can provide workers with an
emergency fault handling and recovery strategy. At present, the fault handling plan of the
power grid exists in the form of unstructured text, which mainly relies on manual searching
and matching when applying the fault handling plan. Because the power grid fault handling
plan has not been computerized and objectified, it is difficult to correlate and map with
the real-time model and operation information of the power grid, meaning that current
plans cannot be directly used to assist decision-making in fault handling (Jianming et al.,
2020; Huaiwei et al., 2022; Wang et al., 2021a). Therefore, it is urgent to study the electronic
and online matching methods of power grid fault handling plans to improve the online
application and response capabilities of power grid fault handling plans.
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Named entity recognition and text similarity calculation are keys
to matching (Kai et al., 2023; Jiang et al., 2021). Traditional named
entity recognition and text similarity calculations mostly adopt
rules, statistics, machine learning, and other modeling methods.
Wei et al. (2023) use the bidirectional encoder representations from
transformers (BERT)-whitening linear transformation method to
optimize the sentence vector of the BERT and use the multi-view
recurrent neural network to perform two-way interactive calculation
of the BERT dynamic word vector at different positions of the two
sentences. Zheng et al. (2021) improve the model structure of a
lexical semantic feature-based skip convolutional neural network,
apply it to matching dispatching texts and knowledge graph entities,
and reach a high level of overall accuracy of entity linking. Shao et al.
(2020) implement the dependency-syntax-tree construction of
actual defect texts and standard defect classification texts from
power equipment and propose a method of pruning, segmentation,
and reconstruction of the power equipment dependency syntax tree
using the characteristics of the defect text. Their proposed method
has improved efficiency and accuracy.

Rule-based recognition methods must manually define many
recognition dictionaries and extract templates. When the text
changes, any rules that require time to compile will also fail, resulting
in high labor costs, low flexibility, poor generalization ability, and
other problems. The entity recognition and text similarity matching
methods based on statistics and machine learning make it difficult
to identify the complex and changeable semantic features of the fault
handling plans due to the simple structure of the algorithm and the
limited samples. Huang et al. (2024) propose a fast and effective
lightweight method based on a text clustering topic model, which
does not rely on external background knowledge and can match
the similarity of general texts. Although it avoids the limitations
of specific fields in general application scenarios, it is limited to a
single English text, which does not prove the feasibility of complex
and changeable multi-language scenarios. Wang et al. (2021b) solve
certain statistical inference problems and study pre-given domain
knowledge to improve the accuracy of entity relation extraction
in unstructured text. However, a high-performance and scalable
learning inference engine has not been introduced, and the method
cannot support the fast operation of more machine learning and
even deep learning algorithms.

Compared with rules and machine learning methods, deep
learning can understand the interdependence between language
sequences at a deeper level and better represent the relationship
between key features and various event elements. Dong et al. (2023)
propose a knowledge graph construction method for the intelligent
retrieval of power grid dispatching and control information and
verify that the proposed method has high recognition accuracy
and can support intelligent retrieval of regulatory information
in different scenarios. Jun et al. (2023) propose a semantic
analysis model of power equipment text based on a super
large-scale pre-training method (Power BERT), adopt the multi-
head attention mechanism and multi-layer embedded semantic
expression structure, and implement understanding and analysis
of the information contained in the power text. Tian et al. (2020)
propose a method for analyzing power grid equipment defects
based on a BERT pre-trained language model and classify the
fault locations of power grid equipment. Zhang and Degen (2021)
propose an event trigger word extraction model based on the

fusion of the event argument attention and encoder layers that
can effectively use the event element information and improve the
performance of trigger extraction.

With the development of deep learning and high-performance
computing technology, natural language processing (NLP)
technology has made a qualitative leap, and gratifying progress has
beenmade in named entity recognition and text similaritymatching.
On named entity recognition, Yu et al. (2020) use a word2vec
model to transform scheduling procedures into word vectors and
use attention-based bidirectional long short-term memory and
conditional random field (BiLSTM-CRF) to identify operating
rules and entity knowledge of fault handling process, supporting
the construction of a power grid fault handling knowledge base.
Tong et al. (2020) use a Skip-gram model to achieve vector-
quantization of power scheduling text, realize pattern clustering
and semantic understanding of power statements based on a
hierarchical clustering algorithm, and use regular expressions to
identify important information in power outage plan text. Chen et al.
(2021) propose a Power BERT pre-training model based on a
training power corpus that converted transformer defect text into
a word vector and established an entity recognition model based
on BiLSTM-CRF to improve the entity recognition accuracy of
transformer defect text. In text similarity matching, Yang et al.
(2022) construct a text-matching algorithm based on convolutional
neural network (CNN) and LSTM models by using the improved
BERT pre-training language model to match similar fault cases,
and the matching accuracy is higher. Bao et al. (2022) compare the
application of the term frequency-inverse document frequency
(TF-IDF) algorithm and best matching 25 (BM25) algorithm
in the recommendation system, verify the superiority of the
BM25 algorithm, and propose an improvement plan for semantic
generalization that has certain guiding significance for matching.
Jianming et al. (2022) propose a power grid scheduling intent
recognition method based on the fusion model of ALBERT and
RE2 and realized scheduling intent classification through RE2 text
similarity calculation. Bo et al. (2020) combine the characteristics
of a power system, build a fault processing knowledge graph based
on NLP technology, and carry out power grid fault disposal through
online retrieval andmatching. Based on the visual feature-enhanced
long short-term memory model, Wenxuan et al. (2022) realize the
automatic matching of fault phenomenon and power dispatching
fault handling plan, which improves the fault handling response to
a certain extent.

Research on power grid fault handling plan matching is scant.
Due to the large differences in the text of fault handling plans in
various fields and the large number of characters, the current studies
do not extract key features in advance but directly use the text for
matching, which greatly affects the matching time and accuracy
between power grid fault events and a large number of plans.
Therefore, this article first extracts the key features of the power
grid fault handling plan, calculates the semantic similarity between
the key features of the plan and the fault events, and improves the
matching accuracy.

To realize the objectification and online intelligent matching
of the fault handling plan, a matching method based on a hybrid
neural network is proposed. First, based on a universal information
extraction (UIE) framework, the entity recognition model of a
power grid fault handling plan is constructed, and the plan is
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FIGURE 1
UIE framework architecture.

digitized and objectified. The semantic distance between fault event
features and plan entities is then calculated based on the residual
vector-embedding vector-encoded vector (RE2), leading to the
construction of a hybrid neural networkmodel formatching. Finally,
it is verified using the fault-related data of a regional power grid.

2 Basic theory

2.1 Universal information extraction
framework

The UIE framework models the information extraction task
as a text-to-structure transformation (Lu et al., 2022). It can
identify and structure specific information from unstructured text.
The UIE framework uses structural extraction language (SEL)
and encodes the extraction structure of different tasks into a
unified representation, identifying the extraction target adaptively
through structural schema instructor (SSI) based on the prompt
mechanism. Based on the domain knowledge and terminology
characteristics of power grid dispatching, the structural schema
instructor captures the structural characteristics of specific fault
entities. It determines the boundaries and categories of entities by
analyzing their context information. It can automatically identify the
entity of the dispatching object in the power grid fault disposal plan
and assign the corresponding category label to the entity. Then, it
aligns the input and output of the prediction model and obtains text
features through a large-scale pre-training model that is combined
with a double-pointer decoding module for information extraction.
The overall architecture of the UIE framework is shown in Figure 1.

The structural schema instructor is designed as follows: First,
the entity types in the fault disposal plan are determined, such
as fault type, equipment name, processing principles, etc., and the

patterns for different types of entities are designed, such as common
description words and patterns for fault types. Then, the context
in which the entity appears is considered, the context window is
built, and the associated vocabulary of the entity is analyzed. Finally,
the domain knowledge base (such as the processing manual) is
integrated with the pattern guide to provide additional background
information, and the designed pattern is iteratively optimized to
adjust the design and improve the accuracy.

The double-pointer decoding module initializes two pointers.
The starting pointer moves backward from the first word of the
text and evaluates the possibility of each position as the starting
position of the entity. The termination pointer moves forward from
the last word of the text, evaluating the likelihood of each position
as an entity termination position. The joint score is calculated by
combining the context information, and the start and end positions
with the highest scores are selected as the prediction results of the
entity boundary.

UIE takes the defined structure extraction pattern and
text sequence as input to generate a linearized output,
as shown in Equation 1.

y = UIE(s⊕ x). (1)

In the formula, s represents the defined structure extraction
mode, x represents the input text, y represents the extracted
and generated structured result, and ⊕ represents the
connection symbol (Tong et al., 2020).

The overall input of UIE is shown in Equation 2.

s⊕ x = [s1, s2, ..., s|s|,x1,x2, ...,x|x|], (2)

where s|s| represents the component of the |s|-th structure
extraction pattern and x|x| represents the specific content of the |x|-th
text sequence.
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After expanding the above content, the final input result of the
model is shown in Equation 3.

s⊕ x = [[spot], ..., [spot], [text],x1,x2, ...,x|x|], (3)

where [spot] is the entity identifier of different categories and
[text] indicates the text content to be added.

The UIE framework adopts a discriminative extraction model
and takes the ERNIE 3.0 pre-training model as an encoder. The
model learns the lexical, syntactic, and semantic information of the
language by setting various pre-training tasks. Figure 1 shows the
ERNIE 3.0 encoding layer, which consists of two layers of network
structure.The lower layer is a general representationmodule that can
capture the underlying basic features of natural language, and the
upper layer is a task-specific representation module that can encode
the features according to the adapted tasks. When the model is fine-
tuned, the lower general representation module is fixed, and only
the task-specific representation module is fine-tuned to improve the
training efficiency.

For the general presentation module, Transformer-
XL (Transformer with extra-long context) is used as the
backbone network (Bonetta et al., 2021), and a memory loop
mechanism is used to model the dependency of longer text
sequences and enhance the learning of the relationship between
the previous and subsequent text contents in long text sequences.
The ability to capture the desired lexical and syntactic underlying
language features is strengthened by setting the number of layers and
parameters.The adjustable parameters duringmodel training are set
as follows: the number of hidden layers is 12, the dictionary size is
40,000, the number of attention heads is 12, the maximum sequence
length is 2048, the number of neurons in the middle layer is 3,072,
the number of neurons in the hidden layer is 768, the training period
is 250 epochs, the maximum learning rate is 1 × 10−5, and the batch
size is 32.

The presentation module also uses Transformer-XL as
the backbone network for specific tasks but learns high-level
semantic features based on different modes of tasks. An improved
Transformer, Transformer-XL, solves the problems of context
fragmentation and slow reasoning speed and improves the ability to
capture long-term dependencies based on the fragment recursion
mechanism. Transformer-XL provides input in the form of fixed-
length fragments during training, which is characterized by the
ability to cache the state of the previous fragment and then reuse
the hidden layer state of the previous fragment when calculating the
current segment. This gives Transformer-XL the ability to model
longer-term dependencies.

Two consecutive fragments of length L are represented as sτ =
[xτ,1, ...,xτ,L] and sτ+1 = [xτ+1,1, ...,xτ+1,L].The state of the hiddennode
of sτ is represented as hnτ ∈RL∗d, where d is the dimension of the
hidden node, hnτ+1 is the state of the hidden layer node of sτ+1, and
the calculation process is shown in Equations 4–6.

̃hn−1τ+1 = [SG(hn−1τ ) ∘ h
n−1
τ+1], (4)

qnτ+1,k
n
τ+1,v

n
τ+1 = h

n−1
τ+1W

T
q , ̃h

n−1
τ+1W

T
k , ̃h

n−1
τ+1W

T
v , (5)

hnτ+1 = Trans former− Layer(qnτ+1,k
n
τ+1,v

n
τ+1), (6)

where SG (·) is a stop-gradient, indicating that this part does not
participate in the backpropagation calculation; [hu ∘ hv] indicates
that two hidden layer nodes are joined in the length dimension;W is
the parameter that the model needs to learn; knτ+1 and vnτ+1 use ̃h

n−1
τ+1 ,

which extends the hidden state of the previous fragment.
In the decoding layer, double pointers P_start and P_end are

connected to decode, and then the start and end positions of the
entity are predicted.The entity prediction loss function is calculated
shown in Equations 7–9.

Lstart = Cross−Entropy(Pstart,Ystart), (7)

Lend = Cross−Entropy(Pend,Yend), (8)

Lspan = Cross−Entropy(pi,j,yi,j), (9)

In the above formula, cross-entropy represents the cross-entropy
loss function, Lstart represents the loss value of the starting position,
Pstart represents the predicted entity starting position, and Y start
represents the entity starting position. Lend represents the loss value
of the end position,Pend represents the predicted entity end position,
and Y end represents the end position of the entity. Lspan represents
the entity loss value, pi,j represents the probability of predicting
the entity, and yi,j represents the position of predicting the entity
xi,j.

Finally, the decoded entity is generated in a structured format
according to structural extraction language encoding, and the entity
recognition result of the UIE framework is obtained.

2.2 RE2 model

The RE2 model uses a fast and powerful neural network to
match common text similarity. Compared with other text-matching
models, the RE2 model considers three inter-sequence alignment
features named the original point alignment feature, the previous
alignment feature, and the context feature. In terms of data structure,
the model fully integrates the residual vector, embedding vector,
and encoded vector, which can significantly reduce the number
of parameters and simplify reasoning and calculation. The model
structure is shown in Figure 2.

The model consists of six parts, including an embedding layer,
an encoding layer, an alignment layer, a fusion layer, a pooling
layer, and a prediction layer, and is generally divided into an input
layer, an intermediate processing layer, and an output layer. The
part surrounded by the dotted lines in the figure is the intermediate
processing layer, called the block, which is independently cycled
N times. Three kinds of intermediate vectors are calculated by the
RE2 model: embedding vectors (on behalf of original pointwise
features, denoted by blue rectangles), residual vectors (on behalf
of previous aligned features, denoted by green rectangles), and
encoded vectors (on behalf of contextual features, denoted by orange
color rectangles). The fault text is treated symmetrically in all layers
except the prediction layer, and all parameters are shared between
two sequences. The RE2 model has a left and right symmetrical
structure.

In the RE2model,N blocks are connected by enhanced residuals
to input richer inter-sequence features into the alignment layer.
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FIGURE 2
RE2 model structure diagram.

FIGURE 3
The process of the power grid fault handling plan matching model.

First, the input of each block is spliced by the sum of the input of
the initial embedding layer and the output of the first two blocks.
Its mathematical definition is shown in Equations 10–12. Second, in
each block, the alignment fusion layer is enhanced by the residual

module; that is, the outputs of the first two layers, the embedding
layer and the encoding layer, are spliced as inputs.

o(n) = (o(n)1 ,o
(n)
2 , ...,o

(n)
l ). (10)
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x(n) = (x(n)1 ,x
(n)
2 , ...,x

(n)
l ). (11)

x(n)i = [x
(1)
i ;o
(n−1)
i + o

(n−2)
i ]. (12)

where o(n) is the output of the nth block, x(n) is the input of the
nth block, xi(1) is the input of the first block, and oi

(n−1) and oi
(n−2)

are the output of the (n-1)th and (n-2)th blocks, respectively.
The alignment layer aligns the location or token of the two

faulty text sequences. That is, through a layer of feedforward neural
network and then dot product operation, the similaritymatrix of two
sequences and output vectors a′i , b

′
j are obtained.They are shown in

Equations 13–17.

a = (a1,a2, ...,ala). (13)

b = (b1,b2, ...,blb). (14)

eij = F(ai)
ΤF(bj). (15)

a′i =
lb
∑
j=1

exp(eij)
lb
∑
k=1

exp(eik)

bj. (16)

b′j =
la
∑
i=1

exp(eij)
la
∑
k=1

exp(ekj)

ai. (17)

where a and b are input representations of the two sequences,
respectively; eij is the similarity matrix of two vectors. F
represents a single-layer feedforward network, the dot product
operation function.

The fusion layer fuses the input and output vectors of the
alignment layer through three strategies: direct concatenation,
combined subtraction concatenation, and combined matrix dot
multiplication concatenation and aggregates the information of the
two text sequences at the same time. The mathematical definition
is shown in Equation 18.

{{{{{{{
{{{{{{{
{

a1i = G1([ai;a
′
i ])

a2i = G2([ai;ai − a
′
i ]).

a3i = G3([ai;ai ∘ a
′
i ])

ai = G([a
1
i ;a

2
i ;a

3
i ])

(18)

In the formula, G1, G2, G3, and G represent the single-layer
feedforward network with independent parameters corresponding
to the four operations of direct splicing, combined subtraction,
combined matrix dot multiplication, and fusion splicing,
respectively.

The output of the last block in the fusion layer is taken as
the input of the pooling layer. After dimensionality reduction,
two sequence vectors v1 and v2 are outputted and then input
into the prediction layer. The results of text matching are
predicted after multi-layer feedforward network H. A detailed and
simplified representation of the prediction layer is shown in the
Equations 19–20.

̂y =H([v1;v2;v1 − v2;v1 ∘ v2]), (19)

̂y =H([v1;v2]), (20)

where ̂y ∈ RC, C ∈ (0,1) represents the category, and y =
argmaxi ̂yi represents the prediction category (Kai et al., 2023).

3 The matching method of a power
grid fault handling plan based on a
hybrid neural network

3.1 The structure and implementation
process of a hybrid neural network

Modeling the entire text of the power grid fault handling
plan would consume much computing time during the match
processes, and any invalid information in the plan will also affect the
matching effect. Therefore, when establishing the matching model,
it is necessary to first identify the entity of the fault handling plan
and extract the key features of each plan. The similarity calculation
between the key features and the power grid fault events can both
reduce the matching time and improve the matching accuracy. In
order to solve the above problems, a matching model of the fault
handling plan based on the UIE-RE2 hybrid neural network is built;
each type of entity key feature of the fault handling plan is extracted
through theUIE entity recognitionmodel, which sifts out the useless
interference information. The RE2 text similarity meter model is
used to calculate the semantic similarity distance between the fault
event and each type of entity key features of the fault handling plan.
Based on the above principle, the effective information semantics
can be calculated in a maximized manner. The model training time
can be reduced by extracting and calculating the optimal features,
and the matching accuracy of the troubleshooting plan can be
improved. The matching process is shown in the following figure.

In the training stage, the marked power grid fault handling plan
is first used as the input of theUIE framework.The entity recognition
model is established by fine-tuning the model parameters, and
entities such as fault equipment, fault type, and fault phenomenon
are extracted. Then, the plan matching sample set is built based on
the plan’s entities library, and the sample set is trained based on
the RE2 network to establish the text similarity calculation model
between the fault handling plan and the fault event.

In the test stage of the model, the occurrence of power grid fault
events and the key feature entities of the power grid fault handling
plan are simultaneously input into the trained RE2 model, and the
similarity value between the text of each plan and the text of the real-
time fault event is calculated and ranked according to the high and
low scores. This ranking allows the best troubleshooting plan to be
matched and sent to the requester. The basic principle of the UIE-
RE2model and the specific implementation of the proposedmethod
are described below. The process of matching model of power grid
fault handling plan is shown in the Figure 3.

3.2 Entity recognition of fault handling
plan based on UIE

Aiming at the problem of low accuracy of structured extraction
caused by the differentiation of fault disposal plans in different
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TABLE 1 The entity labels of the power grid fault handling plan.

Entity categories B Markers I Markers

Area B-A I-A

Plant station B-S I-S

Unit B-U I-U

Acline B-A I-A

Bus B-B I-B

Transformer B-T I-T

Breaker B-Br I-Br

Disconnect B-D I-D

Voltage level B-V I-V

Fault type B-F I-F

Fault phenomenon B-P I-P

regions, this article proposes an entity and event recognitionmethod
for fault disposal plans based on the UIE framework and improves
the internal structure of the UIE framework. The original UIE
framework uses the text-to-text transfer transformer (T5) generative
model, which ismore suitable for wide-area general entity extraction
tasks. ERNIE 3.0 coding and the double-pointer decoding module
replace the T5 model in the original framework, and the problem of
entity nested recognition difficulty in the power grid fault plan data
is specifically improved.

The event logic of a power grid fault handling plan is complex,
the forms of expression are diverse, and there are many types of
entities. It is difficult to effectively identify the entity elements of
the event based on rules. An entity recognition model based on
deep learning is an effective method of extracting the entity of
the power grid fault handling plan. In this article, the key features
of each plan are defined as fault equipment, fault type, and fault
phenomenon, and the entity types include area, station, unit, acline,
bus, transformer, breaker, disconnect, voltage, fault type, and fault
phenomenon. The BIO labeling specification is used to tag the 11
types of entities of the power grid fault handling plan, and the entity
labeling labels are generated, as shown in Table 1.

The entity recognition model is trained by taking the plan label
dataset as input and the structured entity of the plan as output.
The ERNIE3.0 model is used as the encoding network of the UIE
framework. During training, the model’s parameters are fine-tuned
by adding a professional corpus of fault handling plans, iteratively
learning the text data and label representation in the standard fault
handling plan dataset, optimizing the parameters of the hidden layer
in the ERNIE3.0 network, and realizing the encoding representation
of professional power terms in the text of contingency plan. The
double-pointer decoding module is connected to predict the start
position and the end position of the entity. The entity recognition,

fault type, and fault phenomenon are realized through Softmax and
argmax functions.

During model training, the adjustable parameters are set as
follows: a training period of 250, a maximum learning rate of 1e−5,
a batch size of 32, an increment random inactivation ratio of the
attention network of 0.1, the activation function of the hidden
Gaussian error limit unit (GELU) layer, the inactivation ratio of
hidden layer network of 0.1, the number of hidden layer neurons of
768, the standard deviation of 0.02, the number of intermediate layer
neurons is 3,072, the number of attention heads is 12, the number of
Transformer layers is 12, the activation function of pool layer is tanh,
and the size of dictionary is 4,000. The initial parameters of the pre-
trained ERNIE 3.0model are fine-tuned. It inherits the deep learning
of the ERNIE 3.0 model on the massive corpus and, at the same
time, deepens the understanding of the model of the professional
language of the power grid fault handling plan, which reduces the
time-consuming searching for optimization of the initial parameters
of the training model and improves the entity recognition accuracy
of the model.

3.3 Power grid fault handling plan
matching based on RE2

The key characteristic information of the power grid fault
handling plan, such as fault equipment, fault type, and fault
phenomena, is extracted from the entity recognition results and
stored as an entity library. The original plans are parsed into the
corresponding entity’s semantic information. At the same time,
combined with manual local corrections, the plan matching sample
set is constructed. The sample set is trained based on the RE2
algorithm, and the matching model is established. The matching
and pushing of the power grid fault handling plan are realized
based on the trained model. The training process of the RE2 model
is as follows:

First, the fault events and the fault handling plans are
simultaneously input into the RE2 model, denoted as Text1 and
Text2, respectively, and transformed into an embedding vector,
a residual vector after vector encoding in the embedding layer,
with both vectors having a dimension of 300. Then, the N blocks
connected in an augmented residual manner are semantically
computed, the similarity between the two sequences is computed
using the dot productmethod, and the output of the last block is used
as input to the pooling layer. Finally, the dimensionality-reduced
sequence vectors are input to the prediction layer, and the similarity
scoreCk of the fault handling plan is output after computation by the
multi-layer feedforward network.

The parameters of the model are as follows: the number of
hidden layer neurons is 150, the size of the convolution kernel is 3,
the number of intermediate processing layers is 2, the number of
encoding layers is 2, the alignment between sequences is linear, the
mode of vector fusion is full, the interlayer connection is aug, the
optimizer is Adam, and the number of output categories is 2. The
hyperparameters of the training process are: the batch size is 32, the
number of training rounds is 200, the initial learning rate is 5× 10−4,
and the random inactivation rate of neurons is 0.2.
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4 Example analysis

4.1 Research target

Using the relevant data from a regional power grid in China
as the research target, a large number of power grid fault handling
plans and historical fault cases were obtained. The BIO labeling
specification was used to mark the plans, and 5,348 entities were
generated. The entities were divided into 3,744 training samples,
1,070 validation samples, and 534 test samples in an 8:1:1 ratio. At
the same time, the plan sample set is constructed according to the
entities and the historical fault cases. Considering that there are few
actual faults in the power grid, this article enhances the fault events
to create many usable samples. When constructing the matching
sample set, the identified plan entities and power grid fault events
must be rewritten into phrases with the same syntax structure, such
as fault device-fault type-cause-fault phenomenon. Using the above
methods, 6,448 matching text pairs of power grid fault handling
plans are constructed. With a ratio of 8:1:1, all matching text pairs
were divided into 3,224 training samples, 2,257 validation samples,
and 967 test samples.

4.2 Evaluation index of the model

The precision rate (P), recall rate (R), and comprehensive
evaluation index (F1 value) were used to evaluate the accuracy of
entity recognition and text matching. Entity recognition of a fault
handling plan is a multi-classification task, so the macro average
method is used to calculate the values of each evaluation index.
The time taken to match a single plan (T) was used to measure the
speed of textmatching.The calculation expressions of each index are
shown in Equations 21–23.

P = TP
TP+ FP,

(21)

R = TP
TP+ FN,

(22)

F1 =
2× P×R
P+R
, (23)

where P is the precision rate; R is the recall rate; F1 is the
comprehensive evaluation index; TP is the number of correct
samples predicted; FP indicates the number of samples that were
incorrectly predicted to the class; FN indicates the number of
samples in which the text of that class was incorrectly predicted to
other categories.

4.3 Analysis of model effect

The training set and validation set samples were trained based
on the UIE framework, and 534 test set samples were used to verify
the recognition effect of the entity recognition model. The average
precision rate, recall rate, and F1 value of the entity recognition
model were 96.57%, 97.12%, and 96.84%, respectively. For the test
samples, the recognition effect of the model on 11 types of entities
in the plan was higher than 95%, and the model shows strong
generation ability. The precision rate can reach 100% for some

TABLE 2 Comparison of the effect of matching model with and without
plan parsing.

Model P (%) R (%) F1 value (%) T (ms)

UIE-RE2 98.61 98.94 98.77 20.7

RE2 97.55 98.07 97.81 14.6

entities with obvious characteristics that are not easily confused
with other types of entities. The average precision rate, recall rate,
and F1 value of the entity recognition model were 96.15%, 96.44%,
and 96.29%, respectively. The overall effect is significant, indicating
that the framework proposed in this article is suitable for entity
information extraction of fault handling plans.

The entity recognition effect of the power grid fault handling
plan based on the UIE framework is further analyzed. This method
extracts entities based on the prompt mechanism, which is more
conducive to acquiring effective features in the text content of
the plan. In addition, the UIE framework in this article takes
entity recognition as a discriminative extraction task to predict the
starting and ending positions of entities. The model decodes the
number of entity categories contained in the input content several
times, extracting one category of entities each time. Although this
operation increases the times of entity recognition to a certain
extent, it can avoid the phenomenon that the general sequence
annotation model cannot represent the entity nesting problem well.
Second, the internal improvement of the text UIE framework uses
the ERNIE3.0 large model, and its nested multi-layer Transformer-
XL also enables it to capture text features well. For the above reasons,
the UIE framework proposed in the article has achieved excellent
results in entity recognition.

The text-matching set is trained based on theRE2 algorithm, and
967 test samples are used to verify the effect of the text-matching
model.The average precision rate, recall rate, and F1 value of the RE2
algorithm for the training samples are 97.61%, 98.24%, and 97.91%,
respectively. For the test samples, the average precision rate, recall
rate, and F1 value of this model are 97.55%, 98.07%, and 97.81%,
respectively. On the one hand, the plan matching model based on
the targeted plan can reduce the long segment plan calculation time
and improve the training speed of themodel. On the other hand, the
targeted fault handling plan has filtered out most of the interference
information, which helps to improve the accuracy of plan matching.

4.4 Comparative analysis of models

To verify the effect of the proposed entity recognition model
based onUIE on the subsequent planmatching, the UIE-RE2model
is compared with the RE2 model. The content of this part mainly
compares the different matching effects of plan matching after plan
parsing and the direct plan matching method. Furthermore, this
section focuses on measuring the impact of plan parsing on the
matching performance improvement of the UIE-RE2 model. The
UIE-RE2 and RE2 models are trained on the plan matching sample
set in this section. Then, two models are tested using 967 test
samples. The test results are shown in Table 2.
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TABLE 3 The matching effect comparison of each model for the power
grid fault handling plan.

Model P (%) R (%) F1 value (%) T (ms)

RE2 97.55 98.07 97.81 14.6

TF-IDF 93.23 92.32 92.77 19.5

BM25 89.42 89.21 89.32 23.9

As shown in Table 2, the F1 value of the comprehensive
evaluation index of plan matching of the UIE-RE2 model proposed
in this article reaches 98.27%, which is 0.46% higher than the
F1 value of the RE2 model that directly matches without plan
parsing. It shows that theUIEmodel learns the lexical, syntactic, and
semantic information of the language by setting various pre-training
tasks, and it can generate entities in structured format according
to structural extraction language encoding.The invalid information
in plans can be removed through the above methods. The object-
oriented plans are obtained, which is equivalent to the semantic
enhancement of the plan text. A higher-quality plan matching
sample set is constructed on this basis so that the UIE-RE2 model
can achieve more accurate plan matching. The average time for
matching a single plan of the UIE-RE2 model is 20.7 ms, which
is slower than that of the RE2 model, and T is 6.1 ms higher. It
shows that the UIE model takes the ERNIE 3.0 pre-training model
as the encoder. During training, fine-tuning of model parameters is
computationally intensive and requires more time and computing
resources. After the model is trained, when using the trained model
for entity recognition of fault handling plan, the speed is very fast,
on the ms level, and has little impact on the efficiency of the overall
model for plan matching.

In order to verify the matching effect of the proposed matching
model based on RE2, it was compared with the matching model
based on TF-IDF and BM25. This section mainly compares the
performance of different text similarity calculation models. The
above models are built on the entity recognition model based on the
UIE framework to match the plan with real-time power grid fault
events.The results of running 967 test samples to test the above three
models are shown in Table 3.

According to the data in Table 3, the F1 value of the
comprehensive evaluation index of the RE2 model is 97.81%, which
is significantly better than that of the TF-IDF and BM25 models,
and the F1 value is 5.04% and 8.49% higher, respectively. It shows
that the RE2 model can extract semantic features of power grid fault
handling plans more effectively by using a deep neural network,
learning the differences among different plans, and is more suitable
for dealing with complex syntax nested plans. The average time
for matching a single plan of the RE2 model is 14.6 ms, which
is significantly faster than that of the TF-IDF and BM25 models,
and T is 4.9 ms and 9.3 ms lower, respectively. It shows that the
RE2 model fully integrates the original point alignment features,
previous alignment features, and contextual features embedded
in the scheduling object entities, which naturally removes the
invalid information in the plans and thus can improve the overall
computational efficiency of the matching model. Results from the
test sample matching process of the three models in Table 3 are
drawn as the box diagrams shown in Figures 4–7.

FIGURE 4
Accuracy curve of the UIE framework in the training process.

As shown in the Figure 4, it can be concluded that the matching
effect of the RE2 model is significant for a text semantic matching
task, such as the power grid fault handling plan, which has relatively
complex syntax components. The F1 value of the RE2 model is
maintained at 92%–100%, and there is no obvious deviation for
different plans. Compared with the TF-IDF and BM25 models, the
F1 value of some plans is only about 80%, and the matching effect of
the method proposed in this article is significant. Through analysis,
it is found that the power grid fault handling plan matching model
based onRE2 fully integrates the original point alignment features of
target words, previous alignment features, and plan context features.
Using the matching results to modify the classification weight of the
model can greatly improve the accuracy and practicability of text
matching. The matching model based on BM25 does not consider
the semantic correlation between the terms of the plan, so the
score is often inaccurate or low, and the text length of the plan
is different, so the parameters need to be adjusted according to
the actual situation, which directly affects the overall performance
of the model. The matching model based on TF-IDF ignores the
order of entities and calculates TF-IDF scores only on the basis
of word frequency and inverse document frequency, which cannot
capture the semantic information of context in plans. Meanwhile,
the algorithm is greatly affected by the document length; certain
errors in the feature weights of longer texts lead to the failure of
the model to accurately measure the similarity of texts. Overall
performance is limited. In summary, the matching model of the
power grid fault handling plan based on RE2 has higher accuracy
and faster matching speed than the UIE model, and the overall
convergence and stability of themodel are superior; the effect of plan
matching is better.

A comprehensive intelligent alarm will introduce the fault
information in the case of a power grid failure. The proposed
model will analyze the information, make similarity calculations
with many fault handling plans, recommend the plan with the best
match to the current fault, and provide auxiliary troubleshooting
decisions for the dispatching and operation of the power grid.
Through artificial intelligence and networked implementation

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1468651
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Xiao et al. 10.3389/fenrg.2024.1468651

FIGURE 5
Precision rate comparison of each model on the test samples.

FIGURE 6
Recall rate comparison of each model on the test samples.

methods, the model establishes an intelligent fault disposal process
engine, provides the most accurate reference to dispatchers in a
timely manner, and realizes the closed-loop management of the
process of power grid fault handling.

5 Conclusion

This article proposes a matching method for a power grid fault
handling plan based on a UIE-RE2 hybrid neural network. First, the
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FIGURE 7
F1 value comparison of each model on the test samples.

plan is digitized using the UIE framework, and the characteristics
of fault equipment, fault type, and fault phenomena are identified,
effectively extracting the key elements. The interference of other
information with thematchingmodel of the plan is overcome.Then,
the matching sample set of the fault handling plan is constructed,
and the semantic similarity calculation model between the fault
handling plan and the fault event is trained based on RE2, which can
best match the plan to the characteristics of the fault event. Finally,
the plans are verified using regional power grid fault-related data.
When the UIE-RE2 hybrid neural network is compared with an
RE2 model, it is found that the UIE-RE2 network can achieve more
accurate plan matching by first carrying out plan parsing. When the
RE2 method is compared with BM25 and TF-IDF algorithms, it is
found to have higher matching accuracy, faster matching speed, and
stronger generalization ability. The proposed algorithm can provide
auxiliary decision-making for timely and rapid response to faults.
Because the fault handling plan is prepared in advance, the fault
disposal strategy cannot deal with all faults, and studying the fault
handling plan generation technology based on artificial intelligence
is the focus of the next research.
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