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Robust-momentum-learning-
rate-based adaptive
fractional-order least mean
squares approach for power
system frequency estimation
using chaotic Harris hawks
optimization

Subhranshu Sekhar Pati and Umamani Subudhi*

Department of Electrical Engineering, International Institute of Information Technology,
Bhubaneswar, India

A novel robust adaptive technique is proposed to estimate the instantaneous
power system frequency using a momentum-learning-control-rate-based
fractional-order least mean squares approach with enhanced Harris hawks
optimization. The adaptive estimation comprises two modules, where the
first part involves the design of the momentum-learning-control-term-based
fractional-order least mean squares algorithm and second part focuses on
parameter tuning of the algorithm through enhanced Harris hawks optimization
incorporating chaotic mapping and opposition-based learning. This integration
yields a robust and automated adaptive algorithm for frequency estimation with
superior performance compared to traditional transform-based techniques,
particularly in the presence of noise. The proposed method excels in scenarios
where the estimator should manage multiple variables, including step size,
fractional-order step constants, and momentum learning control terms.
Moreover, it facilitates accurate power frequency estimation for real signals in
multiarea power systems or microgrids. To validate the efficacy of the algorithm,
computer-simulated data representing step and ramp changes in the frequency
were processed. Additionally, the algorithmwas tested with signals derived from
a multiple-control-area, multisource renewable-based power system. Detailed
comparative results were obtained and verified throughMATLAB simulations and
real-time experimental setup, demonstrating the superior performance of the
adaptive model.
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1 Introduction

1.1 Background and literature review

Frequency is an index of the operating practices of a power
system and is one of its most important power quality parameters
(Zhao et al., 2019). The frequency of a power system can deviate
from its nominal value by an amount within a certain tolerance
level; any deviation beyond the predetermined tolerance level is
detrimental to the system and is a sign of abnormal systemoperating
conditions that necessitate remedial actions.These problems include
generation–load imbalances and improper functioning of the power
system. An inaccurate frequency parameter in a power network
can lead to insufficient load shedding via frequency relays, which
may ultimately result in a catastrophic breakdown of the grid
(Bose, 2020; Alhelou et al., 2019); moreover, the power signal
would no longer be static owing to the presence of noise, voltage
imbalances, and harmonics, among others. Therefore, accurate
frequency estimations of dynamic signals are necessary in power
system operations and have garnered considerable attention from
researchers.

In reality, numerous strategies have been proposed over the
years to estimate the power system frequency. The time between
two zero crossings is the basis of the traditional approach
(Friedman, 1994; Zhang et al., 2017), which assumes that the power
system voltage is entirely sinusoidal and that the interval between
two zero crossings is a measure of the grid frequency. These
techniques are ineffective when dealing with dynamic changes
and in the presence of harmonics and excessive noise. Several
approaches have been proposed on the basis of phase-locked
loops (Han et al., 2015; Xu and Song, 2020; Li et al., 2019), least-
squares adaptive filtering (Zhang et al., 2019; Martinek et al., 2019),
recursive total least-squares approach (Avalos et al., 2021), adaptive
notch filters (Man et al., 2021; Pan et al., 2021), and extended
Kalman filters (Mojiri et al., 2007; Xie et al., 2023), which have been
investigated extensively for estimation purposes; such approaches
have the potential to overcome the aforementioned restrictions.
However, most of the currently used techniques focus on voltage
measurements in single-phase systems or make assumptions about
balanced-power system states.Owing to the possibility of imbalance,
single-phase signals cannot be used to accuratelymeasure the system
frequencies in three-phase systems (Wold and Wilches-Bernal,
2021); hence, knowledge of all three phases must be considered for
reliable and robust frequency estimations.

Furthermore, advancements in fractional calculus approaches
have enabled more research activities in numerous domains, such
as biomedical engineering, fluidmechanics, optics, computer vision,
electrochemistry, control systems, and signal processing (Tan et al.,
2015). In this context, newer fractional adaptive algorithms have
inherited their concepts from fractional calculus and incorporated
adaptive algorithms (Naik et al., 2024). For instance, the fractional
least mean squares (FLMS) identification method that adds a
percentage of each gradient based on the value of a forgetting
factor was established by applying the ideas of fractional calculus;
consequently, better convergence is obtained compared to the
original least mean squares (LMS) algorithm. By using a sliding
window that considers the past input parameters in addition to the
present parameters, the convergence qualities of the FLMS approach

are further enhanced (Aslam et al., 2017). Chaudhary et al. (2015)
presented a scheme that simply incorporates a partial component
of the gradient in the weight vector equation to decrease the
computing complexity. The total convergence is unaffected by the
elimination of the integer-order gradient and retention of only
the fractional component, but the computational complexity is
decreased by the integer-order gradient; as the fractional order
approaches unity, the convergence rate increases. The fractional
orders employed in algorithms thus far are in the range of (0,1),
where a higher fractional order may also increase the steady-state
error, as reported byCheng et al. (2017); researchers have discovered
that the rapidity and accuracy have the same characteristics as
those of the original FLMS (Chaudhary et al., 2021) and modified
LMS (Bershad et al., 2017). The above discussion demonstrates that
several LMS variations have been extended to fractional order
and that their attributes have been investigated. These works also
include the momentum term in FLMS (mFLMS) in parameter
estimation modeling of sinusoidal signals (Sharma et al., 1998). The
convergence rate of the mFLMS increases as the weight update
equation is revised to include a percentage change of the previously
calculated gradients and an additional learning rate (Zubair et al.,
2018). Hence, the momentum-learning-rate-based FLMS technique
is a perfect candidate for identification and estimation studies;
the widespread advantages of this algorithm warrant further
investigations, particularly in the context of power frequency
estimation. In the present work, the concept of the momentum-
based FLMS algorithm is used for power system frequency
estimation.

Several constants are also known to be associatedwith theweight
update equation. For instance, the mFLMS algorithm considered in
this study has three parameters, namely the step size, fractional-
order step constants, and momentum learning control terms.
Moreover, the values of these parameters are in the range of 0–1
and considered manually or empirically, which may result in drastic
errors in the final outcome. There are no available roadmaps that
provide robust methods to consider appropriate values for the
variables. Therefore, optimization algorithms can be employed
in these scenarios to identify the optimal values of each of the
constants. The optimization algorithms are computational in nature
and search for constant values in global as well as local space vectors
to achieve the least possible errors (Kanoongo and Giri, 2023). Such
algorithms have also been shown to produce encouraging results for
noise cancellation, adaptive filtering, controller tuning, computer
vision, and other applications (Alhussan et al., 2023). Some of
the commonly used optimization algorithms include gray wolf
optimization (GWO), genetic algorithm (GA), bat optimization,
teaching-learning-based optimization (TLBO), fuzzy rules, cuckoo
search algorithm (CSA), and flower pollination algorithm. A more
effective approach called the Harris hawks optimization (HHO)
algorithm was suggested recently and has been shown to be very
effective for multivariable optimization problems (Heidari et al.,
2019). The innovative HHO algorithm was developed in response
to the chasing behaviors of Harris hawks; by simulating the pursuit
of prey, sudden attacks, and various attack strategies used by Harris
hawks, the algorithmhas been applied to six well-known benchmark
engineering problems, including the formulation of the 3-bar truss,
tension/compression spring design, pressure vessel requirement,
welded beam design, rolling element design, and multiplate disc
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clutch brake problems. The HHO is prone to local optimum and
slow convergence problems, just like any other natural heuristic
algorithm (Alabool et al., 2021). Therefore, there is still scope for
development in theHHO, where the solution involves incorporating
chaotic-based functions (Shehab et al., 2022). In addition, it has
been demonstrated that adding a chaotic function to the optimizer
can significantly affect the algorithm’s ability to perform local and
global searches (Menesy et al., 2019). Consequently, the chaotic
map-based HHO (iHHO) method was considered in this study
along with momentum-learning-rate-based FLMS to achieve
better accuracy and faster convergence than existing mFLMS
algorithms; named as improved momentum-learning- rate-based
FLMS (imFLMS) estimation algorithm.

1.2 Motivation and objective of the
investigation

As discussed above, the fractional-order LMS algorithm
provides significant benefits over the integer-order LMS algorithm
for power frequency estimation, with faster convergence rates
and improved accuracies, especially in environments with high
degrees of noise. Furthermore, considering that the momentum
learning control term in the FLMS algorithm enables more precise
adjustments, enhanced resistance to noise and capacity to adapt to
dynamic signal conditions are obtained. This adaptability leads to
reduced steady-state errors and improved stability across a wider
spectrum of operating conditions. Furthermore, the momentum
learning control terms in the FLMS algorithm entail multiple
parameters such as step size, fractional-order step constants, and
momentum learning control terms, all of which range from 0 to
1 and are chosen manually or empirically, which can potentially
cause significant errors. Optimization algorithms are used to
determine the optimal values for these parameters computationally,
thereby minimizing errors by exploring the global and local
space vectors (Chao et al., 2024). Therefore, the momentum-
learning-rate-based FLMS method tuned by optimization ensures
more precise and reliable estimates, making it a preferable option
for real-time power frequency applications.

The main contributions of this work are as follows:

• Design of an innovative power frequency estimation
scheme considering the momentum-based fractional-order
LMS approach.
• Optimization of the co-parameters of the estimator (step size
and fractional-order step variables) using the HHO technique.
Furthermore, the optimization is improved using chaotic map
and opposition-based learning (OBL) methods.
• Verification of the system performance using frequency step
changes, frequency ramp changes, and different noise levels.
The mean-squared error of the proposed method was also
compared with other existing estimation methods.
• Evaluation of estimator robustness by considering signals
generated from a hybrid renewable-based power system as well
as real time experimental setup.
• Interpretation of the preeminence of the proposed estimator
with recently published literature related to the estimated error
and rate of convergence.

The remainder of this paper is organized as follows. Section 2
provides a brief description of the momentum-based FLMS
algorithm. Section 3 describes the HHO optimizer and its
improved version, i.e., chaotic-based HHO with OBL. Section 4
outlines the power system frequency model. Section 5 presents
the validation of the estimation scheme by considering various
cases. Finally, Section 6 provides some concluding remarks and
scope for future work.

2 Momentum-learning-rate-based
FLMS algorithm

The FLMS algorithm was originally developed by applying
fractional calculus to the conventional LMS algorithm. Here,
a fractional-order derivative is used in addition to a simple
integer-order derivative to calculate the fractional-order gradient
that minimizes the cost function. The fractional order adds a
proportionate value of the gradient to the weight updating equation,
resulting in better convergence than the standard LMS algorithm.

Let y(k) be the estimated signal and d(k) denote the desired
signal; then, the error signal e(k) is represented as d(k)-y(k).The cost
function that minimizes the absolute square of the error signal and
is represented in Equation 1.

J (k) =Min. e2 (k) =Min. |d (k) − y (k)|2 (1)

The estimated signal is shown in Equation 2, where w represents
the weight vector and u is the input signal. The weight vector
is crucial for dynamically adjusting the algorithm’s coefficients to
minimize the estimation error and improve the convergence speed;
this ensures that the system adapts effectively to varying signal
conditions.

y (k) = w (k)u (k) (2)

Thus, the updated weight equation is calculated by taking the
derivative of the cost function with respect to w and is given in
Equation 3.

∂J (k)
∂w
= 2e (k)

∂e (k)
∂w

(3)

Substituting the value of e(k) in Equation 3 and simplifying gives the
value which is stated in Equation 4.

∂J (k)
∂w
= −2e (k)u (k) (4)

The standard LMS algorithm can be formulated by considering
Equation 4; the weight updating expression is given by Equation 5,
in which the step size (a constant) of the LMS algorithm is μ1.

w (k+ 1) = w (k) − 1
2
μ1

∂J (k)
∂w

(5)

The LMS method in Equation 5 is updated using the first-
order gradient. However, the FLMS method takes into account
the fractional-order gradient in addition to the first-order
gradient. Therefore, Equation 6 is the adaptive weight updating
equation for the FLMS approach, where μF is the fractional-order
gradient step size.

w (k+ 1) = w (k) − 1
2
μ1

∂J (k)
∂w
+ μF

∂FJ (k)
∂wF (6)
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Using the Caputo and R-L definition, the fractional derivative
DF of order F of a given function g(t) at the kth instance is
described by Equation 7, where the gamma function is represented as
Γ(k). Specifically, thegammafunction isused togeneralize the factorial
function to non-integer values, which allows the incorporation of
fractional powers during the weight update process.

DFg (t) =
Γ (k+ 1) × tk−F

Γ (k− F+ 1)
and Γ (k) = (k− 1)! (7)

Considering this simplification, the fractional gradient of the
FLMS equation is given by

∂FJ (k)
∂wF = −2 {e (k)u (k)}

∂Fw (k)
∂wF (8)

Applying Equation 7 in Equation 8 allows simplification
as shown in Equation 9.

∂FJ (k)
∂wF = −2 {e (k)u (k)}(

Γ (2)w1−F (k)
Γ (2− F)

) (9)

Since Γ(2) = 1, the final recursive weight update equation of the
FLMS algorithm after simplification is given in Equation 10.

w (k+ 1) = w (k) + 2μ1 (e (k)u (k)) +
1

Γ (2− F)
μFe (k)u (k) ⊕ |w|

1−F (k) (10)

The latter term of Equation 10 summarizes the elementwise
multiplication, and the absolute value of the weight vector is
considered for preventing trapping of the complex value. The
abovementioned term is further improved by incorporating the
momentum learning term in the FLMS weight update equation.
The momentum term handles the prior gradient and incorporates
it into the weights on hand, which speeds up the optimal search
and prevents trapping in a local minimum. However, appropriate
selection of the momentum learning rate, fractional order, and
other constants is necessary to achieve balance between speed
and accuracy. Equations 11, 12 describes the revised weight update
equation, which is denoted as the imFLMS weight update equation:

w (k+ 1) = w (k) + p (k+ 1) (11)

p (k+ 1) = γp (k) + q (k); q (k) = 2μ1  (e (k)u (k))

+ 1
Γ (2− F)

μ f e (k)u (k) ⊕ |w|
1−F  (k) (12)

where γ is a momentum learning control term in the range of
0–1 that adds a percentage of the previous gradient to the current
equation. This update equation is used to estimate the frequency
upon optimization, as described in the frequency estimation
modeling in Section 4.

The complexities of several algorithms, such as the LMS, FLMS,
and imFLMS algorithms, were assessed on the basis of the number
of operations needed in the adaptation process (Zubair et al.,
2018); these findings are displayed in Table 1. The LMS algorithm
necessitates 2M + 1 multiplications and 2M additions in each
iteration of the weight adaptation process, where M represents
the number of unknown weight parameters. The FLMS approach
necessitates 4M + 2 multiplications, 3M additions, and M power
calculations, whereas the imFLMS scheme necessitates 5M + 2

multiplications, 4M additions, and M power calculations. The
imFLMS method thus requires M additional multiplications and
additions over the FLMS approach. Similarly, the FLMS and
imFLMSmethods require 2 and 2.5 timesmoremultiplications than
the LMS approach, respectively. The asymptotic complexity bound
for all algorithms is O(M), meaning that the number of operations
required increases linearly with the size of the inputs. The fractional
order or momentum learning rate in the update equation does
not significantly increase the complexity of the proposed algorithm
compared to other LMS approaches and its similar versions.

3 Optimization algorithm

3.1 Motivation

Two constants (μ1andμF) are associated with the imFLMS
algorithm weight update equation and have values between 0 and 1.
It is observed from literature that there is no established procedure
for selecting the values of these constants. In other words, these
constants are assigned values either manually or through the trial
and error method, which may impact the system performance
parameters such as convergence speed severely. A lot of time is also
needed to identify the optimal combination of values that produces
an effective outcome. Hence, the selection of constants is achieved
with the help of an optimization algorithm in this study. The square
of the error signal is considered the cost function, and the optimal
value of the constant is set as a constraint described by Equation 13.
The upper and lower bounds of both constraints are considered 1
and 0, respectively. Once the optimization is formulated, the optimal
values of the constants are searched so that the errors are minimal,
as reported below.

J (k) =Min. e2 (k) =Min. |d (k) − e (k)|2

Subject to: 0 < μ1 < 1

0 < μF < 1

. (13)

3.2 HHO technique

The HHO belongs to a family of modern metaheuristic
algorithms based on the collective hunting behaviors of Harris
hawks. Rabbits are the principal food items of Harris hawks and
often flee from the hawks (Heidari et al., 2019). As a result, two
dynamic factors, namely surprise attack by the hawk and the rabbit’s
capacity to flee, form the basis for the HHO algorithm. The two
steps of the optimizer are exploration and exploitation; there are four
substages under exploitation: soft and hard besiege as well as soft and
hard besiege with successive fast dives. Figure 1 depicts the methods
of exploration and exploitation (Alabool et al., 2021).

3.2.1 Exploration
Harris hawks watch over rabbits from their perches in tall

branches. They choose two locate-and-capture strategies with equal
chances of success. In the first strategy, the hawk creates a brand-new
solution based on a random position, while in the second strategy,
another hawk creates a solution based on its present optimal position
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TABLE 1 Computational complexities of the proposed algorithm.

Estimation algorithm Operations Order of the algorithm

Multiplication Addition Exponentiation

LMS 2M + 1 2M 0 M

FLMS 4M + 2 3M M M

imFLMS 5M + 2 4M M M

FIGURE 1
Principle of the HHO method (Heidari et al., 2019).

and the mean of each agent. The following mathematical modeling
can be considered tomimic such a scenario depicted in Equation 14.

Xt+1 =
{
{
{

Xrand − r1 |Xrand − 2r2Xt| ,q1 ≥ 0.5

Xrabbit −Xmean − r3 (Lb+ r4 (Ub− Lb) , q1 < 0.5

}
}
}
, (14)

where Xt and Xrand are the current and random positions of
the hawk, respectively, while Xt+1 is the next location of the hawk;
similarly,Xmean is the average of all positions. All the other variables,
namely, q, r1, r2, r3, r4, Lb, and Ub, are generated randomly and have
uniform distributions between 0 and 1. An important parameter
called “escape energy of the prey” that controls the shift from the
exploration to exploitation stages is denoted in Equation 15.

E = 2E0 (1− t/titer) , (15)

where E is the escape energy, t is the number of iterations
currently being performed, and titer is the maximum number of
iterations. E0 is the starting energy whose value ranges from 0 to
1 for each iteration; accordingly, the escape energy diminishes as
the number of iterations increases. When the energy is (|E| ≥ 1), the
corresponding stage is exploration, meaning that the Harris hawks
are looking for prey and will explore around their present locations.
However, when (|E| < 1), the hawks are considered to be attempting
to target the prey, indicating the exploitation stage.

3.2.2 Exploitation
Hawks may restrict their prey during this stage, but the animals

constantly try to elude the hawks using various methods. Therefore,
the optimizer identifies four potential strategies to counteract
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FIGURE 2
β-chaotic function.

FIGURE 3
Convergence graphs for the proposed and comparison algorithms.

these methods. Let r be the likelihood that a prey will escape an
unexpected attack; in this case, if the likelihood is equal to or greater
than 0.5, it signifies that the prey can successfully evade attack;
conversely, this attempt is deemed unsuccessful if the probability is
less than 0.5. However, unless a prey is specifically targeted, hawks
always circle their prey.TheE value for this situation is used to decide
whether to besiege the prey softly or firmly. Thus, |E| ≥ 0.5 denotes
a soft siege while (|E| < 0.5) denotes a hard siege.

3.2.2.1 Soft besiege
When both r and |E| are ≥ 0.5, the prey is able to flee from the

hawks, but the predator has it surrounded before attacking abruptly;
this stage is known as a soft besiege. The mathematical formulation
for this method is given by Equation 16, where r5 is a random

number between 0 and 1.

X (t+ 1) = Xrabbit −Xt −E |(2(1− r5)Xrand) −Xt| (16)

3.2.2.2 Hard besiege
In this stage, r ≥ 0.5 and |E| < 0.5, which is a sign that

the prey has a relatively low energy level and that the hawks
have it surrounded until the objective is achieved or the prey is
captured. Equation 17 presents the mathematical expression for
hard besiege.

Xt+1 = Xrabbit −E |Xrabbit −Xt| (17)

3.2.2.3 Soft besiege with progressive rapid dives
During this stage, r < 0.5 and |E| > 0.5, suggesting that a

more energetic prey can escape from the hawks, at which point
the hawks begin to organize a soft siege. Levy-flight function is
taken into account in the optimizer to formulate the spontaneous
and unpredictable movements of the prey and surprise dives of the
hawks. Furthermore, according to several studies, the levy-flight
state is one of the best search methods for this and similar foraging
situations. The course followed by the hawks thereafter is shown
in Equation 18, after which they start diving under the levy-flight
condition shown in Equation 19.

Y = Xrabbit −E |2(1− r5) .Xrabbit −Xt| (18)

Z = Y+ S× LV (S) (19)

where S is a vector of size 1 × dimension (D), andLV is the levy-flight
function represented by Equation 20.

LV =
μ× δ

|υ|1/β
, δ =(

Γ (1+ β) × sin(Πβ
2
)

(Γ (1+ β)/2) × β× 2
β−1
2

)

1/β

. (20)

In the above expression, μ, υ, and β are all constants equal to 1.5
in this study. Accordingly, the updating expression used at this step
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TABLE 2 Performance comparisons for various fractional orders and momentum learning rates.

Technique Momentum learning
rate

Convergence time (ms) Estimated frequency error (Hz)

Fractional order (F) Fractional order (F)

0.2 0.6 0.75 0.9 0.2 0.6 0.75 0.9

imFLMS 0.2 1.258 1.086 0.954 0.955 0.0006 0.0017 0.0046 0.0074

0.5 1.027 0.960 0.908 0.895 0.0003 0.0021 0.0058 0.0087

0.7 0.851 0.869 0.804 0.801 0.0002 0.0018 0.0079 0.0092

0.9 0.847 0.846 0.720 0.698 0.0003 0.0048 0.0157 0.0350

mFLMS 0.2 1.155 1.089 0.954 0.955 0.0006 0.0021 0.0048 0.0074

0.5 1.035 0.840 0.908 0.866 0.0003 0.0021 0.0058 0.0092

0.75 0.821 0.701 0.804 0.824 0.0002 0.0019 0.0067 0.0099

0.9 0.822 0.864 0.790 0.798 0.0003 0.0081 0.0277 0.0411

LMS - 2.331 0.0181

FIGURE 4
Comparison of frequencies estimated by various techniques.

is based on a comparison of the current location with the previous
value that represented in Equation 21.

X (t+ 1) =
{
{
{

Y : i fF (Y) < F (X)

Z : i fF (Z) < F (X)

}
}
}
. (21)

3.2.2.4 Hard besiege with progressive rapid dives
Under this condition, |E| < 0.5 and r < 0.5, indicating that the

hawks must continue a hard siege on the prey while it lacks the
energy to flee. Another method of categorizing this situation is
that the prey is under gentle besiege while the hawks maintain
their hard pace, working to close the average distance between.

FIGURE 5
Comparison of the mean-squared errors for frequencies estimated by
various methods.

Equation 22 is used to mathematically describe the fitness values of
Y′ and Z′.

X (t+ 1) =
{
{
{

Y′ : i fF(Y′) < F (X)

Z ′ : i fF(Z′) < F (X)

}
}
}

(22)

Then, Y′ and Z′ are obtained using Equations 23, 24, respectively.

Y′ = Xrabbit −E |{2(1− r5) .Xrabbit} −Xm| (23)

Z′ = Y′ + S× LV (S) (24)
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FIGURE 6
Bar chart representing the signal-to-noise ratio (SNR) vs. error for
different methods.

FIGURE 7
Frequency estimations with a step change.

3.3 Motivation for the improved HHO
algorithm based on OBL and iHHO

Most of the metaheuristic algorithms start with a random
variable for initialization and corresponding distribution. Recently,
chaotic mapping has been used in such metaheuristic techniques as
it allows similar properties and characteristics as randomness, with
improved dynamic and statistical performances. Therefore, chaotic
mapping is added to the unique swarm intelligence approach in
place of a random variable. As added advantages to the optimization
strategy, this mapping offers accurate initialization, arbitrariness,
and ergodicity (Baliarsingh and Vipsita, 2020). By producing non-
repeated numbers with periodicity, chaotic mapping enhances the
efficiency with respect to a random number. These characteristics
resulting from chaotic mapping provide the means to escape local

FIGURE 8
Frequency estimations with a ramp change.

FIGURE 9
Variation of the step size parameter with the iHHO approach.

optima and preserve distinction while increasing the efficacy of
the global search. Appropriate initialization is achieved when the
preliminary points are adjusted such that a meaningful result is
generated, assuming that the outcome is wisely dependent on the
preliminary points. Throughout the phase of arbitrariness, chaotic
mapping takes on the roles of the random variables. Ergodicity
describes the capacity of a chaotic variable to identify non-repeated
values given a specific range.

Different metaheuristic methods have been used to implement
various chaotic functions. Recently, Zahmoul et al. (2017) reported
a new approach to the family of chaotic functions; Equation 25
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FIGURE 10
Variation of the fractional-order step size parameter with the
iHHO approach.

provides the mathematical representation of this mapping:

β (x:p,q,x1,x2) =
{{
{{
{

(
x− x1
xc − x1
)

0

p
( x2 − xx2 − xc

)
q
, i f x ∈ x1,x2

, otherwise
,

(25)

where x1,x2,p,q ∈ R and x1 > x2 are calculated using the following
Equations 26–29.

xc =
px1 + qx2
p+ q

(26)

p = a11 + b11c (27)

q = a22 + b22c (28)

Xt+1 = kβ(xt:p,q,x1,x2) (29)

where c is the bifurcation parameter; a11, a22, b11, and b22 are
constants. The β-chaotic map exhibits initialization and variation
sensitivity, and its bifurcation diagram is shown in Figure 2. The
bifurcation diagram is often used to demonstrate the values that
approach asymptoticity to a given system state as a function of the
bifurcation parameter, where the abscissa represents the bifurcation
parameter and ordinate indicates the range of values of the map that
approaches asymptoticity subject to the initial conditions.

Exploration and exploitation are appropriately balanced when
chaotic mapping is applied to the traditional HHO algorithm.
Chaotic mapping replaces the random functions employed in
traditional HHO techniques. Then, the constants q, r1, r2, r3, r4, Lb,
and Ub (from Equation 14) are all considered to be 0 if xt > 0.5 or 1
if xt < 0.5, where xt is the chaotic mapping of the tth iteration.

A fresh and practical theory for improving the performances of
diverse metaheuristic approaches from an optimization standpoint
is OBL. The idea of OBL is to take the opposite candidate as
an alternative approach to reach the optimal solution, which

could be closer to the global optimum solution. The objective of
OBL in optimization is to improve the solution’s effectiveness by
evaluating the contender for the solution of the relevant pair. The
ideal response candidate is taken into account for the subsequent
individual solution (Barisal and Prusty, 2015). Suppose that Zi
denotes the candidate solution; then, its corresponding opposite
candidate solution Z′i can be calculated as per Equation 30, where
L and U represent the lower and upper bounds of the search space
of the constraints, which are 0 and 1 in our case, respectively.

Z′i = L+U−Zi (30)

The global searchability is enhanced with OBL, and the solution
using this method with chaotic mapping is shown in Equation 31.
In this instance, Zmin and Zmax are the lower and upper bounds,
respectively, whileZ′hho is the opposing candidate hawk;Zhho displays
the hawk’s position vector, while Zbest displays the hawk’s optimal
solution; xt denotes the chaotic mapping.

Z′hho = Zmax +Zmin −Zbest + xt (Zbest +Zhho) (31)

4 Frequency estimation modeling

The instantaneous voltage signals of the three phases of a power
system can be expressed as follows:

van = Van sin(ωonΔTs +Φ) + ηa

vbn = Vbn sin(ωonΔTs +Φ−
2π
3
)+ ηb

vcn = Vcn sin(ωonΔTs +Φ+
2π
3
)+ ηc

(32)

where the peak values of the three-phase voltage signals at the
time instant n are denoted by the variables van, vbn, and vcn; ΔTs =
1/ fs is the sample interval, with fs being the sampling frequency;
ϕ represents the phase angle at the beginning of the measurement;
ωo = 2π fs is the angular frequency of the voltage signal, where f0
is the fundamental frequency of the system; ηa, ηb, and ηc are the
additive white Gaussian noise (AWGN) components present in the
individual phases.

Applying Clarke’s transform to the three-phase voltage signals
in Equation 32 results in the complex-valued power system voltage
signal (also known as the αβ signal) shown in Equation 33.

[

[

Vαd

Vβd

]

]
= √2/3[

1 −1/2 −1/2
0 √3/2 −√3/2 ][Van Vbn Vcn]T (33)

In the complex-valued voltage signal, Vαd and Vβd denote the
real and imaginary parts, respectively. Since the measured complex
signal produced by the components is tainted by AWGN, it can be
written as Equation 34.

d (k) = Vαd + jVβd + ηd = Ae
jωoΔTs+ηd (34)

In the above expression, d(k) represents the desired three-
phase voltage signal. Similarly, the estimated voltage signal y(k) is
formulated through state-space modeling as shown in Equation 35
where u is the input vector equal to [0 1] and w is the weight
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TABLE 3 Frequency estimation errors for different techniques.

Technique Frequency estimation error (Hz) Execution time (ms)

10 dB 20 dB 30 dB 40 dB

imFLMS 0.4251 0.0242 0.0074 0.0051 0.541

mFLMS 0.4960 0.0286 0.0085 0.0072 0.484

LMS 0.7991 0.0351 0.0015 0.0019 0.408

FIGURE 11
Test system under consideration.

vector given by [wk(1) wk(2)], where wk(1) = ejωoΔTs and wk(2) =
AejωokΔTs+ηd .

y (k) = w× uT. (35)

The input vector is updated by following the imLMSweight updating
equation as stated in Equations 11, 12. Therefore the observed
voltage signal and error [e(k) = d(k)-y(k)] is also updated in each
Kth iteration. In the process, iHHO optimizer is also introduced in

the weight updating equation. Thus, the process becomes effective
and efficient. When the mean square error approximates to zero, the
optimizer provides the optimal step sizes which automatically fetch
to the weight updating equation and the system power frequency
will be estimated using Equation 36.

f̂n = Img(logwk (2)/2πTs) . (36)

The general steps involved in the proposed estimator are as follows:
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FIGURE 12
Estimated frequencies of the test system based on different methods.

FIGURE 13
Random load signal applied to the test system.

FIGURE 14
Frequencies estimated by different methods for random loading.

Step (1). Initialization of the input vector, weight vector, and all
variables.

Step (2). Formulation of the instantaneous voltage
signal using Equation 32.

Step (3). Decomposition of voltage signal into its complex
form using Equation 33.

Step (4). Conceptualization of the observed voltage
signal through Equation 35.

Step (5). Updating the weight vector using the imFLMS
estimator as per Equation 11.

Step (6). Optimal tuning of the step size and fractional-order
step size with the optimization algorithm.

Step (7). Calculation of the frequency component from the
weight update equation using Equation 36.

5 Summary of results and discussion

5.1 Validation of the proposed improved
HHO algorithm

The improved HHO algorithm was used to obtain the optimal
step size that minimizes the cost function of the proposed
imFLMS estimation algorithm. Several distinct benchmark
functions were used to verify the reliability and effectiveness
of the proposed technique. The improved HHO showed greater
optimal performance after 100 trials. The enhanced version is more
accurate and resilient while requiring less processing time; the ideal
solution demonstrates higher search process efficiency and flawless
balance between exploration and exploitation while handling the
benchmark functions. Figure 3 shows the convergence graph for
comparison, where the optimization approach offers amore optimal
value than the traditional HHO, SCA, and PSO techniques. The
graphs show that the suggested iHHO algorithm maintains its ideal
outcome in terms of fewer iterations and shorter execution time.The
proposed optimizer was also applied to several common restricted
benchmark functions, such as Mishra’s bird, Simionescu, and
Townsend functions, as well as unconstrained benchmark functions
like the Ackley, Levi, and Rastrigin functions (Pati and Subudhi,
2023). Their results show that the iHHO algorithm outperforms the
other algorithms in terms of the best, worst, andmean values as well
as execution time.

5.2 Temporal complexity of the proposed
optimization algorithm

The temporal complexity of the proposed algorithm can be
computed as follows and stated in Equation 37.

• Time required for population initialization.
• Time needed to estimate each particle’s fitness value.

Thus, the algorithm performs

O(L+U+Dm +Maxiter) (37)

where O() represents the order; Dm is the problem size; L
and U are the lower and upper bounds, respectively; Maxiter is
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FIGURE 15
Experimental setup for real-time data generation.

FIGURE 16
Actual waveform and estimated signal using the proposed method
with the experimental setup.

the maximum number of iterations. The execution times based
on the suggested technique for different estimation algorithms are
presented in Tables 2, 3.

5.3 Frequency estimation from
three-phase balanced signals

Using filtering methods based on the LMS, mFLMS, and the
newly proposed imFLMS algorithms, several examples of balanced
power signals were simulated as follows.

The control parameters of the weight update expression (μ1
and μF) were tuned using the improved HHO technique, and
the remaining variables like the momentum learning term and
fractional order were assigned based on system performance.
The values of all constants and variables were evaluated using
MATLAB/Simulink. For the purpose of the simulations, the voltage
equations for a balanced three-phase system were considered
according to Equation 32; the phase signal amplitudes Van, Vbn,

and V cn were each considered to be 1 p.u. in this study. The
signal frequency was considered to be 50 Hz, and AWGN with a
signal-to-noise ratio (SNR) of 30 dB was introduced to corrupt the
complex phasor produced by the transform. The comparisons were
performed to determine whether the proposed adaptive filtering
technique provides the most accurate estimation. The frequency
estimation plot of the proposed technique was compared with
those of the mFLMS and standard LMS techniques, and it was
observed that the proposed method estimated the frequency well
before the other techniques, as displayed in Figure 4. A comparison
of the mean-squared errors of the various frequency estimation
techniques is depicted in Figure 5; here, the imFLMS method was
observed to have faster error convergence over the other adaptive
algorithms. The absolute frequency inaccuracy was found by
determining the difference between the desired value and estimated
output from the adaptive algorithm. A comparative assessment of
the estimated errors for different SNRs is further shown in the
bar chart of Figure 6. Although the imFLMS, mFLMS, and LMS
algorithms can provide frequency estimations, their effectiveness
reduces in noisier environments.

The power system signal with a fundamental frequency of 50 Hz
was then applied with a step shift in frequency between 0.02 and
0.04 s, for which it was observed that the imFLMS estimation
technique followed the frequency variation more closely than the
other algorithms (Figure 7). Next, a ramp shift in frequency from
50 Hz to 46 Hzwas applied between 0.03 and 0.05 s, followingwhich
the frequency was maintained constant at 46 Hz for the remainder
of the period of the three-phase signal. As seen in Figure 8, the
suggested technique successfully tracks the signal ramp change with
a convergence time of less than half a cycle and a high degree of
estimation accuracy. With the FLMS algorithm, the tracking began
at about 0.033 s and leading to an inconsistent result. Similarly, as
seen in the figure, the LMS algorithm followed the ramp variation
from 0.038 s.

The step size variation μ1 with respect to number of iterations
for the proposed iHHO algorithm is displayed in Figure 9. Here,
the adaptive algorithm approach suggests that the optimal step
size selection should satisfy the condition of 0 < step size
< 1/(maximum eigenvalue of the input autocorrection matrix).
Thus, the highest allowed value is obtained initially, and the
step size is reduced thereafter until the change in error is
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TABLE 4 Comparative assessment with the state-of-the-art methods.

Method Convergence rate Estimated error

Reported (ms) Amelioration (%) Reported Amelioration (%)

Proposed imFLMS 0.8 - 0.007 -

Sparse H∞ filter (Subudhi et al., 2020) 1.2 150 0.008 114.28

Linear LMS kurtosis (Nefabas et al., 2020) 3 375 0.009 128.57

stabilized. A similar behavior was also observed with the proposed
model. However, the main feature here is that the selection
process automatically addresses the aforementioned condition. The
improved optimization is so effective that the optimal value (0.031)
is identified well before the 200th iteration. Similarly, the fractional-
order step size variation based on the iterations of the optimizer
algorithm is shown in Figure 10 and is found to be 0.0012.

Table 2 displays the performance evaluation results for the
suggested scheme in terms of the initial convergence rates for
differentmomentum learning rates (γ) and fractional orders (F).The
findings reveal that the initial convergence of the imFLMS algorithm
is much faster than those of typical adaptive approaches and that the
convergence rate increases with increases in the preceding gradients.
Estimated frequency error validation was then used to examine
the performance of the suggested method further; the results of
the imFLMS approach were compared with those of the other
methods for various values of γ and F. It is noted that all techniques
were sufficiently accurate and convergent; however, the accuracy
of any approach decreases as the noise variance increases. It was
also found that fractional adaptive algorithms, such as the imFLMS
and mFLMS methods, were steady for all possible fractional order
variations and that there were no significant variations in accuracy
between various fractional orders. Additionally, a larger fractional
order value (F = 0.75) produced a considerably better outcome.
According to the findings presented in Table 2, the imFLMS
algorithm achieves faster convergence when the proportion of prior
gradients is relatively high (γ = 0.9) but better steady-state results
when this proportion is lower (γ = 0.2). Therefore, a larger value
of the learning parameter (γ = 0.7) would be an excellent choice
for achieving good balance between faster convergence and better
steady-state results. Table 3 shows the performances of the imFLMS,
mFLMS, and LMS estimators for various noise levels. As discussed
earlier, the proposed imFLMS technique has higher efficacy in noisy
environments than other estimation techniques, but its execution
time is slight higher than that of the traditional LMS algorithm at
different noise levels.

5.4 Frequency estimation with a
renewable-based power system

To examine the effectiveness of the proposed scheme, it was
tested with a signal derived from a renewable-based two-area-load
frequency control model. This power system was earlier modeled
and simulated in MATLAB as well as evaluated by Pati and Subudhi

(2021). Figure 11 shows the block diagram model of the test system
under consideration (Pati and Subudhi, 2021).

To validate the proposed scheme, a signal generated with a
step load perturbation of 2% was considered and compared for the
suggested imFLMS and existing estimation techniques. Figure 12
displays the relevant comparative plots for these estimation
methods. Furthermore, the dynamic load signal shown in Figure 13
was applied to the test system to verify the algorithmic efficacy.
The imFLMS, mFLMS, and LMS algorithms were used to estimate
the test system frequency, and their results are shown in Figure 14.
As verified earlier, the imFLMS algorithm outperforms the other
estimation techniques; it estimates the frequency more precisely in
less time than the other methods even with the random load, thus
proving its robustness.

5.5 Experimental studies and results

To validate the performance of the proposed algorithm for
power system frequency estimation, a simple experimental setup
was established in the laboratory. In this setup, an induction motor
was connected as a load to a single-phase power supply, as suggested
by Daw (2016). A variable AC supply was then employed to regulate
the input voltage. A voltmeter, an ammeter, and a wattmeter were
used tomeasure the output voltage, current, and power, respectively.
The voltage signals were captured using a digital storage oscilloscope
from the load side, where the induction motor was connected, as
illustrated in Figure 15.The detailed specifications of the equipment
used are as follows:

• Variable AC supply: 0–230 V/0–270 V, 10 A
• Voltmeter: 0–150/300 V
• Ammeter: 0–5/10 A
• Wattmeter: 0–150/300 V, 5/10 A
• Single-phase squirrel-cage-type induction motor: power =
1.5 HP, voltage = 230 V, current = 6 A, frequency = 50 Hz,
speed = 1440 rpm
• Digital storage oscilloscope: bandwidth = 200 MHz, number
of channels = 2, sampling rate = 1 gigasamples/s, probe-
PP510 = 100 MHz
• Computer: 2.4 GHz, 8 GB RAM

The input voltage waveform across the induction motor was
recorded with a digital storage oscilloscope, and the data were
subsequently transferred to a computer through communication
software. Figure 16 illustrates the voltage signal estimation using
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the proposed imFLMS algorithm and the data obtained from the
experiment. The results demonstrate that the proposed algorithm
yields an estimation significantly closer to the actual signal and with
a nearly identical period. Consequently, the fundamental frequency
of 50 Hzwas accurately estimatedwithminimalmean-squared error
of 0.0741 Hz, indicating that the proposed estimator was highly
effective for applications involving real-world data.

5.6 Comparative assessment with
state-of-the-art methods

The percentage improvement was measured in the comparative
state-of-the-art study using Equations 38, 39, where AP1 and
AP2 stand for “amelioration (in percentage)” and represent the
percentage enhancements obtained as the performance measures
(namely convergence rate and estimated error) compared to the
reference schemes noted in Subudhi et al. (2020) and Nefabas et al.
(2020). The convergence rate and estimated error have their
own amelioration values and are denoted by the notations
APi(Convergence) and APi(Error), respectively.

AP1 (%) (Convergence) =
Rate o f ConvergenceRe f

Rate o f ConvergenceEstimated
× 100 (38)

AP2 (%) (Error) =
Estimated ErrorRe f

Estimated Errorobtained
× 100 (39)

The results for the suggested adaptive scheme tuned by iHHO
for power system frequency estimation were compared with
those reported by Subudhi et al. (2020) and Nefabas et al. (2020).
These comparisons are summarized in Table 4. Additionally, it has
been demonstrated beyond reasonable doubt that the proposed
method greatly enhances the reaction time of the system. Thus,
we conclude that the suggested system configuration has better
stability compared to those discussed in Subudhi et al. (2020) and
Nefabas et al. (2020). From AP1 and AP2, it is observed that the
system responsiveness is greatly improved with the iHHO algorithm
and proposed technique. The adoption of the imFLMS algorithm
results in a convergence rate improvement of 150%–375% and
estimated error improvement of 114.28%–128.57% compared to the
findings reported by Subudhi et al. (2020) and Nefabas et al. (2020).
The sparse H-infinity filtering approach was reported to produce
absolute frequency errors of 0.031, 0.008, and 0.0010 at SNR levels
of 20 dB, 30 dB, and 40 dB, respectively. In contrast, the proposed
imFLMS estimation technique demonstrates superior accuracy at
these SNR levels, as detailed in Table 3. Similarly, the linear LMS
kurtosis estimator was reported to provide approximate frequency
biases of 0.196, 0.0075, and 0.0038 Hz at SNR levels of 20 dB, 30 dB,
and 40 dB, respectively.

6 Conclusion

This study presents a novel innovative momentum-
learning-control-rate-based fractional-order LMS algorithm for
instantaneous frequency estimation that was optimized using
improved chaotic-based HHO. The proposed technique is suitable
for measuring a wide range of frequency variations and exhibits

superior behavior under dynamic conditions. The proposed
algorithm was also investigated for step and ramp changes of the
frequency signal with different noise levels. Thus, it was found
to be a valuable and efficient tool for successful power frequency
estimation, with the simulation results confirming the superior
dynamic responses of the algorithm. The proposed estimation
method with the chaotic and OBL with HHO shows better
performance than the approach based on the simple LMS method
for waveformswith noise. In addition, this approach is important for
real-time signals from test systems. The investigations also verified
the efficacy and improved performance of the suggested approach
through comparisons with signals derived from a multiarea
renewable-based power system model and real time experimental
setup. The proposed algorithm is thus expected to be useful for
system identification, noise cancellation, and real-time applications.
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