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In distribution networks with distributed generators (DGs), power generation and
load demand exhibit increased randomness and volatility, and the line parameters
also suffer more frequent fluctuations, which may result in significant state shifts.
Existing model-driven methods face challenges in efficiently solving uncertain
power flow, especially as the size of the system increases, making it difficult to
meet the demand for rapid power flow analysis. To address these issues, this
paper proposes an SVR-based interval power flow (IPF) prediction method for
distribution networks with DGs integration. The method utilizes intervals to
describe system uncertainty and employs Support Vector Regression (SVR) for
model training. The input feature vector consists of the intervals of active power
generation, load demand, and line parameters, while the output feature vector
represents the intervals of voltage or line transmission power. Ultimately, the
SVR-based IPF prediction model is established, capturing the linear mapping
relationship between input data and output IPF variables. Simulation results
demonstrate that the proposed method exhibits high prediction accuracy,
strong adaptability, and optimal computation efficiency, meeting the
requirements for rapid and real-time power flow analysis while considering
the uncertainty in distribution networks with DGs integration.
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1 Introduction

1.1 Motivation

In the context of widespread integration of distributed generators (DGs) such as wind
and photovoltaic (PV) power into distribution networks, power generation exhibits
uncertainty due to the inherent volatility and randomness of wind and solar. In
addition, load demand and line parameters also exhibit uncertainty which is caused by
user consumption behaviors and environmental factors, respectively. These issues caused
the power flow state in the system to undergo rapid and intricate changes. Considering these
uncertainties, uncertain power flow (PF) methods are proposed by researchers. However,
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most existing uncertain PF methods are model-driven. As the
system scale increases, the model complexity grows, leading to a
significant reduction in computational efficiency, which fails to meet
the requirements for rapid assessment of system states in
distribution networks. Improving the computational efficiency of
uncertain PF analysis can provide assurance for real-time
monitoring and dispatching of distribution systems, ensuring
stable and efficient operation. There is an urgent need for
efficient and rapid methods for uncertain PF analysis in
distribution networks that can effectively address system
uncertainty.

1.2 Focus and potential

This paper focuses on addressing the computational efficiency
issues of uncertain PF, primarily in two aspects: describing system
uncertainty using intervals and employing data-driven methods for
PF prediction, enabling real-time interval power flow (IPF)
calculations in distribution systems. The potential of this research
lies in its ability to significantly enhance the real-time monitoring
and operational capabilities of distribution networks with integrated
DGs. By addressing the limitations of existing model-driven
uncertain PF methods, the proposed approach could lead to
more efficient PF analysis, particularly in the face of the
increasing penetration of renewable energy sources (RES). This
has offered a scalable solution for real-time PF analysis in
increasingly complex and uncertain environments.

1.3 Preceding research

Commonly used methods for handling uncertainty currently
include robust, probabilistic, and interval methods. Among them,
the robust method is mainly used for optimization (Zheng et al.,
2024), such as energy management under the uncertainty of
renewable energy generation and electric vehicles (EVs) (Tan
et al., 2024). When calculating power flow, the probabilistic
method and interval algorithm are more frequently employed,
which are called probabilistic power flow (PPF) and interval
power flow (IPF). IPF has the advantages of simple modelling
and high security compared with PPF. Existing IPF methods
primarily consist of iterative approaches (Mori and Yuihara,
1999; Barboza et al., 2004) and optimization techniques (Zhang
et al., 2017; 2018; 2023). For iterative approaches, the Interval
Newton iteration was first employed. To avoid solving the
equations in the Interval Newton method, the Krawczyk method
was introduced. The interval problem was broken down into
multiple sub-intervals, and each sub-interval was solved
iteratively using the Krawczyk method (Mori and Yuihara, 1999).
The Interval Newton iteration framework was combined with the
Krawczyk operator in (Barboza et al., 2004), enhancing convergence
performance. The introduction of the Affine Algorithm (AA)
(Vaccaro et al., 2010) increased the efficiency and accuracy of
solving interval nonlinear equation systems. The convergence of
the Krawczyk-Moore iteration was enhanced by introducing AA,
and the correlation issues of interval computation were addressed.
Optimization methods, which avoid iteration and convergence

problems, have gained widespread attention in recent years. The
optimization model for the IPF solution was constructed by
converting intervals into affine forms (Zhang et al., 2017),
improving the efficiency of solving IPF. An optimization scenario
method (OSM) was improved to solve IPF (Zhang et al., 2018),
directly obtaining the range of power flow variables through the
optimization models. In IPF analysis for distribution networks, the
rise of AA has led to a trend of combining it with the Distflowmodel,
including solving the affine Distflowmodel using forward-backward
substitution (Cheng et al., 2023; Lyu et al., 2023) and directly
establishing AA-based IPF optimization models (Leng et al.,
2020; Cao et al., 2024). However, existing uncertainty analysis
based on physical models suffers from the drawback of increased
computational complexity, resulting in lengthy processing times,
making it challenging to meet the power grid’s demand for swift
power flow computations.

Due to the advancements in computer and digital
communication technologies, data acquisition in power systems
has made significant progress. The deployment of Wide Area
Measurement Systems (WAMS) has enabled the reliable
collection of high-precision, wide-area synchronized electrical
quantities, including voltage, current, phase angles, et al. This
progress has fostered the development of data-driven power flow
analysis methods, providing a solution to the issue of low efficiency
in traditional model-driven power flow analysis (Fu et al., 2024). A
data-driven linear PF model incorporating the support vector
regression (SVR) and ridge regression (RR) algorithms was
proposed in (Li et al., 2023). Similarly, a linear regression model
was solved by RR to suppress the effect of data collinearity in (Chen,
Y. et al., 2022). In distribution networks, the single-phase PF model
is often considered. For instance, a data-driven single-phase linear
PF model was introduced in (Xing et al., 2021). A data-driven
convex model for hybrid AC/DC microgrids operation involving bi-
directional converters was proposed in (Liang et al., 2023).
Nevertheless, distribution power systems (DPSs) are generally
unbalanced and it is still necessary to study linear three-phase
distribution PF models. A data-driven-aided linear three-phase
PF model for DPSs considering the imbalance was constructed in
(Liu, Y. et al., 2022), and a data-driven piecewise linearization for
distribution three-phase stochastic power flow was proposed in
(Chen, J. et al., 2022), mitigating the errors of model-based PF
linearization approaches. To overcome the challenge of obtaining
accurate results with linear model-based data-driven methods, an
approach with high adaptability to the nonlinearity of PF was
proposed based on the thought of Koopman operator theory
(Guo et al., 2022). What’s more, a risk-free method was
proposed in (Dong et al., 2022) to accelerate AC power flow with
machine learning-based initiation, reducing the PF computation
time. To tackle the challenges of the hidden measurement noise in
the data-driven PF linearization, the problemwas transformed into a
regression model where the structure of the PF equations was
exploited (Liu et al., 2020). Besides, the local load fluctuation
suppression and its interaction with distribution system should
also be addressed which brings the exact necessity towards the
power flow prediction (Khalid et al., 2022; Rehman et al., 2024).
Also, here the role of ancillary services and renewable energy
integration should also be addressed towards covering the
intermittency (Musleh et al., 2019; Sun et al., 2020). In some
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cases, the database may not possess the envisioned completeness and
appropriateness. There is a trend that combines the physical model-
driven and data-driven. This can make up for the issues arising from
incomplete data (Xing et al., 2022; Liu et al., 2021). A hybrid physical
model-driven and data-driven approach for linearizing the power
flow model was proposed in (Tan et al., 2020), and the linearized
errors are obtained by the partial least squares regression-based
data-driven approach. In the condition of lack of data, physical
model parameters are introduced to assist the data-driven training
process (Shao et al., 2023), and a highly scalable data-driven
algorithm for stochastic AC-OPF that has extremely low sample
requirements was presented in (Mezghani et al., 2020). To enhance
the performance and generalization ability of the data-driven model,
a physics-guided neural network was proposed to solve the PF
problem by encoding different granularity of Kirchhoff’s laws, and
system topology into the rebuilt PF model (Hu et al., 2021). The
fusion of robust principles with data-driven approaches has also
enhanced the precision of data-driven methods. The worst-case
errors were probabilistically constrained through distributionally
robust chance-constrained programming (Liu, Y. et al., 2022; Chen
et al., 2020). It also allows guaranteeing the linearization accuracy for
a chosen operating point. In addition, a more comprehensive
summary and discussion of existing data-driven PF linearization
was presented in (Jia and Hug, 2023). For data-driven methods,
support vector machine (SVM) is widely used due to its strong
robustness and generalization ability, particularly excelling in
scenarios with small samples and high dimensionality. Addressed
to the N-k1-k2 cascading outages, the researchers employ SVM for
classifier training, enabling the fast, reliable, and robust computation
of active and reactive power flows (Xue and Liu, 2021). The SVM is
utilized for optimal power flow with small-signal stability
constraints in (Liu, J. et al., 2022), achieving high computational
efficiency and economic benefits.

Although data-driven PF methods have made significant
advancements, combining data-driven approaches with
uncertainty still presents challenges. On the one hand, data-
driven methods require a large amount of real or simulated data,
which is what uncertain PF lacks. Historical data is difficult to
obtain, and generating simulated data often incurs higher costs
compared to deterministic PF. On the other hand, effectively
integrating uncertainty into data-driven models is a challenge, as
these uncertainties are often high-dimensional, increasing the
complexity of modeling. In response, interval approaches offer
the advantages of simple modeling and high simulation accuracy,
while SVR can handle high-dimensional data, making it suited to the
requirements. Therefore, this paper adopts interval modeling to
represent uncertainties and selects SVR as the data-driven approach.

1.4 Contribution

This paper is dedicated to improving the computational efficiency
of IPF in distribution networks to achieve real-time analyses,
providing essential support for the rapid response of uncertain
distribution systems with DGs integration. To this end, a method
for IPF prediction in distribution networks based on SVR is proposed
by combining data-driven methods with interval approaches.
Accordingly, the research makes the following contributions.

Firstly, an IPF model for distribution networks based on the
OSM is established considering system uncertainty as intervals. In
addition to the uncertainty of power generation and load demand,
the uncertainty of line parameters is also considered in this model.
Due to environmental variations, the parameters of network lines
exhibit a certain level of uncertainty. This consideration improves
the accuracy of the model.

Secondly, an IPF prediction model is constructed using SVR
based on the interval dataset generated by simulation. Different
from traditional data-driven models, this model is a multi-output
model that separately outputs the upper and lower bounds of the
power flow results. This interval result fully considers various
uncertainties in the distribution system, as the model is trained
with these uncertainties incorporated.

Thirdly, the established SVR-based IPF prediction approach has
been demonstrated to have high prediction accuracy and
computational efficiency. The effectiveness of this approach is
validated through studies on both IEEE 33bw and IEEE 69 cases.
The IEEE 33bw case is primarily used to evaluate the model’s
accuracy, while the IEEE 69 case is mainly used to analyze the
model’s computational efficiency.

The IPF model for distribution networks is introduced in
Section 2. The training and prediction algorithm through SVR is
introduced in Section 3. The procedure of the method is introduced
in Section 4. The case studies are conducted in Section 5, and
conclusions in Section 6.

2 Construction of IPF model for
distribution networks

2.1 Distflow formulation

The relaxed Distflowmodel for the radial distribution network is
expressed as Equations 1–4. Before constructing the model, it is
customary to assume that the transmission lines do not involve
parallel grounding branches and to specify that the direction of
current and power flow from node i to node j is positive.

vj � vi − 2 rijPij + xijQij( ) + r2ij + x2
ij( )lij, ∀ i, j( ) ∈ B (1)

P2
ij + Q2

ij ≤ lijvi5
2Pij

2Qij

lij − vi

�����������
�����������
2

≤ lij + vi (2)

∑
k:j→k

Pjk − ∑
i:i→j

Pij − rijlij( ) � pj, ∀j ∈ D (3)

∑
k:j→k

Qjk − ∑
i:i→j

Qij − xijlij( ) � qj, ∀j ∈ D (4)

The model is the branch power flow model after convex
relaxation, where Equation 1 is the voltage equation, Equation 2
is the power equation at the sending end of the branch, Equations 3,
4 are the power balance equation. B and D are the set of branches
and nodes. We set that lij � |Iij|2 and vi � |Vi|2, where Vi is the
voltage vector of node i, and Iij is the current vector flowing through
branch (i, j). rij is the resistance and xij is the reactance of
transmission line. Pij and Qij are the active and reactive line
transmission power from node i to node j, respectively. Note that
more than one upstream and downstream branch is connected to
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node j. pj and qj are the injection active and reactive power of node j,
respectively, which are equal to the power generation minus the load
demand, i.e., pj � pG

j − pL
j .

2.2 Modelling of IPF based on distflow

In active distribution networks with DGs integration, the output
of distributed generators and flexible loads both exhibit a certain
degree of uncertainty, which has a significant impact on the safe and
stable operation of the distribution networks. Therefore, it is
essential to consider these uncertainties. In this paper, the
interval approach is utilized to describe uncertainties, ensuring
the security of system operation. Additionally, the network
parameters, including line resistance and reactance, may
experience variations due to external environmental factors. To
make the model more practical, the uncertainties of these
parameters are considered simultaneously during modelling.

In the interval approach, the active power generation and load
demand, as well as line parameters are represented in interval form,
and the interval results for variables such as voltage and line
transmission power can be obtained. Representing the interval
form in χ̂, where χ̂ � [χ , �χ], the IPF model based on Distflow for
distribution networks can be expressed as Equations 5–8.

v̂j � v̂i − 2 r̂ijP̂ij + x̂ijQ̂ij( ) + r̂2ij + x̂2
ij( )l̂ij, ∀ i, j( ) ∈ B (5)

2P̂ij

2Q̂ij

l̂ij − v̂i

������������
������������
2

≤ l̂ij + v̂i, ∀ i, j( ) ∈ B (6)

∑
k:j→k

P̂jk − ∑
i:i→j

P̂ij − r̂ij l̂ij( ) � p̂j, ∀j ∈ D (7)

∑
k:j→k

Q̂jk − ∑
i:i→j

Q̂ij − x̂ijl̂ij( ) � q̂j, ∀j ∈ D (8)

where p̂j � p̂G
j − p̂L

j , q̂j � qGj − q̂Lj . p̂
G
j and qGj are the active and

reactive power generation, respectively. p̂L
j and q̂

L
j are the active and

reactive load demand, respectively.
The IPF model based on Distflow can draw inspiration from the

principles of OSM for its solution. In this approach, the interval
uncertainties of the IPF model are regarded as variables that vary in
their interval bounds, and the desired variables are set as the
objective functions. Thus, it involves transforming the resolution
of a set of interval nonlinear equations into variable optimization
problems. The core of OSM is based on the Extreme Value Theorem
through which we can get two points of conclusions. We simplify
Equations 5–8 as h(x) � [h , �h] where [h , �h] are interval input data
and x are the variables of the IPF model. The first point is that there
is a fixed x corresponding to an arbitrary scenario ξ ∈ [h , �h] in the
power flow calculation. The second point is that there exists a special
scenario ξi

min (ξi
max) for each single variable xi making xi minimum

(maximum) for all scenarios ξ ∈ [h , �h]. The minimum and
maximum are denoted as xi

min and xi
max, and the interval

[xi
min, xi

max] is the solution of xi under the input data [h , �h].
From the two points of conclusions, the solution for IPFmodel is

reduced to find ξi
min and ξi

max for each variable xi by establishing the
minimum and maximum optimization models Equation 9 of power
flow variables.

min max( )xi

s.t.
h x( ) � ξ
h ≤ ξ ≤ �h{ (9)

Taking the variable vi in distribution networks, for example,
solving the IPF model Equations 5–8 can be transformed into
solving the optimization model Equation 10, and the model can
be solved through commercial solvers such as CPLEX.

min max( ) vi, ∀i ∈ D
2Pij

2Qij

lij − vi

�����������
�����������
2

≤ lij + vi, ∀ i, j( ) ∈ B

vj � vi − 2 rijPij + xijQij( ) + r2ij + x2
ij( )lij, ∀ i, j( ) ∈ B∑

k:j→k

Pjk − ∑
i:i→j

Pij − rijlij( ) � pj, ∀j ∈ D

∑
k:j→k

Qjk − ∑
i:i→j

Qij − xijlij( ) � qj, ∀j ∈ D

pG

j
− �pL

j ≤pj ≤ �pG
j − p

L

j
, ∀j ∈ D

qGj − �qLj ≤ qj ≤ qGj − q
L

j
, ∀j ∈ D

x
ij

l
ij

( )≤xij lij( )≤ �xij
�lij( ), ∀ i, j( ) ∈ B

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10)

It can be succinctly described as searching for a specific scenario
ξi
min (ξi

max) among all uncertain scenarios of the distribution network,
which can minimize (maximize) the voltage magnitude |Vi| at node i,
so as to obtain the voltage interval [Vi

min, Vi
max]. Naturally, the

objective function vi of Equation 10 can also be replaced with
active power transmission Pij or reactive power transmission Qij.

3 IPF prediction method for distribution
networks based on SVR

As the system scale increases, the efficiency of model-driven IPF
analysis significantly decreases, which does not meet the current
demands for rapid PF computations in distribution networks.
Therefore, the data-driven approach has garnered attention for
achieving faster IPF computations. The SVR has been opted for
in this research due to its advantages of handling high-dimensional
data, which is aligned with the characteristics of IPF analysis.

3.1 Construction of eigenvectors in IPF

In the typical SVR framework, the model is designed for single-
output problems. However, in the context of IPF models, situations
may arise where some nodes attain their maximum values while
others reach their minimum values within the same input scenario
since both input data and output variables are represented as intervals.
Therefore, the SVRmodel for IPF is fundamentally a multiple-output
problem. Corresponding to the same input scenario, the situation
where different nodes attain either maximum or minimum values
may vary. In such cases, training the SVR model based on the specific
input and a singular minimum (or maximum) output would lead to a
significant decrease in model accuracy. Based on this, the feature
vectors in IPF model are established.

The well-constructed feature vectors are crucial prerequisites for
ensuring the effectiveness of data-driven model learning. In the
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analysis of extensive historical state data for distribution networks
with DGs, it is essential to determine the input and output features
for the IPF analysis at first. Given that the primary characteristic of
distribution networks with DGs is the uncertainty of renewable
power generation and load demand, which significantly impacts IPF
analysis results, the sequence of renewable power generation and
load demand for the distribution system is selected as the input
eigenvector of the SVR model, and the sequence of node voltages
and active line transmission power, which is indicative of power flow
results, is selected as the output feature vector.

3.1.1 Construction of input eigenvector adapted to
variations in source-grid-load

The uncertainty of source, grid, and load is represented in
interval form for the IPF model. Therefore, the values in the input
eigenvector should be intervals distinguishing from conventional
eigenvectors. However, directly using interval values for training
poses challenges such as computational complexity, model misfit,
and difficulty in interpreting learning patterns. To address these
issues, it is necessary to identify relevant parameters that can
characterize interval features, such as interval midpoints and
interval radii, to replace interval values during training. The
midpoint of the interval is the operating point of generator,
which reflects the randomness of generator output. The interval
radius can reflect the fluctuation degree of uncertain data.
Therefore, the interval midpoint of source and radius of source-
grid-load data is used to construct the input eigenvector instead of
interval values.

Take the renewable active power generation p̂G
j � [pG

j
, �pG

j ] as an
example, the relationships Equations 11, 12 exist in the interval.

pG

j
� pG

0,j − ΔpG
j , �p

G
j � pG

0,j + ΔpG
j (11)

ΔpG
j � σ · pG

0,j (12)

where pG
0,j represents the interval midpoint, ΔpG

j is the interval
radius, σ is the fluctuation coefficient. The pG

0,j and ΔpG
j can

characterize the features of the renewable active power
generation interval. For a certain distribution network, the value
of the input eigenvector can be changed by changing the midpoint
pG
0,j or the fluctuation coefficient σ. Besides, the active and reactive

load demands, and line parameters follow the similar principle.
The eigenvector for source includes the sequence of renewable

active power generation ΔpG � ΔpG
1 ,ΔpG

2 , . . . ,ΔpG
M{ } and

pG0 � pG
0,1, p

G
0,2, . . . , p

G
0,M{ }, which for load includes the sequences

of active and reactive load demand ΔpL � ΔpL
1 ,ΔpL

2 , . . . ,ΔpL
D{ },

ΔqL � ΔqL1 ,ΔqL2 , . . . ,ΔqLD{ }, and which for grid includes the
sequences of line parameters Δr � Δr1,Δr2, . . . ,ΔrB{ },
Δx � Δx1,Δx2, . . . ,ΔxB{ }. According to this, the input
eigenvector adaptable to variations in source-grid-load can be
formulated as follows:

X in � ΔpG, pG0 ,ΔpL,ΔqL,Δr,Δx[ ] (13)
where M is the number of DGs, D is the number of nodes, B is the
number of branches.

3.1.2 Construction of output feature vector
When conducting PF analysis, it is essential to consider the

output features that can reflect power system quality and

stability. In power flow results, node voltage or line
transmission power can be used to evaluate system stability.
Therefore, the node voltage is selected as output features in
this paper. In IPF model, node voltages are represented as
interval values, so that the output features of the SVR training
model are essentially intervals. However, training the model
directly with interval values as the output vector may lead to
issues such as model complexity and low interpretability. To
address the issues, it is preferable to choose upper and lower
bounds that characterize interval features as the output feature
vector. This involves establishing the SVR model with two output
nodes. According to this, the output feature vector in IPF can be
constructed as Equation 14.

Y out1 � Vmin, Y out2 � Vmax (14)
Certainly, we can also construct the output feature vector as

presented in Equation 15 to obtain the predictive results of line
transmission power.

Y out1 � Pij,min, Y out2 � Pij,max (15)

3.2 Modelling of SVR-based IPF prediction

Support Vector Machine (SVM) is a binary classification
algorithm, and its fundamental model is a linear classifier that
maximizes the margin in the feature space. The objective of SVM
learning is to find a hyperplane that separates the samples, guided
by the principle of maximizing the margin. This ultimately
translates into solving a convex quadratic programming
problem. The variant of SVM used in this research for IPF
prediction is SVR, specifically designed for solving regression
problems. The principle of SVR is presented in Figure 1. SVR
can be categorized into three types according to the linear
separability of the training data, including Linear Hard ε-SVR,
Linear ε-SVR, and ε-SVR.

The original data for IPF analysis is considered linearly non-
separable. Therefore, this paper selects the ε-SVR model to
explore the connection between the input and output of the

FIGURE 1
The principle of SVR.
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IPF for distribution systems. Based on the constructed feature
vectors in IPF, the ε-SVR model for IPF prediction is established
as follows.

According to the description in 3.1, the training data set of themodel
can be obtained as T � (Xin,Yout1,Yout2)1, (Xin,Yout1,Yout2)2, . . . ,{
(Xin,Yout1,Yout2)N} Xin ∈ Rd. Then divide the training data set into
two groups T1 � (Xin,Yout1)1, (Xin,Yout1)2, . . . , (Xin,Yout1)N{ } and
T2 � (Xin,Yout2)1, (Xin,Yout2)2, . . . , (Xin,Yout2)N{ }, and two SVR
training models Equations 16, 17 can be built for the minimum and
maximum outputs depending on each group of training data.

min
ωl ,bl

1
2
ωl‖ ‖2 + C∑N

i�1
ξ i + ξ*i( )

s.t. ωl · X in( ) + bl − Yout1| |≤ ε + ξ,

ξ i, ξ
*
i ≥ 0, i � 1, 2, . . . , N

(16)

min
ωu,bu

1
2
ωu‖ ‖2 + C∑N

i�1
ξ i + ξ*i( )

s.t. ωu · X in( ) + bu − Yout2| |≤ ε + ξ,

ξ i, ξ
*
i ≥ 0, i � 1, 2, . . . , N

(17)

where ωl and ωu are the normal vectors, bl and bu are constants, ξi,
ξ*i are the slack variables, C is the penalty factor, and C > 0. ε
represents the distance swept by the hyperplane across the regions
on either side, and the “ε-band” includes all training points of each
training data set.

3.3 Solving of SVR-based IPF
prediction model

The SVR training models are solved in this section. To reduce
the complexity of solving, the models Equations 16, 17 can be

transformed into Equations 18, 19 through applying the Lagrangian
function and choosing an appropriate kernel function K(x, x′).

min
αl *( )∈R2N

∑N
i,j�1

αl,i* − αl,i( ) αl,j* − αl,j( )K X in,i,X in,j( )
+ε∑N

i�1
αl,i
* + αl,i( ) −∑N

i�1
Yout1,i αl,i

* − αl,i( ),
s.t. ∑N

i�1
αl,i − αl,i

*( ) � 0,

0≤ αl,i, αl,i
* ≤C, i � 1, 2, . . . , N (18)

min
αu *( )∈R2N

∑N
i,j�1

αu,i* − αu,i( ) αu,j* − αu,j( )K Xin,i,X in,j( )
+ε∑N

i�1
αu,i
* + αu,i( ) −∑N

i�1
Yout2,i αu,i

* − αu,i( ),
s.t. ∑N

i�1
αu,i − αu,i

*( ) � 0,

0≤ αu,i, αu,i* ≤C, i � 1, 2, . . . , N (19)

where αl,i, αl,i* , αu,i, αu,i* are the Lagrange multipliers corresponding to
the inequality constraints. The optimization problems can be
solved by commercial solvers. The optimal solutions are attained
as �αl � (�αl,1, �αl,1* ,/, �αl,N, �αl,N* )T�αu � (�αu,1, �αu,1* ,/, �αu,N, �αu,N* )T,
respectively. Then the decision functions are constructed as (20)
and (21), and the corresponding �bl and �bu can be calculated by
Equations 22, 23, respectively. It is noted that �b is calculated
differently depending on �αj or �α*k.

f min x( ) � ∑N
i�1

�αl,i
* − �αl,i)K X in,i, x( ) + �bl( (20)

f max x( ) � ∑N
i�1

�αu,i
* − �αu,i)K Xin,i, x( ) + �bu( (21)

FIGURE 2
The structure of SVR training model for IPF prediction.
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�bl � Yout1,j −∑N
i�1

�αl,i* − �αl,i)K X in,i,Xin,j( ) + ε(
�bl � Y out1,k −∑N

i�1
�αl,i
* − �αl,i)K X in,i,Xin,k( ) − ε( (22)

�bu � Yout2,j −∑N
i�1

�αu,i* − �αu,i)K X in,i,Xin,j( ) + ε(
�bu � Y out2,k −∑N

i�1
�αu,i
* − �αu,i)K Xin,i,X in, k( ) − ε( (23)

The structure of SVR training model for IPF prediction can be
depicted as shown in Figure 2.

According to Figure 2, the minimum and maximum values of
the power flow results, that is the interval results [Vmin,Vmax] or
[Pij,min,Pij,max] for IPF prediction in the distribution network, are
obtained based on the corresponding linear mapping relationships
for any given input eigenvector.

4 The procedure of SVR-based IPF
prediction method

In the SVR-based IPF prediction method for distribution
networks, the first step involves establishing an IPF model for
generating the initial sample database through simulation. The

FIGURE 3
The flow chart of SVR-based IPF prediction method.
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database includes intervals for node injections of active and reactive
power, intervals for line parameter fluctuations, and corresponding
intervals for node voltage. The data are then processed to construct
the input and output feature vectors. Subsequently, the SVR training
model is established, and the formulation of linear decision function
can be determined by solving the model. Finally, when given a
specific input eigenvector, the interval results for power flow
variables can be predicted according to the decision function.
The detailed procedure of SVR-based IPF prediction is expressed
as follows and the flow chart is presented in Figure 3.

Step1. Data Generating. Generate a diverse set of initial samples
according to the established IPF model Equations 5–8
through simulation, where each set comprises the interval
of active and reactive node power injection fluctuations,
the interval of line parameter fluctuations, and the
associated node voltage intervals.

Step2. Data Preprocessing. Select and extract features from the
initial samples, and construct the input and output feature
vectors Equations 13, 14 for each set of data in the
database according to Section 3.1. To ensure the
accuracy of model training, normalize the input data.
Then select 80% of the database as the training set and
20% of the database as the testing set.

Step3. IPF Prediction Model Construction. Set the parameters C,
ξi, ξ

*
i , and ε. Then, obtain T1 and T2 from the training

dataset, and build SVR-based IPF prediction models
Equations 16, 17 depending on T1 and T2, respectively.
Meanwhile, experiment with different kernel functions
K(Xin,i, x) and select the one that yields the best results.

Step4. IPF Prediction Model Solving. Transform the constructed
models Equations 16, 17 into Equations 18, 19, and the
parameters αl,i, αl,i*, αu,i, αu,i*, bl, and bu can be obtained by
solving Equations 18, 19. Then construct the linear
decision functions Equation 20, 21 for predicting the
minimum and maximum value of power flow variables,
respectively.

Step5. Model Evaluation. Based on the testing dataset, evaluate
the performance of the model using appropriate metrics,
such as mean absolute error (MAE) and root mean square
error (RMSE). Then determine if the metrics meet the

requirements. If the metrics meet the expectations,
proceed to step6; otherwise, adjust the parameters C, ξi,
ξ*i , ε and return to step 3.

Step6. Interval Power Flow Prediction. Give the independent and
specific input eigenvector X, so that obtain the
corresponding minimum voltage value Vmin and
maximum voltage value Vmax through substituting X
into the decision functions and De-normalization.
Finally, the predicted interval results [Vmin,Vmax] can
be yielded.

5 Case studies

The performance of the proposed SVR-based IPF prediction
method is tested on IEEE 33bw and IEEE 69 distribution networks
on an Intel(R) Core(TM) i5 PC, 2.50 GHz processor with 8 GB
RAM. The algorithm is implemented in MATLAB. The IEEE 33bw
case is primarily used to validate the accuracy of the established
IPF prediction model and its adaptability to various system
fluctuations. Meanwhile, the IEEE 69 case is employed to verify
the efficiency and real-time capability of the proposed algorithm in
predicting IPF of the distribution network.

5.1 IEEE 33bw case study

The IEEE 33bw case is illustrated in Figure 4, and the case has
been enhanced to include eight distributed renewable energy
sources. All parameters are valued according to the per unit (p.u.)
system of analysis, with 10 MVA chosen as the basic power of the
test case. The detailed original power generation data for these
eight DGs are presented in Table 1. The voltage limits of all buses
except the slack bus are constrained to [0.9,1.1].

5.1.1 Evaluation of the model
The active power generation fluctuation ranges of DGs are

assumed to be ±20% of the original data, which is also assumed
on the active and reactive load demand, that is the set the fluctuation
coefficient σ1 � 0.2. Meanwhile, considering the slight fluctuations
in distribution network line parameters under both internal and

FIGURE 4
The topology of enhanced IEEE 33bw distribution network.
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external conditions, assume the fluctuation range is ±10% of rij and
xij, that is σ2 � 0.1. Within these ranges, 1,500 sets of initial data are
randomly generated through simulation for the distribution
network, where 1,200 sets are training sets, and 300 sets are
testing sets. In the model training process, the parameters of SVR
model are set to be C = 5,000, ε � 0.0001, ξi � 1. The kernel function
is selected as K(xi, xj) � xT

i xj.
To evaluate the model’s performance comprehensively and

objectively, the indices of mean absolute error (MAE), root mean
square error (RMSE), mean absolute percentage error (MAPE) and

R2 for the testing sets are calculated in this paper. They are defined
as Equations 24–27. Using these metrics together helps to avoid
biases introduced by a single metric, enhancing the robustness of
the evaluation.

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (24)

RMSE �
������������
1
n
∑n
i�1

yi − ŷi( )2√
(25)

FIGURE 5
The evaluation results of RMSE, MAE and MAPE for the SVR-based IPF prediction model.

FIGURE 6
The voltage interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 1.
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MAPE � 1
n
∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ (26)

R2 � 1 −
∑n
i�1

yi − ŷi( )2
∑n
i�1

yi − �yi( )2 (27)

where n is the number of samples, yi is the observed values, ŷi is
the corresponding model-predicted value, and �y is the mean of

the observed values. The evaluation results of the indices for the
SVR-based IPF prediction model in IEEE 33bw case are
presented in Figure 5.

It can be observed from Figure 5 that the value of the evaluation
indices is ideal. For the lower and upper bounds of each node
voltage, the RMSE evaluation results are within the range
[4.7 × 10−5, 6.4 × 10−5], the MAE evaluation results are within
the range [3.6 × 10−5, 5.2 × 10−5], and the MAPE evaluation
results are within the range [3.6 × 10−5, 5.3 × 10−5], all of which

FIGURE 8
The voltage interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 2.

FIGURE 7
The active line power interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 1.
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are relatively small. Besides, the value of R2 can reach above
0.95 for both lower and upper bounds of each node voltage.
These support the notion that the model’s predicted values
exhibit minimal deviation from the true values, indicating a
strong fit of the model to the testing sets, which confirms
the superior performance of the established SVR-based IPF
prediction model.

5.1.2 Comparison with the OSM and MCS
To validate the accuracy and adaptability of the SVR-based IPF

prediction model, three scenarios were designed to conduct the
proposed method compared with the OSM (Zhang et al., 2017) and
MCS. The forward-backward substitution is employed in MCS for
solving general distribution network power flow. The three
operating scenarios are described as follows.

FIGURE 10
The voltage interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 3.

FIGURE 9
The active line power interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 2.
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Scenario 1: The same operating points, and the different
fluctuation ranges;

Scenario 2: The different operating points, and the same
fluctuation ranges;

Scenario 3: The different operating points, and the different
fluctuation ranges,

where the settings of these scenarios are changed based on the
training data. The operating points represent the original active power
generation pG0 , and the fluctuation ranges are set by changing the
fluctuation coefficients σ1 and σ2. They represent the randomness and
volatility of uncertain data in distribution networks.

5.1.2.1 The simulation under scenario 1
In Scenario 1, the original active power generation data was the

same as that in Table 1, and the fluctuation coefficients were set as

σ1 � 0.1, σ2 � 0.05. Thus, a new set of input eigenvector Xin,I was
introduced. The parameters of SVR model were set to be C = 5,000,
ε � 0.0001, ξi � 1, and the MCS was conducted with a sample size of
10,000 to ensure a high accuracy level. The simulation results under
this scenario are demonstrated as follows.

The voltage interval results obtained by the SVR, OSM andMCS
for IEEE 33bw case are presented in Figure 6, and the active line
transmission power interval results are presented in Figure 7.
Additionally, in Figure 6, the voltage interval boundary values of
node No. 7 and No. 8 obtained by SVR and OSM are compared with
the results of MCS sampling for a more intuitive presentation. It can
be observed from Figure 6 that the voltage interval results obtained
by SVR are very close to those acquired by the OSM, and the voltage
interval range obtained by SVR andOSM is larger than that obtained
by MCS. This is to be expected, because the initial data for SVR

FIGURE 12
The topology of enhanced IEEE 69 distribution network.

FIGURE 11
The active line power interval results obtained by SVR, OSM and MCS for IEEE 33bw case in Scenario 3.
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model training is generated through OSM, and the OSM takes into
consideration of the extreme scenarios that are ignored by the MCS
method. It can be seen from Figure 7 that the interval ranges of
active line transmission power obtained by the three methods are
relatively close. This is because the line transmission power is related
to power generation, load demand, and line parameters, and the

Distflow model for the distribution network is linear, so that the
active line power results obtained by different methods are close
under the same interval input values. The simulation results indicate
that the established SVR-based IPF prediction method possesses
high predictive accuracy and performs a strong adaptability to
different fluctuations.

FIGURE 14
The active line power interval results obtained by SVR, RF, OSM and MCS for IEEE 69 case.

FIGURE 13
The voltage interval results obtained by SVR, RF, OSM and MCS for IEEE 69 case.
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5.1.2.2 The simulation under scenario 2
In Scenario 2, the original active power generation data was

listed in Table 2, and the fluctuation coefficients were set as σ1 � 0.2,
σ2 � 0.1. Thus, a new set of input eigenvector Xin,II was introduced.
The parameters of SVR model and the sample size of MCS remain
the same as (I).

The interval bound results obtained by the SVR, OSM, andMCS
for the voltage magnitudes of nodes and the active transmission
power of branches for IEEE 33bw case in Scenario 2 are presented in
Figures 8, 9, respectively. Similarly, the voltage interval boundaries
of nodes No. 4 andNo. 5 are selected in Figure 8 for comparison with
the MCS sampling results. The SVR is observed to have acquired a
similar voltage range to OSM, which is wider than that of MCS. The
active line power interval bounds acquired by SVR are close to that
obtained by OSM and MCS. These results show that the proposed
method also has high precision under scenario 2, which proves that
the SVR-based IPF prediction model can adapt to different
operating points.

5.1.2.3 The simulation under scenario 3
In Scenario 3, the original active power generation data was the

same as that in Table 2, and the fluctuation coefficients were set as
σ1 � 0.1, σ2 � 0.05. Thus, a new set of input eigenvector Xin,III was
introduced. The parameters of SVR model and the sample size of
MCS remain the same as (I). The simulation results under this
scenario are demonstrated as follows.

Scenario 3 was set up to verify the accuracy of the proposed
algorithm when the operating points and fluctuation ranges change
simultaneously. The interval bounds of voltage and active line power
obtained by SVR, OSM, and MCS in Scenario 3 are presented in
Figures 10, 11. Besides, the voltage boundaries of nodes No. 6 and
No. 7 obtained by SVR and OSM are also compared with the MCS
sampling results in Figure 10. It can be observed that the voltage
ranges obtained by SVR and OSM are still very close, which are more
conservative than those obtained by MCS. The active line power
ranges acquired by the three methods remain close. The simulation
results are expected. Furthermore, compared to scenario 2, the
voltage and active line power interval ranges obtained by the
three methods are both smaller. This is because the fluctuation
ranges are reduced while the operating points remain still. The
simulation in scenario 3 validates that the proposed algorithm can

maintain high prediction accuracy under different operating points
and fluctuation ranges.

In summary, based on simulations under different scenarios, the
proposed SVR-based IPF prediction model can adapt to various
operational states and environmental fluctuations. In different
operating scenarios, this method achieves prediction accuracy
comparable to the OSM which is model-driven. Besides, the SVR
method provides a more conservative interval range than MCS,
which ensures distribution system security under high-dimensional
uncertainty. It demonstrates high computational accuracy and
strong adaptability of the proposed approach.

5.2 IEEE 69 case study

The IEEE 69 case is applied to validate the efficiency of the
proposed SVR-based IPF prediction method. The distribution
network is enhanced to include eight DGs. The topology of
enhanced IEEE 69 case is presented in Figure 12 and the original
active and reactive power generation of DGs are shown in Table 3. All
parameters are valued in p.u., and the base power is set to 10 MVA.
The voltage limits of all nodes except the slack bus are constrained
to [0.9, 1.1].

In IEEE 69 case, 500 sets of training data were generated under
the condition of fluctuations with σ1 � 0.2, σ2 � 0.1. The model
training parameters were set as C = 5,000, ε � 0.0001, ξi � 1, and the
kernel function is selected as K(xi, xj) � xT

i xj. After the model was
trained, the predictions were conducted under Scenario 3 as defined
in Section 5.1.2. To further validate the model’s applicability, the
generator operating points were randomly selected within ± 30% of
the original active power generation data. What’s more, the
fluctuation coefficients for power generation and load demand
were set to σ1 � 0.3, and the fluctuation coefficient for line
parameters was set to σ2 � 0.15, which aims to assess the model’s
adaptability under expanded fluctuation ranges. This case was
carried out with SVR, OSM, and MCS as well.

To further demonstrate the advantage of the proposed SVR-
based IPF method, this case additionally incorporated the Random
Forest (RF) method for interval power flow prediction. To balance
both prediction accuracy and efficiency, the parameters for training
the RF model were set as follows: the number of decision trees was

TABLE 2 The original power generation data of DGs for IEEE 33bw case in
Scenario 2 (p.u.).

Bus
number

Active power
generation PG

Reactive power
generation QG

2 0.0720 0.0600

4 0.0545 0.0500

7 0.0490 0.0440

15 0.0355 0.0380

21 0.0320 0.0340

25 0.0515 0.0500

28 0.0335 0.0320

32 0.0405 0.0450

TABLE 1 The original power generation data of DGs for IEEE 33bw
case (p.u.).

Bus
number

Active power
generation PG

Reactive power
generation QG

2 0.0800 0.0600

4 0.0570 0.0500

7 0.0510 0.0440

15 0.0420 0.0380

21 0.0380 0.0340

25 0.0600 0.0500

28 0.0400 0.0320

32 0.0490 0.0450
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set to 100, the minimum leaf size was set to 5, and the model was
configured as a regression model. Besides, the system uncertainty
parameters were consistent with those described above. Considering
the above all, the simulation results are presented in Figures 13, 14.

Figures 13, 14 show the voltage interval ranges and active line
transmission power ranges, respectively. The voltage bounds of
nodes No. 13 and No. 14 obtained by SVR, RF and OSM are
depicted in Figure 13 compared with the MCS samples. It can be
observed that under large-scale fluctuations, the voltage ranges
obtained by the SVR and OSM are relatively close, and the error
precision is determined to be 0.001 upon calculations. The error is
mainly attributed to the insufficient size of the training dataset,
which can be mitigated by increasing the number of training
samples. However, the two methods yield very close active
transmission power ranges with high prediction accuracy.
Furthermore, compared to the MCS, SVR and OSM obtain wider
voltage ranges, as explained in 5.1.2. This case study validates the
adaptability of the proposed method to different networks and their
ability to handle large fluctuation ranges.

Comparing the SVR method proposed in this paper with the RF
method, the SVR method achieves higher prediction accuracy. It is
evident that the prediction error using the RF method is relatively
large, with an error precision of only 0.01, which shows a significant
deviation from the interval results obtained by the OSM. Additionally,
the interval obtained by the RF method is narrower, possibly because
the predictions of the trees in the model are more concentrated and
less flexible in handling extreme cases. Meanwhile, for the RFmethod,
improving prediction accuracy requires increasing the number of
decision trees, but this comes at the cost of increased computation
time. Through multiple experiments, the accuracy gain from adding
more decision trees was found to be negligible.

To validate the efficiency of the proposed method, the
computation time of the algorithm compared to RF and OSM is
shown in Table 4. The computation time includes the total time for
solving voltage and line transmission power. It is noticeable that the
online computation speed of the SVR-based IPF prediction method
and RF prediction method is significantly faster than the OSM.
Meanwhile, the online computation speed of SVR is also faster
than that of RF. Besides, the offline training of SVR and RF
requires more time compared to the OSM computation, and the
offline training times of SVR and RF are comparable. However, the

training and OSM both require significant amounts of time, which
increases as the number of system nodes grows. In contrast, the online
computation time of SVR is minimally affected by the system scale,
and predictions are conducted based on the trained results in practical
applications, so that the online computation time is more crucial.

The comparison demonstrates that the proposed SVR approach
achieves a significant improvement in computational efficiency over
model-driven approaches and is more suitable for large-scale
systems. Additionally, the SVR approach has advantages over the
RF method in both computational accuracy and efficiency,
demonstrating that it is more suitable for IPF analysis compared
to other data-driven methods. In summary, the proposed SVR
approach is more suitable for rapid and real-time PF analysis of
distribution networks with DGs.

6 Conclusion

To address the uncertainty in PF and overcome the efficiency
challenges faced by traditional model-driven methods, an SVR-
based IPF prediction method for PF analysis in distribution
networks is proposed through combining data-driven methods
with interval theory. This method considers uncertainty as
intervals and employs SVR for model training. The training data
is generated through simulation of the established IPF model for
distribution network including the intervals of node power
injections, line parameters, and the minimum/maximum PF
variables. Then the input and output feature vectors for IPF are
constructed and the multi-output SVR-based IPF prediction model
is established based on the training dataset. To assess the
performance of the proposed method, several simulations are
conducted both on IEEE 33bw case and IEEE 69 case.

The simulation results show that the proposed method has a good
performance. Firstly, the evaluation metrics are calculated to
demonstrate the method’s high accuracy. Additionally, the proposed
method is compared with OSM and MCS in three different scenarios,
showcasing robust adaptability across different distribution network
cases, operating points, and input data fluctuation ranges. The
comparison of interval results obtained by SVR prediction and
OSM demonstrates that the SVR approach can achieve prediction
accuracy comparable to that of model-driven methods. Meanwhile, the
comparative analysis of computation time with the OSM and RF
demonstrates that the proposed approach significantly improves
computational efficiency compared to model-driven approaches and
offers better prediction accuracy and efficiency compared to other data-
driven methods. In conclusion, the proposed method exhibits superior
computational efficiency and accuracy, meeting the requirements for

TABLE 3 The original power generation data of DGs for IEEE 69 case (p.u.).

Bus
number

Active power
generation PG

Reactive power
generation QG

2 0.0500 0.0400

7 0.0370 0.0300

12 0.0410 0.0340

24 0.0320 0.0280

34 0.0280 0.0240

45 0.0400 0.0400

49 0.0300 0.0220

59 0.0390 0.0350

TABLE 4 The computation time of SVR prediction method, RF prediction
method, and OSM for IEEE 69 case.

Online computation
time/s

Offline training
time/s

SVR
prediction

0.0162 501.58

RF prediction 2.18 553.36

OSM 317.55 —
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handling power flow uncertainty and achieving real-time rapid PF
analysis in distribution networks.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding authors.

Author contributions

XL: Conceptualization, Methodology, Writing–original draft.
HZ: Data curation, Investigation, Writing–review and editing.
QL: Methodology, Validation, Writing–original draft,
Writing–review and editing. ZL: Software, Writing–review and
editing. HL: Investigation, Writing–original draft.

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. This work

was supported by the Science and Technology Project of China
Southern Power Grid (090000KK52222133/SZKJXM20222115).

Conflict of interest

Authors XL, HZ, ZL, HL were employed by Shenzhen Power
Supply Co., Ltd.

The remaining author declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The authors declare that this study received funding from China
Southern Power Grid. The funder had the following involvement in
the study: data curation, investigation, the study methodology, data
analysis, and writing-review\editing.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

References

Barboza, L. V., Dimuro, G. P., and Reiser, R. S. (2004). “Towards interval analysis of
the load uncertainty in power electric systems,” in Proceedings of the international
conference on probabilistic methods applied to power systems (ICPMAPS), ames,
United States, 12-16 september 2004, 538–544.

Cao, Y., Zhou, B., Chung, C. Y., Wu, T., Zheng, L., and Shuai, Z. (2024). A coordinated
emergency response scheme for electricity and watershed networks considering spatio-
temporal heterogeneity and volatility of rainstorm disasters. IEEE Trans. Smart Grid. 15
(4), 3528–3541. doi:10.1109/TSG.2024.3362344

Chen, J., Li, W., Wu, W., Zhu, T., Wang, Z., and Zhao, C. (2020). “Robust data-driven
linearization for distribution three-phase power flow,” in Proceedings of the IEEE 4th
conference on energy internet and energy system integration (EI2), 1527–1532. Wuhan,
China, 30 October-01 November 2020.

Chen, J., Wu, W., and Roald, L. A. (2022). Data-driven piecewise linearization for
distribution three-phase stochastic power flow. IEEE Trans. Smart Grid. 13 (2),
1035–1048. doi:10.1109/TSG.2021.3137863

Chen, Y., Wu, C., and Qi, J. (2022). Data-driven power flow method based on exact
linear regression equations. J. Mod. Power Syst. Clean. Energy. 10 (3), 800–804. doi:10.
35833/MPCE.2020.000738

Cheng, S., Zuo, X., Yang, K., Wei, Z., and Wang, R. (2023). Improved affine
arithmetic-based power flow computation for distribution systems considering
uncertainties. IEEE Syst. J. 17 (2), 1918–1927. doi:10.1109/JSYST.2022.3176461

Dong, M., Wiebe, D., and Shi, J. (2022). “An accelerated and risk-free AC power flow
method with machine learning based initiation,” in Proceedings of the IEEE electrical
power and energy conference (EPEC), 103–108. Victoria, Canada, 05-07 December 2022.

Fu, X., Zhang, C., Xu, Y., Zhang, Y., and Sun, H. (2024). Statistical machine learning
for power flow analysis considering the influence of weather factors on photovoltaic
power generation. IEEE Trans. Neural Netw. Learn. Syst., 1–15. doi:10.1109/TNNLS.
2024.3382763

Guo, L., Zhang, Y., Li, X., Wang, Z., Liu, Y., Bai, L., et al. (2022). Data-driven power
flow calculation method: a lifting dimension linear regression approach. IEEE Trans.
Power Syst. 37 (3), 1798–1808. doi:10.1109/TPWRS.2021.3112461

Hu, X., Hu, H., Verma, S., and Zhang, Z. L. (2021). Physics-guided deep neural
networks for power flow analysis. IEEE Trans. Power Syst. 36 (3), 2082–2092. doi:10.
1109/TPWRS.2020.3029557

Jia, M., and Hug, G. (2023). “Overview of data-driven power flow linearization,” in
Proceedings of the IEEE belgrade PowerTech, 1–6. Belgrade, Serbia, 25-29 June 2023.

Khalid, H. M., Muyeen, S. M., and Kamwa, I. (2022). An improved decentralized
finite-time approach for excitation control of multi-area power systems. Sustain. Energy
Grids Netw. 31 31, 100692. doi:10.1016/j.segan.2022.100692

Leng, S., Liu, K., Ran, X., Chen, S., and Zhang, X. (2020). An affine arithmetic-based
model of interval power flow with the correlated uncertainties in distribution system.
IEEE Access 8, 60293–60304. doi:10.1109/ACCESS.2020.2982928

Li, P., Wu, W., Wang, X., and Xu, B. (2023). A data-driven linear optimal power flow
model for distribution networks. IEEE Trans. Power Syst. 38 (1), 956–959. doi:10.1109/
TPWRS.2022.3216161

Liang, Z., Dong, Z., Li, C., Wu, C., and Chen, H. (2023). A data-driven convex model
for hybrid microgrid operation with bidirectional converters. IEEE Trans. Smart Grid.
14 (2), 1313–1316. doi:10.1109/TSG.2022.3193030

Liu, J., Yang, Z., Zhao, J., Yu, J., Tan, B., and Li, W. (2022). Explicit data-driven small-
signal stability constrained optimal power flow. IEEE Trans. Power Syst. 37 (5),
3726–3737. doi:10.1109/TPWRS.2021.3135657

Liu, Y., Li, Z., and Zhao, J. (2022). Robust data-driven linear power flow model with
probability constrained worst-case errors. IEEE Trans. Power Syst. 37 (5), 4113–4116.
doi:10.1109/TPWRS.2022.3189543

Liu, Y., Li, Z., and Zhou, Y. (2022). Data-driven-aided linear three-phase power flow
model for distribution power systems. IEEE Trans. Power Syst. 37 (4), 2783–2795.
doi:10.1109/TPWRS.2021.3130301

Liu, Y., Wang, Y., Zhang, N., Lu, D., and Kang, C. (2020). A data-driven approach to
linearize power flow equations considering measurement noise. IEEE Trans. Smart
Grid. 11 (3), 2576–2587. doi:10.1109/TSG.2019.2957799

Liu, Y., Xu, B., Botterud, A., Zhang, N., and Kang, C. (2021). Bounding regression
errors in data-driven power grid steady-state models. IEEE Trans. Power Syst. 36 (2),
1023–1033. doi:10.1109/TPWRS.2020.3017684

Lyu, C., Sheng, W., Liu, K., and Dong, X. (2023). Novel affine power flow method for
improving accuracy of interval power flow data in cyber physical systems of active
distribution networks. CSEE J. Power Energy Syst. 9 (5), 1881–1892. doi:10.17775/
CSEEJPES.2020.07040

Mezghani, I., Misra, S., and Deka, D. (2020). Stochastic AC optimal power flow: a
data-driven approach. Electr. Power Syst. Res. 189, 106567. doi:10.1016/j.epsr.2020.
106567

Mori, H., and Yuihara, A. (1999). “Calculation of multiple power flow solutions with
the Krawczyk method,” in Proceedings of the IEEE international symposium on circuits
and systems (ISCAS), 94–97. Orlando, USA.

Musleh, A. S., Khalid, H. M., Muyeen, S. M., and Al-Durra, A. (2019). A prediction
algorithm to enhance grid resilience toward cyber attacks in WAMCS applications.
IEEE Syst. J. 13 (1), 710–719. doi:10.1109/JSYST.2017.2741483

Rehman, A. U., Ullah, Z., Qazi, H. S., Hasanien, H. M., and Khalid, H. M. (2024).
Reinforcement learning-driven proximal policy optimization-based voltage control for

Frontiers in Energy Research frontiersin.org16

Liang et al. 10.3389/fenrg.2024.1465604

https://doi.org/10.1109/TSG.2024.3362344
https://doi.org/10.1109/TSG.2021.3137863
https://doi.org/10.35833/MPCE.2020.000738
https://doi.org/10.35833/MPCE.2020.000738
https://doi.org/10.1109/JSYST.2022.3176461
https://doi.org/10.1109/TNNLS.2024.3382763
https://doi.org/10.1109/TNNLS.2024.3382763
https://doi.org/10.1109/TPWRS.2021.3112461
https://doi.org/10.1109/TPWRS.2020.3029557
https://doi.org/10.1109/TPWRS.2020.3029557
https://doi.org/10.1016/j.segan.2022.100692
https://doi.org/10.1109/ACCESS.2020.2982928
https://doi.org/10.1109/TPWRS.2022.3216161
https://doi.org/10.1109/TPWRS.2022.3216161
https://doi.org/10.1109/TSG.2022.3193030
https://doi.org/10.1109/TPWRS.2021.3135657
https://doi.org/10.1109/TPWRS.2022.3189543
https://doi.org/10.1109/TPWRS.2021.3130301
https://doi.org/10.1109/TSG.2019.2957799
https://doi.org/10.1109/TPWRS.2020.3017684
https://doi.org/10.17775/CSEEJPES.2020.07040
https://doi.org/10.17775/CSEEJPES.2020.07040
https://doi.org/10.1016/j.epsr.2020.106567
https://doi.org/10.1016/j.epsr.2020.106567
https://doi.org/10.1109/JSYST.2017.2741483
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1465604


PV andWT integrated power system. Renew. Energy. 227, 120590. doi:10.1016/j.renene.
2024.120590

Shao, Z., Zhai, Q., and Guan, X. (2023). Physical-model-aided data-driven linear
power flow model: an approach to address missing training data. IEEE Trans. Power
Syst. 38 (3), 2970–2973. doi:10.1109/TPWRS.2023.3256120

Sun, Y., Zhao, Z., Yang, M., Jia, D., Pei, W., and Xu, B. (2020). Overview of energy
storage in renewable energy power fluctuation mitigation. CSEE J. Power Energy Syst. 6
(1), 160–173. doi:10.17775/CSEEJPES.2019.01950

Tan, B., Chen, S., Liang, Z., Zheng, X., Zhu, Y., and Chen, H. (2024). An iteration-free
hierarchical method for the energy management of multiple-microgrid systems with
renewable energy sources and electric vehicles. Appl. Energy. 356, 122380. doi:10.1016/j.
apenergy.2023.122380

Tan, Y., Chen, Y., Li, Y., and Cao, Y. (2020). Linearizing power flow model: a hybrid
physical model-driven and data-driven approach. IEEE Trans. Power Syst. 35 (3),
2475–2478. doi:10.1109/TPWRS.2020.2975455

Vaccaro, A., Canizares, C. A., and Villacci, D. (2010). An affine arithmetic-based
methodology for reliable power flow analysis in the presence of data uncertainty. IEEE
Trans. Power Syst. 25 (2), 624–632. doi:10.1109/TPWRS.2009.2032774

Xing, Z., Gong, J., Lao, K. W., and Dai, N. (2021). “Single bus data-driven power
estimation based on modified linear power flow model,” in Proceedings of the 6th
international conference on power and renewable energy (ICPRE) (Shanghai, China),
755–758.

Xing, Z., Lao, K. W., Gao, H., and Dai, N. (2022). “A modified data-driven power
flowmodel for power estimation with incomplete bus data,” in Proceedings of the 12th
international conference on power, energy and electrical engineering (CPEEE),
316–320. Shiga, Japan, 25-27 February 2022.

Xue, Y., and Liu, Y. (2021). Intelligent assessment of active and
reactive power flow with satisfying accuracy for N-k1-k2 cascading
outages. J. Mod. Power Syst. Clean. Energy. 9 (5), 986–999. doi:10.35833/MPCE.
2020.000312

Zhang, C., Chen, H., Ngan, H., Yang, P., and Hua, D. (2017). A mixed interval power
flow analysis under rectangular and polar coordinate system. IEEE Trans. Power Syst. 32
(2), 1–1429. doi:10.1109/TPWRS.2016.2583503

Zhang, C., Chen, H., Shi, K., Qiu, M., Hua, D., and Ngan, H. (2018). An interval power
flow analysis through optimizing-scenarios method. IEEE Trans. Smart Grid. 9 (5),
5217–5226. doi:10.1109/TSG.2017.2684238

Zhang, C., Liu, Q., Zhou, B., Chung, C. Y., Li, J., Zhu, L., et al. (2023). A central limit
theorem-based method for DC and AC power flow analysis under interval uncertainty
of renewable power generation. IEEE Trans. Sustain. Energy. 14 (1), 563–575. doi:10.
1109/TSTE.2022.3220567

Zheng, X., Khodayar, M. E., Wang, J., Yue, M., and Zhou, A. (2024).
Distributionally robust multistage dispatch with discrete recourse of
energy storage systems. IEEE Trans. Power Syst., 1–14. doi:10.1109/TPWRS.
2024.3369664

Frontiers in Energy Research frontiersin.org17

Liang et al. 10.3389/fenrg.2024.1465604

https://doi.org/10.1016/j.renene.2024.120590
https://doi.org/10.1016/j.renene.2024.120590
https://doi.org/10.1109/TPWRS.2023.3256120
https://doi.org/10.17775/CSEEJPES.2019.01950
https://doi.org/10.1016/j.apenergy.2023.122380
https://doi.org/10.1016/j.apenergy.2023.122380
https://doi.org/10.1109/TPWRS.2020.2975455
https://doi.org/10.1109/TPWRS.2009.2032774
https://doi.org/10.35833/MPCE.2020.000312
https://doi.org/10.35833/MPCE.2020.000312
https://doi.org/10.1109/TPWRS.2016.2583503
https://doi.org/10.1109/TSG.2017.2684238
https://doi.org/10.1109/TSTE.2022.3220567
https://doi.org/10.1109/TSTE.2022.3220567
https://doi.org/10.1109/TPWRS.2024.3369664
https://doi.org/10.1109/TPWRS.2024.3369664
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1465604

	A support vector regression-based interval power flow prediction method for distribution networks with DGs integration
	1 Introduction
	1.1 Motivation
	1.2 Focus and potential
	1.3 Preceding research
	1.4 Contribution

	2 Construction of IPF model for distribution networks
	2.1 Distflow formulation
	2.2 Modelling of IPF based on distflow

	3 IPF prediction method for distribution networks based on SVR
	3.1 Construction of eigenvectors in IPF
	3.1.1 Construction of input eigenvector adapted to variations in source-grid-load
	3.1.2 Construction of output feature vector

	3.2 Modelling of SVR-based IPF prediction
	3.3 Solving of SVR-based IPF prediction model

	4 The procedure of SVR-based IPF prediction method
	5 Case studies
	5.1 IEEE 33bw case study
	5.1.1 Evaluation of the model
	5.1.2 Comparison with the OSM and MCS
	5.1.2.1 The simulation under scenario 1
	5.1.2.2 The simulation under scenario 2
	5.1.2.3 The simulation under scenario 3

	5.2 IEEE 69 case study

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


