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With the increasing integration of renewable energy sources and the presence
of numerous controllable loads such as electric vehicles and energy storage in
the modern power system, higher nonlinearities and uncertainty both sources
and loads are introduced. These factors pose challenges in achieving fast
and accurate emergency frequency control. Therefore, this paper addresses
the issue of dual source-load uncertainties in power system and presents an
optimization strategy based on the Soft Actor Critic (SAC) algorithm that involves
the participation of controllable loads in emergency frequency control. Firstly,
the spatio-temporal uncertainties of wind farm power output on power supply
side and power demand on the load side are described using Weibull and
normal probability distributions, respectively. Secondly, an improved Markov
Decision Process (MDP) model for emergency frequency control is established,
which considers the characteristics of the dual source-load uncertainties.
Finally, an optimization of the SAC algorithm is conducted based on Deep
Reinforcement Learning (DRL), aiming to achieve rapid system frequency
recovery and minimize the cost of removing controllable loads. The presented
approach in the paper enhances the emergency frequency control strategy for
uncertain power systems and effectively addresses the issue of source-load
uncertainty compounded by fault power shortages.

KEYWORDS

controllable load, emergency frequency control, deep reinforcement learning, SAC
algorithm, source-load dual uncertainties

1 Introduction

The modern power system is continuously evolving and advancing, characterized by
sustainability, distribution, dynamism, and intelligent openness. As a result, the control
strategy ensuring frequency security and stability in power system has become increasingly
complex, leading to greater challenges in emergency frequency control (Zhou et al., 2018;
Yi et al., 2019; Li et al., 2020). Meanwhile, the power supply side in power system appears an
increasing penetration rate of renewable energy sources. Additionally, there is a significant
number of new controllable loads with significant power fluctuations on the load side.These
introduce double uncertainties on both the sources and load sides, exacerbating the power
shortfalls that occur during system disturbances and further increasing the complexity of
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accidents. Hence, it holds immense importance to investigate the
emergency frequency control of power system characterized by dual
source and load uncertainties.

Considering the nonlinearities and uncertainties at both
power supply and load side in modern power systems, various
approaches have been proposed to optimize emergency frequency
stabilization control, including adaptive and semi-adaptive Under-
Frequency Load Shedding (UFLS) methods, event-driven load
shedding methods (Xue et al., 2014; Li et al., 2017; Cao et al.,
2021), and strategies addressing low inertial (Wu et al., 2015).
An emergency frequency control strategy that involves the
collaborative participation of renewable energy field stations
and conventional units to ensure frequency stabilization while
minimizing control costs is conducted (Ke et al., 2022). Reference
(Chandra and Pradhan, 2020) addresses an adaptive emergency
load shedding method incorporating synchronous generator and
photovoltaic plant equivalent models that consider the stochastic
variation of solar PV plant power. Frequency characteristics of
systems with high penetration of advanced energy technologies is
analyzed and proposes a low-frequency load shedding blocking
optimization strategy based on df /dt (Sheng et al., 2021).
Reference (Masood et al., 2021) presents an emergency frequency
stabilization control that simultaneously ensures voltage stability
for low-inertia power system containing numerous wind turbines.
Reference (Wang et al., 2019) investigates an adaptive emergency
frequency control scheme based on inertia estimation from
load measurement information of high-percentage renewable
energy system. The uncertainty of wind power output and effect
of frequency regulation are considered (Zhou and Shi, 2021),
an emergency frequency control strategy that combines high-
frequency cut-off and low-frequency load-shedding measures
are optimized by considering the frequency confidence of
power system.

The optimization of emergency frequency control mentioned
above primarily adopts model-based methods, including the time-
domain simulation method, the dynamic equivalence method, and
the linearization analysis method (Zhang et al., 2009; Liu et al.,
2014). Among these, the time-domain simulation method is time-
consuming and computationally intensive, although it has high
accuracy. The dynamic equivalence method is computationally
efficient but has low accuracy, which does notmeet the requirements
of actual power grid. The linearized analysis combines the
advantages of the former twomethods (Larik et al., 2018), but it does
not adapt the topology changes and new elements of power grid.
Due to the limitations of physical models, the approaches based on
physical models cannot fit with the development of power grid.

In recent years, Machine Learning (ML) methods have
been increasingly applied to power system stability control.
These methods are based on data for feature mining, do not
require accurate mathematical models, and have significant
computational performance advantages. Reference (Dai et al.,
2012) trained a load shedding prediction model offline using
an extreme learning machine and achieved online prediction of
actual load shedding. In reference (Bai et al., 2016), an artificial
neural network RBF-ANN model was employed to estimate and
predict the frequency dynamics process of the power system,
contributing to the development of an emergency frequency
control scheme. Despite their fast computational speed, traditional

ML algorithms are considered shallow learning methods, often
relying heavily on expert experience. Their control effectiveness
is influenced by the size and quality of the database, resulting
in limited adaptability in achieving desired control outcomes.
The advancements in deep learning have garnered attention due
to their impressive training effectiveness. Consequently, several
scholars have explored the application of deep learning methods
in optimizing emergency control strategies for power systems
(Hu et al., 2019; Lin, 2022). These methods simultaneously
enhance control accuracy and reduce decision-making time. In
Reference (Qiang et al., 2022), an emergency control model based
on an enhanced AlexNet convolutional network is established.
This model predicts the system’s emergency control sensitivity
and identifies alternative control buses, ultimately optimizing to
obtain the emergency control strategy. However, deep learning
methods require a large number of datasets for model training. In
high-dimensional action space problems, a multitude of control
scenarios emerge, leading to a significant volume of invalid
datasets. This abundance of data presents challenges in model
training.

The DRL technique combines the advantages of deep learning
and reinforcement learning, which can realize high-dimensional
feature extraction and direct learning of complex action space.
Hence, to address the highly nonlinear and uncertain nature of
emergency frequency stability control problems, some researchers
have employed DRL algorithms to optimize strategies that enhance
frequency stability while minimizing the total amount of load
shedding (Yang et al., 2022). Reference (Chen et al., 2020)
optimizes the emergency frequency control strategy using DRL
algorithms to reduce frequency stability fluctuations. However,
the state space considered in this approach focuses solely on
the frequency deviation of the center of inertia. This limitation
may lead to inaccurate outcomes since system topology and
parameters can significantly vary across different scenarios. In
Reference (Ma et al., 2020), a distributed reinforcement learning
algorithm is utilized to optimize the emergency frequency control
strategy, resulting in improved computational performance and
robustness. Reference (Xie and Sun, 2022) considered load
variations, measurement noise, and communication delays in
real power systems by proposing an emergency frequency
control method based on a distributed Soft Actor Critic
(SAC) algorithm.

In this paper, a controllable load participation emergency
frequency optimization control strategy for source-load dual
uncertainty power systems is proposed based on deep reinforcement
learning SAC algorithm to address the above problems. Firstly,
the source-side output spatio-temporal uncertainty and load-
side power uncertainty are described by Weibull and normal
probability distribution. Secondly, the action space, state space
and reward function of the MDP model are improved according
to the characteristics of source-load uncertainty. Then the deep
reinforcement learning SAC algorithm with continuous action
space is used to train the model to obtain an emergency
frequency optimization control strategy for the dual source-load
uncertainty power system, which suppresses the depth of the system
frequency dip and reduces the stabilized frequency deviation, while
minimizing the control cost.
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FIGURE 1
Schematic diagram for uncertain source-load power modeling.

2 Modeling of uncertain power on
power supply and load

The increasing penetration of renewable energy sources into the
power grid impacts its operational characteristics due to various
factors, including weather, temperature, and other variables. As a
result, the volatility of active power output intensifies, leading to
heightened uncertainty in the power-side output of the system.
Simultaneously, the grid load is progressively diversifying as
numerous new loads, such as electric vehicles and distributed
renewable energy sources. These new load types exhibit substantial
power fluctuations, further exacerbating the uncertainty in power
demand on the load side. The dual uncertainty on both the source
and load sides works together to intensify the randomness of
the operating conditions. After a power system failure, the power
fluctuation resulting from source-load uncertainty and the power
deficit caused by failure are superimposed on each other, thereby
exacerbating the complexity of the incident, as illustrated in Figure 1.

2.1 Wind power output model on power
supply side considering spatial and
temporal uncertainty

The uncertainty of wind power output is primarily influenced
by wind speed. To more accurately simulate the actual variations

in wind speed, it can be represented using probability distributions
such as theWeibull distribution, Gaussian distribution, and Pearson
distribution. Historical data indicates that the actual wind speed
alignsmost closelywith theWeibull distribution’s probability density
function. Therefore, this paper employs the Weibull distribution
function to characterize the wind speed and establish a probabilistic
representation of the uncertainty between the wind turbine’s
output active power and wind speed. The wind speed probability
density function of the Weibull distribution, denoted as f (v), and
the cumulative distribution function of the Weibull distribution,
denoted as F(v), as shown in Equations 1, 2:

f(v) = K
C
( v
C
)
K−1

exp[

[
−( v

C
)
K]

]
(1)

F(v) = 1− exp[

[
−( v

C
)
K]

]
(2)

Where v is the wind speed; K is the shape parameter of
the Weibull distribution; C is the scale parameter of the Weibull
distribution.

The characteristic curve of wind power output defines the
relationship between wind power output and wind speed, where
the intensity of wind speed directly influences the magnitude of
the output. The relationship between wind power and wind speed
can be described by a linear function, quadratic function, or cubic
function, leading to distinct wind turbine power curves. Taking into
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account the actual statistical wind power data, wind power output is
typically modeled using a cubic segmented function, which can be
expressed as Equation 3:

PW =

{{{{{{
{{{{{{
{

0 v < vin  or v > vout 

Pr
v3 − v3in 
v3r − v

3
in 

vin  ≤ v < vr

Pr vr ≤ v ≤ vout 

(3)

Where vr, vin, vout are the rated wind speed, cut-in wind speed
and cut-out wind speed of the wind farm turbine respectively; Pr is
the rated power of the turbine.

Apart from temporal uncertainty, wind power output exhibits
spatial correlation as well. Due to the close proximity of various
wind farms within the same region and their placement in
similar wind speed bands, a robust correlation exists between the
outputs of different wind farms, consequently impacting the overall
uncertainty of wind power. Hence, this section considers the spatial
correlation among distinct wind farms and employs the Nataf
inverse transformation principle to generate wind turbine output
uncertainty data with predetermined correlation coefficients.

The theory of Nataf transform can transform random
distribution variables with correlation into standard normal
distribution variables that are independent of each other. The Nataf
inverse transform serves as the reverse procedure to the Nataf
transform, allowing the generation of distribution variables with
desired correlation coefficients using independent standard normal
distribution variables. This process facilitates the sampling of a
significant amount of specified sample data.

Let the vector PW.i (i = 1,2,…,n) represent the active outputs of
nWeibull-distributed wind farms in the original correlation variable
space. Similarly, let the vector zi (i = 1,2,…,n) denote the n standard
normally distributed random variables in the correlation standard
normal space. Subsequently, assume that the linear correlation
coefficient matrices for Z and PW are denoted by ρ0 and ρ,
respectively. Here, ρ is a predetermined value, and the relationship
equation between the elements of the ρ0 and ρmatrices is given as:

ρ0ij = Rijρij (4)

Rij = 1.063− 0.004ρij − 0.200(γi + γj) − 0.001ρ
2
ij + 0.337(γ

2
i + γ

2
j ) − 0.007γiγj (5)

Where γi and γj represent the computational parameters of the
random variables Pi and Pj, respectively. The expressions for these
parameters are given as follows Equation 6:

{
{
{

γi = σi/μi
γj = σj/μj

(6)

Thepositive definite symmetricmatrix of correlation coefficients
ρ0 can be obtained through Equations 4, 5, and it can be
decomposed into the lower triangular matrix B using the following
expression Equation 7:

ρ0 = BB
T (7)

A standard normal distribution vector Z with specified
correlation coefficients can be generated from the pre-obtained

independent standard normal distribution vector X. The
transformation is shown as Equation 8:

Z = BX (8)

Based on the equal probability transformation criterion, the
standard normal distribution space with correlation is converted
into correlated input vectors, i.e., wind power output variables that
follow the Weibull distribution. The output power of each wind
power node is given by Equation 9:

PW.i = F−1i (Φ(zi)) (9)

Where PW. i represents the correlated active power output of
wind power node i; F−1i (⋅) is the inverse cumulative distribution
function of the active power output of wind power node i; Φ(zi)
denotes the cumulative distribution function of zi.

2.2 Load-side power demand modeling
with uncertainties

The optimization strategy presented in this paper encompasses
various novel controllable load types like electric vehicles, energy
storage systems, commercial buildings, 5G base stations, and
distributed photovoltaics.These loads can be directly enlisted by the
emergency control system for urgent load shedding and contribute
to the emergency frequency control of the power system. Unlike
traditional methods that directly cut the load line during emergency
frequency control, these controllable loads have a reduced impact
on users when temporarily removed, resulting in lower load
shedding costs. Furthermore, the power of these controllable
loads can be precisely regulated by power electronic devices,
enabling more flexible engagement in the power system’s emergency
frequency control. The diverse characteristics of controllable loads
introduce a complex influence on emergency frequency control,
posing challenges in integrating them for considerations such as
control continuity and data reliability. Consequently, the load side
fluctuation range in modern power systems has expanded, while the
time scale has diminished. This, in turn, has led to an escalation
in power demand uncertainty, necessitating the characterization of
load power uncertainty.

The probability of load power uncertainty is modeled using
a normal distribution, which is expressed through a probability
density function, as shown in Equation 10:

{{{{{{{
{{{{{{{
{

f(PL) =
1
√2πσPL

exp(−
(PL − μPL)

2

2σ2PL
)

f(QL) =
1
√2πσQL

exp(−
(QL − μQL

)2

2σ2QL

)

(10)

Where PL and QL represent the active and reactive power of
the load, respectively; μPL and μQL denote the expected values of
the active and reactive power of the load, respectively; σPL and σQL
indicate the standard deviation of the active and reactive power of
the load, respectively.

Additionally, the presence of various new controllable loads on
the load side, such as electric vehicles and energy storage, introduces
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variability and diversity in load characteristics. The complexity
of these controllable load components further contributes to
the uncertainty of overall load characteristics. Determining the
controllable load characteristics directly becomes infeasible when
the power system’s operating state changes, necessitating the
expression of uncertainty through a probability distribution.
Consequently, a novel static load model should be established
utilizing frequency and voltage indices that adhere to the probability
distribution, as Equation 11.

P′L.new = PL(U/UN)
kpu.new(1+ kpf .new( f − fN))

Q′L.new = QL(U/UN)
kqu.new(1+ kqf .new( f − fN))

(11)

Where kpu. new and kqu. new represent voltage indices of active and
reactive power of the new controllable loads, respectively; kpf. new and
kqf. new denote frequency indices of active and reactive power of the
loads, respectively.

These parameters, kpu. new, kqu. new, kpf. new and kqf. new, are subject
to uncertainty and are characterized by probability distributions that
follow a normal distribution.

In summary, considering the uncertainty of load size, which
is represented by PL and QL that conform to normal distribution,
and considering the uncertainty of load characteristics, which is
represented by P’

L.new and Q’
L.new that contain time-varying load

coefficients, a power demand uncertainty model that integrally
considers fluctuations in load quantity and fluctuations in load
characteristics is thus established.

3 Improvement of the MDP model for
emergency frequency control
problem in source-load dual
uncertainty power system

Reinforcement learning can be formulated throughMDP, which
performs policy search through the set (S, A, P, R, y). Where S is the
state space and A is the action space, which can be either continuous
or discrete. P is the state transfer probability, which represents the
probability density of the next state st+1 given the current state st
∈ S and the current action at∈A. R is the reward function and y
is the discount factor. Most of the classical MDP theories and RL
algorithms are based on discrete-time leapfrog actions, but many
power system control problems follow continuous-time dynamics
actions, which can only be discretized by using appropriate time
intervals to cut the continuous-time dynamics.Therefore, this paper
addresses this drawback by using an MDP model for improving
the emergency frequency control of the system and optimizing the
emergency frequency control strategy using the deep reinforcement
learning SAC algorithm with continuous action space.

3.1 State space

Power system emergency frequency stabilization is closely
related to generator active power, load power, system frequency,
and the rate of frequency change. Considering the dual source-
load uncertainty in power-side active output anddemand-side active
load, it is necessary to incorporate all generator active output and

load node power with uncertainty into the state space, defining the
state space st as Equation 12:

st = s
t
1 ∪ s

t
2 ∪ s

t
3 ∪ s

t
4

{{{{{{{
{{{{{{{
{

st1 = { f
t
1 f t2 ⋯ f tm}

st2 = {(d f/dt)
t
1 (d f/dt)

t
2 ⋯ (d f/dt)

t
m}

st3 = {P
t
e.1 Pte.2 ⋯ Pte.m}

st4 = {P
t
l.1 Ptl.2 ⋯ Ptl.n}

(12)

Where fi
t is the frequency of generator node i at moment t;

(df/dt)i
t is the frequency change rate of generator node i at moment

t; Pe. i
t is the electromagnetic power of generator node i at moment

t; Pl. j
t is the active load of load node j at moment t.

3.2 Action space

The control action of each controllable load at moment t should
be to reduce a part of the total controllable load at that node. Due
to the uncertainty of load demand power, the total controllable
load needs to be updated in real time. However, for uniformity
of the control action, the action space must be fixed. Therefore,
the action space is set as the proportion of the controllable load
removed at each node. The actual load reduction is the value of
the action at each node multiplied by the total controllable load at
that node. Consequently, each controllable load action is defined
as a continuous value within [-1, 0], and the total action space
is shown as Equation 13:

at = {ΔP
t
1 ΔP

t
2 ⋯ ΔP

t
n} (13)

Where ΔPm
t is the load removal of controllable load node m at

time t and ΔPm
t∈[−1,0]; n is the number of controllable load nodes.

3.3 Reward functions

The goal of the emergency frequency control problem is to
restore the frequency to within the stabilization range quickly
while minimizing load shedding. For source-load dual uncertainty
power systems, the effectiveness of emergency frequency control
is primarily evaluated in terms of frequency deviation and load
shedding amount.

Therefore, the reward function consists of three parts: 1) the
average value of steady-state frequency deviation over a specific time
period at the end of the simulation; 2) a penalty term calculated
based on controllable load importance and load shedding; and 3) a
penalty term for exceeding the lowest point of the system’s dynamic
frequency. The expression is shown as Equation 14:

rt = λ1|Δ fTtem
| − λ2

n

∑
j=1

CjPsl.j −H1

H1 =
{
{
{

−100, if( fmin < fmin .set)

0, therwise

(14)

Where T tem is a certain time period before the end of
the simulation process; ΔfTtem is the average value of the
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FIGURE 2
Structure of SAC algorithm.

deviation of the center of frequency inertia during T tem; Cj is
the importance index of load node j; Psl. j is the amount of load
shedding at node j; H1 is the penalty for the system’s center
of frequency inertia when the minimum value is less than the
integrating value; λ1 and λ2 are coefficients for each part of the
reward function.

4 Optimization of emergency
frequency control strategy
considering dual source-load
uncertainties

Emergency frequency control is a kind of multi-constraint
multi-objective optimization problem, which needs to consider two
conflicting objectives of fast frequency recovery and minimizing
control cost at the same time.Moreover, it often exhibits a propensity
to favor one objective over the other, leading to convergence
on local optimal solutions. The SAC algorithm introduces the
action entropy value to balance the probability of the various
action strategies in the action space, to avoid learning the same
action repeatedly and falling into the sub-optimal solution, and
it has a stronger exploratory ability, and is more suitable for the

studying the emergency frequency control problem with multiple
objectives.

Following a failure in a power system that considers dual
source-load uncertainty, the power deficit resulting from the
disturbance combines with the source-load uncertainty, resulting
in increased random volatility in the collected grid state data
and causing ongoing oscillations in the training process. Faced
with this high level of uncertainty, some DRL algorithms based
on strategy gradient exhibit weak generalization abilities, leading
to unstable emergency frequency control effects. In contrast, the
SAC algorithm incorporates action entropy, enhancing robustness
and resistance to disturbances, and demonstrating stronger
learning generalization capabilities, rendering it more suitable
for the dual source-load uncertainty power system discussed in
this chapter.

Moreover, the SAC algorithm features a continuous action
space, eliminating the need for discretizing load removal actions.
This allows for the removal of the required load amount at once,
thereby preventing exacerbation of frequency drop depth resulting
frommultiple actions. Additionally, continuous action space control
enhances precision and reduces the likelihood of excessive or
inadequate load removal during emergency frequency control. This
ensures a smaller steady-state frequency deviation post-control
while minimizing the amount of load removed.
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FIGURE 3
Flow chart of emergency frequency control based on SAC algorithm.

The SAC algorithm offers higher exploration capability,
improved robustness, and a continuous action space compared
to other DRL algorithms. Consequently, the SAC algorithm
is employed in this section to optimize the emergency
frequency control strategy for source-load dual uncertainty
power systems.

4.1 Principle of SAC algorithm and network
structure

The SAC algorithm belongs to the deep reinforcement learning
algorithms based on the value function, which incorporates a
mechanism that encourages exploration through action strategy
entropy values. This enhances the algorithm’s robustness compared
to other strategy gradient-based DRL algorithms like PPO, A3C,
and DDPG. The entropy value, defined as the expectation of

information quantity, quantifies the uncertainty of a variable.
It increases with the uncertainty of an event and can be
quantified by the event’s probability. The entropy value is defined
as Equation 15:

H(X) = −∑
xi∈X

l(xi) ln l(xi) (15)

Where H(X) is the entropy value; l (xi) is the event probability.
The DRL algorithm should continuously explore the interaction

environment to accumulate experience and avoid selecting too
many actions solely based on immediate rewards, as this may lead
to convergence on local optimal solutions. The SAC algorithm
considers the maximum entropy value of actions. If the entropy
value decreases due to repeated selection of a certain action, the
maximum entropy mechanism encourages the agent to explore
other actions, thus broadening the exploration range and increasing
the algorithm’s robustness.
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FIGURE 4
Improved topology of IEEE39 nodes.

FIGURE 5
Weibull distribution of wind speed.

In other deep reinforcement learning algorithms with stochastic
policies, the objective ofmodel learning is clear: to derive an optimal
action policy that maximizes the expected cumulative reward

through straightforward training. The optimal policy expression
is shown as Equation 16:

π = argmaxπE(st,at)∼ρπ[∑tr(st,at)] (16)

The SAC algorithmnecessitatesmaximizing the entropy value of
the output action to enhance exploration capability. In other words,
an additional term regarding the entropy value is incorporated into
the policy expression, resulting in the expression of the improved
optimal policy as shown in Equation 17:

π = argmaxπE(st,at)∼Pπ
[

[
∑
t
r(st,at)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
reward 

+αH(π(⋅ ∣ st))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
entropy 

]

]
(17)

Where E (st , at) denotes the expectation function; π represents
the strategy; st and at signify the state space and action space at
moment t; r (st , at) denotes the reward function at moment t
(st , at)∼Pπ signifies the trajectory of state-action under strategy π;
+ is the automatic entropy temperature parameter, which adjusts
the entropy value affecting the degree of rewards; and H (π(⋅|st))
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TABLE 1 The proportion of load with different time delay levels.

Load node number Total share of
controllable load

Percentage of class
1 controllable loads

Percentage of class
2 controllable loads

Percentage of class
3 controllable loads

3 0.41 0.5 0.3 0.2

4 0.34 0.3 0.4 0.3

7 0.38 0.4 0.5 0.1

8 0.46 0.3 0.3 0.4

16 0.22 0.6 0.2 0.2

20 0.54 0.6 0.3 0.1

24 0.34 0.5 0.2 0.3

39 0.38 0.4 0.3 0.3

FIGURE 6
Changes in reward values during training.

signifies the entropy of the output action of the strategyπ under the
state st , as expressed below in Equation 18:

H(π(⋅ ∣ st)) = −∑π(⋅ ∣ st) log(π(⋅ ∣ st))

= −∫
at

P(π(at ∣ st)) ln P(π(at ∣ st))dat
(18)

Where P (π (at |st)) denotes the probability that the action value
at the time of t is at .

In the SAC algorithm for strategy value evaluation, the
expression for updating the strategy using the Bellman operator is
expressed as Equation 19:

Qπ(st,at) = rt +E[
∞

∑
t=1

γt[r(st,at) − α log π(at ∣ st)]] (19)

Where γ denotes the discount factor at the time of
strategy update.

The optimal policy can be continuously learned and refined
throughpolicy iteration, comprising two steps: softpolicy evaluation

and soft policy improvement. Firstly, in the strategy evaluation step,
the soft value update function of a given strategy π can be obtained
using the soft Bellman operator, as shown in Equation 20:

T πQπ(s,a) = r+ γEs′[Qπ(s′,a′) − α log π(a′ ∣ s′)] (20)

The SAC algorithm belongs to the Actor-Critic class of
algorithms, where the Actor is employed for policy modeling and
the Critic for Q-value function modeling. Different deep neural
networks are utilized to fit the Q-value function and the policy
function, respectively, as shown in Equation 21:

JQ(θ) = E[
1
2
(Q(st,at) − (r(st,at) + γVθ(st+1))

2] (21)

Where θ denotes the parameters of the policy network; Vθ
represents the updated value function value.

Both networks are optimized using independent gradients
∇̂θJQ(θ) , as expressed in Equation 22:

∇̂θJQ(θ) = ∇θQθ(st,at) ⋅ (ΔQθ) (22)

Where the expression of ΔQθ is expressed as Equation 23:

ΔQθ = Qθ(st,at) − r(st,at)

+γ(Qθ(st+1,at+1) − α log(πϕ(at+1 ∣ st+1)))
(23)

The outputs of the policy network are the mean and standard
deviation values following a Gaussian distribution. The network
with the smaller Q value is selected to reduce bias in updating the
parameters of the policy network. The approximate gradient of the
parameter update is expressed as Equation 24:

∇̂ϕJπ(ϕ) = ∇ϕα log(πϕ(at ∣ st))

+(∇atα log(πϕ(at ∣ st)) −∇atQ(st,at))∇ϕ fϕ(εt; st)
(24)

At the same time, the action entropy value is also updated in
the policy network, making it crucial to choose the appropriate
temperature parameter, α. As the reward value varies during the
training process, fixing the temperature coefficient reduces the
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FIGURE 7
Number of excision maneuvers during each training round.

stability of model training. Therefore, the temperature coefficient
α is generally updated automatically by minimizing J (α), as
expressed in Equation 25:

J(α) = Eat−πi[−α log(πt(at ∣ st)) − αM] (25)

Where M represents the dimension of the action matrix,
specifically denoted asM = dim(a).

The SAC algorithm for deep reinforcement learning comprises
four crucial components: the experience replay buffer, the
automatic entropy parameter, the policy network, and the value
network. The experience replay buffer stores historical exploration
experience, while the automatic entropy parameter stabilizes
and adjusts the exploration strategy. The policy network is
responsible for action selection, and the value network estimates
state-action values. The overall structure of the algorithm is
depicted in Figure 2.

4.2 Optimization of emergency frequency
control strategy based on SAC algorithm

When utilizing the SAC algorithm to optimize the emergency
frequency control strategy, each iterative training process can be
summarized into three main steps: firstly, collecting and inputting
the operating state data of the power system after the fault into the
SAC model; then, the SAC model selects the emergency frequency
control action based on the state data; finally, executing the control
action on the power system simulation environment to achieve

the objective. Additionally, due to the uncertain nature of source-
load power systems, it is necessary to incorporate an uncertainty
model for wind power output and load demand in each interaction
process. The overall process of emergency frequency control for a
source-load dual uncertainty system based on the SAC algorithm is
illustrated in Figure 3.

Prior to model training, the simulation environment and SAC
model parameters are initialized. The power system load factor
is randomly initialized, and the model incorporates uncertainty
in wind power output and load demand. The Nataf inversion
theory is employed to generate source-load dual uncertainty power
samples with correlation. Before each interactive training step,
uncertainty power samples are randomly assigned to wind turbine
nodes, and uncertainty load demand samples are added to load
nodes to simulate real-world source-load uncertainty power system
conditions. Subsequently, the SACmodel obtains the current system
state data from the simulation environment, selects an action based
on an environmental state update policy, and delivers it to the
simulation environment. After receiving the emergency frequency
control action from the SAC model, the simulated power system
environment executes the load adjustment action, advances to the
next state, and sends the updated state data and immediate reward
value to the SAC model. This training process continues until the
end of a round, marked by maintaining stable system frequency. At
this point, the system simulation environment is reinitialized, and
the next round begins. Upon completing the training process, the
SAC model can be applied to various fault test scenarios to validate
its effectiveness and superiority.
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FIGURE 8
Change process of load shedding strategy in scenario (A–D) training.

TABLE 2 Controllable load shedding and dynamic frequency metrics for various test scenarios.

Scenario Controllable load shedding/MW Steady state frequency/Hz Frequency drop minimum/Hz

1 592 50.01 49.78

2 545 50.05 49.76

3 517 49.98 49.76

4 615 49.91 49.51

5 Simulation analysis

To evaluate the effectiveness of the proposed method in this
paper, a deep reinforcement learning environment is constructed
to enhance the IEEE10 machine with 39 nodes. This environment
is developed using Python and BPA simulation software. The SAC
algorithm is employed to solve the specified test cases. The deep
neural network is implemented in Python using TensorFlow 1.15.

The experiments are conducted on an Intel Core i5-11400H CPU
with 16.00 GB RAM and an RTX 3050 GPU.

5.1 Data of the test case

The BPA software is utilized in this paper to generate a fault
scenario for the IEEE10 machine with 39 nodes. The generator
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FIGURE 9
Comparison of the dynamic frequency process of scenario (A–D) after the execution of the two strategies.

FIGURE 10
(A) Comparison of stochastic test results for source-load deterministic systems (B). Comparison of stochastic test results for the source-load
uncertainty system.
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FIGURE 11
Comparison of reward values of different DRL algorithms.

model is based on the sixth order model, while the load model
consists of a constant impedance model and a mixed load model
incorporating induction motors, with a 50% ratio between the two.
The fault scenario involves a generator experiencing a partial power
loss, resulting in a power difference within the power system. The
total simulation time is 40 s, with each cycle of the waveform serving
as a sampling point. To simulate various system fault states and
obtain sufficient samples, one of the ten generators is randomly
selected at the start of the simulation to experience a loss of active
output ranging from 0.5 p. u. to one p. u.

This paper utilizes a modified version of the IEEE10 machine
with 39 nodes to validate the proposed methodology in this
section. The modification involves replacing nodes 32 and 36
with turbines having rated capacities of 684 MW and 576 MW,
respectively. Additionally, nodes 3, 4, 7, 8, 16, 20, 24, and
39 are designated as controllable load nodes participating
in frequency emergency control. The system’s topology is
illustrated in Figure 4.

The power fluctuations at the load nodes follow a normal
distribution with a mean and standard deviation equal to 5% of the
rated value. Similarly, the load static model voltage and frequency
indices also have a mean and standard deviation of 5% of the
rated value.

The wind speeds of the wind nodes are modeled by a
Weibull distribution with the shape parameter K set to 2.26,
the scale parameter C set to 7.55, the cut-in wind speed at
3.5 m/s, the cut-out wind speed at 25 m/s, and the rated wind
speed at 7.3 m/s.

To account for the correlation between the wind turbine
nodes, 1,000 sets of wind turbine output samples are generated
using the Nataf inverse transformations, with correlation
coefficients of 0.8. Figure 5 illustrates the Weibull distribution of
wind speed.

The deep reinforcement learning state space in this system
comprises frequency deviation, frequency rate of change, active
output, and load of each node, resulting in a 47-dimensional
space. The action space consists of eight load shedding actions for
controllable loads. Each action is represented as an 8-dimensional

vector, where each element is a continuous value within the
range of [-1, 0]. Furthermore, as the Soft Actor Critic (SAC)
algorithm can handle continuous action spaces, the emergency
frequency control directly determines the necessary load shedding
amount and sets the action time for emergency frequency
control as 2 s after fault detection. The delay characteristics of
controllable loads are categorized into three levels. For loads
of the same delay level, the actual control delay is calculated
based on the maximum value to ensure that the actual frequency
drop depth is less than or equal to the ideal frequency drop
depth, thereby avoiding frequency instability. Consequently, after
aggregation, it is assumed that the control delay for all level
1 controllable loads is 100 ms, for level 2 controllable loads
is 200 ms, and for level 3 controllable loads is 300 ms. The
controllable loads are then removed within each node in order
of delay from low to high. Table 1 provides the proportions
of controllable loads at each node and the distribution of
loads across different control delay levels after aggregated
modeling.

5.2 Analysis of model training and testing
results

The policy network and value network of the SAC model
both consist of two hidden layers with 64 neurons each. The
activation function is set to ReLU, the learning rate is 0.005, the
initial temperature coefficient is 0.1, the self-updating learning
rate is 0.0001, and the updating algorithms utilize the alternating
multiplier method. The experience replay unit has a capacity
of 2,500, and 64 samples are drawn for each training iteration.
The convergence criterion for each training round is that the
absolute value of the steady-state frequency deviation is less
than 0.1 Hz.

The SAC algorithm is employed to learn and train the
aforementioned arithmetic model. Figure 6 depict the curves
illustrating the changes in reward values during the training process.

Figure 6 demonstrate that, initially, the model struggles to find
a control strategy that effectively stabilizes the system frequency,
resulting in frequent movements per round and consequently
low reward values. Additionally, the maximum number of action
steps per round often reaches 50. However, as training progresses,
the model gradually discovers more efficient control strategies
with shorter action sequences, although the reward value remains
suboptimal due to excessive load removal. It is only after 1,200
rounds of training that both the reward value and the number of
training rounds stabilize, indicating the completion of the model
training process.

To evaluate and compare the frequency recovery process of
the proposed emergency frequency control scheme, it is essential
to conduct tests using various fault scenarios. These scenarios
are characterized by four attributes: the number of faulty nodes,
the extent of power shortage in the faulty nodes, the system
load factor, and the magnitude of source load fluctuations. For
this purpose, four representative fault scenarios are selected, as
illustrated in Figure 7.

During the model training process, the emergency frequency
control policies for the four representative scenarios are derived
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FIGURE 12
(A) Comparison of steady-state frequency deviation distribution of different DRL algorithms for random testing (B). Comparison of frequency drop
nadir distribution of different DRL algorithms for random testing.

through testing at intervals of 400 rounds until the completion of
2000 rounds, leading to the acquisition of the optimal control policy,
as depicted in Figure 8.

Figure 8 clearly demonstrate significant fluctuations in the
emergency frequency control strategies during rounds 0, 400,
800, and 1,200, indicating the model’s continuous search for an
improved control strategy. In contrast, the control strategies for
rounds 1,600 and 2000 exhibit reduced fluctuations, indicating
that the model has undergone substantial training. Initially, the
emergency frequency control strategy is more random, but through
continuous training, the model takes into account factors such as
the amount of controllable loads at each node and load removal
sensitivity. Consequently, it selects an optimal node for load
shedding, resulting in a final strategy with total load removal close
to the power deficit.

Table 2 presents the controllable load shedding quantities
for the optimal policy in the four representative test scenarios,
along with the steady-state frequency values achieved post-
policy implementation and the minimum value of dynamic
frequency drop.

Table 2 reveals that in the four test scenarios, characterized
by diverse fault locations, fault sizes, system loading rates,
and source-load uncertainties, the trained model successfully
maintains the system within 0.1 Hz of the steady-state frequency
deviation. Additionally, the lowest point of the dynamic frequency
drop remains above 49.5 Hz. These results substantiate the
effectiveness of the emergency control strategy based on the
SAC algorithm, particularly for systems affected by source-load
uncertainties.

To further ascertain the superiority of the proposed method,
a comparative analysis is conducted between the emergency
frequency control strategy derived from the traditional adaptive
UFLS algorithm and the strategy proposed in this paper.
The dynamic frequency recovery process of the system is
evaluated for both strategies across the four scenarios, as
depicted in Figure 9.

Figure 9 demonstrates that the emergency frequency control
strategies optimized by the proposed scheme in this paper effectively
maintain the steady-state frequency deviation of the system within
0.1 Hz, with the lowest frequency point exceeding 49.5 Hz across
the four different scenarios. In contrast, the adaptive UFLS scheme
in Scenarios 1, 2, and three suffers from the issue of insufficient
load shedding, resulting in a greater depth of frequency drop and
steady-state frequency deviation. Additionally, the conventional
scheme in Scenario four exhibits excessive load shedding, leading
to a steady-state frequency close to 50.4 Hz. Consequently, the
method presented in this chapter proves its superiority in reducing
the depth of frequency drop and steady-state frequency deviation,
highlighting the effectiveness of the deep reinforcement learning
algorithm.

To compare the disparities between source-load uncertainty
and deterministic power systems, both the conventional method
and the SAC algorithm proposed in this chapter are employed
in both systems for 100 tests. The emergency frequency
control outcomes are then compared, and the results are
illustrated in Figure 10.

Figures 10A, B reveal that the median frequency nadir achieved
by the SAC algorithm in the source-load deterministic system
and the uncertain system is approximately 49.65 Hz and 49.6 Hz,
respectively, whereas the median values obtained by the traditional
method are around 49.55 Hz and 49.45 Hz, respectively. Notably,
the frequency nadir resulting from the traditional method is
significantly lower than that achieved by the deep reinforcement
learning method, making it nearly impossible to maintain system
frequency stability in numerous scenarios. By contrast, the SAC
algorithm effectively improves the steady-state frequency deviation
and frequency nadir in both deterministic and uncertain systems,
demonstrating its superiority over the traditional method for
addressing the emergency frequency control problem in source-load
uncertain systems.

To validate the suitability of the SAC algorithm over other
reinforcement learning algorithms for addressing the emergency
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frequency control problem in the source-load double uncertainty
system, the model developed based on the SAC algorithm in this
paper is compared with models employing the A2C algorithm and
the TD3 algorithm. Figure 11 presents a comparison of the reward
value’s increasing trend throughout the training process. The solid
line represents the smoothed reward value, while the shaded area
denotes the variance fluctuation of the reward value.

Figure 11 illustrates that after approximately 500 rounds, the
smoothed reward value of the model based on the SAC algorithm
surpasses that of the other algorithm models, exhibiting a gradual
increase until it stabilizes at the desired value. Furthermore, in
terms of variance, the reward value’s variance for the SAC algorithm
is higher during the initial 300 training rounds and subsequently
becomes smaller than that of the other two algorithms. This
observation indicates the robustness of the SAC algorithm, its
ability to swiftly enhance the reward value through learning, and its
reduced oscillation.

The SAC algorithm effectively decreases the minimum system
frequency drop compared to other DRL algorithms, while
also reducing the steady-state frequency deviation. To visually
demonstrate the test’s improvement more intuitively, Figure 12A
and (B) present the distribution of frequency drop nadir and steady-
state frequency deviations resulting from the tests conducted with
various algorithms under random scenarios.

As can be seen from Figure 12, the test results of the emergency
frequency control strategy using the SAC algorithm show that
the probability of the system’s steady-state frequency stabilizing
at 49.8Hz–50 Hz is more than 50%, which is much higher than
that of the test results using the A2C and TD3 algorithms, and
the probability of the frequency dip nadir of the SAC algorithm
being higher than 49.4 Hz is much higher than that of the other
two algorithms. Therefore, the model based on SAC algorithm in
this chapter can effectively improve the dynamic frequency nadir
and steady-state frequency of the system after emergency frequency
control compared to other DRL algorithms.

6 Conclusion

The emerging power systems exhibit dual source-load
uncertainty, contributing to the increasing nonlinearity and
complexity of the emergency frequency stabilization problem.
Consequently, this paper proposes an optimization method based
on the SAC algorithm for the emergency frequency control strategy
of power systems with dual source-load uncertainty. Experimental
verification is conducted through the design of various operational
scenarios, yielding the following conclusions.

1) The dual uncertainty in the new power system, stemming from
both source and load, is analyzed. This includes the spatio-
temporal uncertainty of wind power output on the power
source side and the uncertainty in power demand on the
load side. This analysis aims to prevent errors caused by the
superposition of uncertain power from both sources and the
fault power deficit.

2) Enhance the state space, action space, and reward
function of the emergency frequency control MDP
model to accommodate the characteristics of source-
load double uncertainty;

3) Finally, the proposed method is validated in a modified
IEEE10 machine 39-node system incorporating source-load
uncertainty. The results demonstrate that the proposed model
accounts for the superposition of source-load uncertainty
power and fault power, leading to a reduction in steady-
state frequency deviation after emergency frequency control.
Moreover, compared with the traditional UFLS method and
other DRL algorithms, the SAC algorithm with continuous
action space accurately removes the load in a single pass,
thereby enhancing the frequency restoration speed and
minimizing the cost of controllable load removal.
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