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With the promotion and development of clean energy, it is challenging to ensure
the optimization of control performance in frequency control of the
hydropower-photovoltaic hybrid microgrid system caused by the output
power fluctuation of photovoltaic power generation. In this study, an optimal
load frequency controller (LFC) for a hydropower-photovoltaic hybrid microgrid
system was designed to improve the dynamic response when the load and
photovoltaic output power are perturbed based on the off-policy integral
reinforcement learning algorithm. First, a mechanism model of the
hydropower-photovoltaic hybrid microgrid system was established. Next, the
LFC problem was transformed into a zero-sum game control problem based on
the characteristics of the power system. Subsequently, three neural networks
were employed to approximate the Nash equilibrium solution of the zero-sum
game with historical input and output data when the system dynamics are
completely unknown. Finally, simulation experiments were conducted to
verify the effectiveness and optimality of the proposed method. The
introduction of this method provides a new perspective for frequency control
for the hydropower-photovoltaic hybrid microgrid system.
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1 Introduction

With the development of the national economy and society, the contradiction between
increasing energy demand and energy shortages has become increasingly obvious (Gilani
et al., 2020; Patnaik et al., 2020; Zhang and Kong, 2022). Traditional thermal power
generation causes problems such as the consumption of nonrenewable energy and excessive
carbon emissions (Ahmad et al., 2018; Cowie et al., 2020; Olabi and Abdelkareem, 2022).
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Hydropower and solar energy have attracted the attention of
researchers owing to their renewable and environment-friendly
nature (Gielen et al., 2019; Zepter et al., 2019).

However, photovoltaic (PV) power generation is intermittent,
leading to unstable output power and microgrid frequency
oscillations (Thirunavukkarasu and Sawle, 2021; Chen et al.,
2022; Wu and Yang, 2023). To ensure the frequency stability of a
microgrid, it is necessary to supplement controllable power sources,
such as hydroelectric units or energy storage devices, to fill the power
deficit, which can effectively maintain the microgrid frequency
stability (Coban et al., 2022). The power quality of PV power
systems can be improved by utilizing a control algorithm for
controllable power sources, which is applied to obtain an optimal
load frequency controller (LFC) system (Papaefthymiou et al., 2010;
Ma et al., 2014; Dhundhara and Verma, 2020). Some researchers
focus on the suppression of local load fluctuations and their
interactions with the distribution system (Khalid et al., 2022).
Additionally, the role of ancillary services and the integration of
renewable energy should also be addressed upon introduction to
minimize fluctuations and cover intermittency (Khalid et al., 2022;
Rehman et al., 2024; Osman et al., 2022).

Owing to their simple structure and ease of implementation,
proportional-integral-derivative (PID) control methods are widely
used in microgrid LFC (Mohamed et al., 2020; Nisha and Jamuna,
2022). Ray et al. (2011) utilized a PI controller to regulate the
frequency of a microgrid and achieve the required frequency ratings.
Guha et al. (2021) designed a fractional-order PID method to solve
the frequency stabilization problem of microgrid systems with
uncertain parameters. Huang et al. (2021) used fuzzy reasoning
in PID to improve the control performance of a hydraulic turbine
regulation system.

Many practical power systems can only be partially modeled,
and models of unknown parts are unavailable (Ganguly et al., 2018;
Li et al., 2023; Wu and Yang, 2023). Dynamic characteristics of
droop-controlled inverters are evaluated by a reduce-order small-
signal transfer function model, which is designed on the basis of the
Jordan continued-fraction expansion to provide a preprocessing
method for real-time power system simulation (Wang et al., 2020).
Therefore, owing to the insensitivity to the dynamics of the
unmodeled parts of the controlled object, adaptive control
methods have been proposed by continuously identifying system
parameters to achieve the ideal control effect. Adaptive control
methods can be used to resolve problems arising from parameter
variations in the LFC of a power system. Zeng et al. (2015) designed
a port-controlled Hamiltonian system that decomposed nonlinear
control into stabilizing control with a given equilibrium point and
proposed L-2 adaptive control for application to a hydroelectric
generator unit. Fang et al. (2011) effectively improved the dynamic
performance of the hydraulic turbine regulation process using an
improved particle swarm optimization algorithm, which was applied
to the optimal design of the parameters of a hydraulic turbine
regulation system to achieve an optimal positive setting of the
parameters. Tran et al. (2021) used a combination of second-
order sliding film control and a state estimator for frequency
regulation to reduce the number of overtones. Although these
methods can achieve better control performance, they have not
been widely popularized in practical power systems owing to their
complexity and difficulty.

The adaptive dynamic programming (ADP) algorithm is an
emerging intelligent control algorithm that solves the problem of
dimensional disasters caused by the traditional dynamic
programming (DP) method (Werbos, 1992; Vamvoudakis and
Lewis, 2010; Lewis et al., 2012; Bellman and Dreyfus, 2015) and
is suitable for systems with a high degree of nonlinearity. Shuai et al.
(2020) used a hybrid ADP algorithm to achieve optimal operation of
gas and electric systems. Xue et al. (2022) used ADP for the real-time
scheduling of battery heat storage tank integrated heat and power
systems, providing optimal economic operation strategies. The off-
policy integral reinforcement learning (IRL) algorithm is proposed
based on the theory of the ADP algorithm, which can explore system
information with historical input and output data, thereby
overcoming the difficulty of traditional ADP relays on neural
network weights in the training process to find the continuous
excitation function. Chai et al. (2017) used the game theory to solve
multi-objective trajectory optimization problems for aerial vehicles.
Song et al. (2019) proposed an off-policy IRL algorithm to solve an
optimal control problem with partially known system dynamics.
Based on the ADP algorithm, this paper proposes an integral
reinforcement learning method that requires only the historical
input-output data of the system, allowing for optimal solutions
even when the system dynamics are completely unknown.

To the best of our knowledge, in the hydropower-photovoltaic
hybrid microgrid system, the challenges of considering system
disturbances and employing model-free methods for frequency
control are quite evident. Traditional frequency control methods
typically rely on a mathematical model of the system and assume
that disturbances are known or predictable. However, in real
microgrid systems, disturbances such as load variations and
fluctuations in renewable energy output are often unpredictable,
and obtaining an accurate model of the system can be difficult or
complex. The existing reinforcement learning methods for
frequency control in the hydropower-photovoltaic hybrid
microgrid systems have not simultaneously addressed
disturbances in the system and utilized the model-free
approaches, which motivates our study. The focus of this paper
is on how to abstract a hybrid power generation system with
disturbances as a zero-sum game problem and solve it using the
proposed model-free method. This approach provides a theoretical
foundation and basis for the grid integration of a series of
photovoltaic combined power generation systems. The main
contributions of this article are as follows:

1. A hydropower-photovoltaic hybrid microgrid system model
was constructed on the basis of the mechanistic modeling of
the hydraulic turbine and photovoltaic power generation,
meanwhile treating the photovoltaic power generation
perturbed as the disturbance term.

2. Based on the power generation characteristics, the secondary
frequency modulation control signal was used as the control
vector, and the input system load frequency and solar energy
power were used as the perturbation vectors of the
hydropower-photovoltaic microgrid power system, which
transforms the LFC problem into a zero-sum optimal
control problem. By solving the Nash equilibrium of the
zero-sum game, the optimal control rate and the maximum
disturbance that the system can withstand can be obtained,
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thereby controlling the load frequency of the hydropower-
photovoltaic hybrid microgrid system.

3. An off-policy IRL algorithm was adopted to resolve the zero-
sum optimal control problem in which three networks were
employed to approximate the Nash equilibrium point of the
zero-sum game to obtain the optimal LFC of the hybrid system.
The proposed method overcomes the limitation of existing
solution methods that require precise system model
information.

2 Problem statement

The hydropower-photovoltaic microgrid power system
effectively exploits the inherent frequency regulation advantages
of hydropower units while integrating solar energy generation
resources within the same regional grid. This hybrid system aims
to enhance the overall frequency quality of the microgrid by
balancing both renewable energy inputs and electrical load
demand. However, such integration significantly increases the
operational requirements for the Load Frequency Control (LFC)
controller. In this study, Figure 1 outlines the core structure of the
system: a power busbar connects hydropower units (HP),
photovoltaic generation units (PV), and electrical loads.
Specifically, the PV units are connected to the alternating current
(AC) microgrid through direct current (DC) to alternating current
(AC) conversion using DC/AC inverters.

The frequency stability of this isolated microgrid relies heavily
on maintaining an active power balance within the network.
Variations in electrical load and the intermittent, fluctuating
output from photovoltaic sources can disturb this balance,
leading to changes in system frequency. A central feature of the
hydropower-photovoltaic microgrid system is the hydro-turbine
generator, which is responsible for providing rotational reserves
that help regulate frequency by adjusting themechanical input to the
turbine. This response compensates for any mismatch between
generation and demand, ensuring system stability.

The hydropower units play a critical role in Load Frequency
Control (LFC) tasks. The primary function of the LFC system is to
regulate water flow into the turbines of the hydropower generators.
It achieves this by dynamically adjusting the active power output of

the hydropower units in real-time, depending on the load and
intermittent power output from the solar resources. This real-
time control is vital for compensating fluctuations in both solar
power production and load changes, stabilizing the generator speed,
and ultimately controlling the frequency of the microgrid.

To improve the effectiveness of the system and minimize
control costs, an advanced optimal load frequency controller
was designed, utilizing an off-policy Inverse Reinforcement
Learning (IRL) algorithm. This controller ensures the stability
of the grid-connected voltage in the hydropower-photovoltaic
microgrid by optimizing the dynamic allocation of power
resources. In essence, it manages the trade-offs between
ensuring grid frequency stability and maintaining operational
cost efficiency, leading to a robust, reliable, and sustainable
microgrid power system.

3 Materials and methods

3.1 Establishment of the hydro turbine
group model

The hydro turbine group consisted of hydro turbines, governors,
and generators. A turbine groupmodel was established for each part.

The equations of moment and flow of the hydro turbine are
expressed as Equation 1:

Δmt t( ) � nxΔx t( ) + nyΔy t( ) + nhΔh t( )
Δq t( ) � nqxΔx t( ) + nqyΔy t( ) + nqhΔh t( ),{ (1)

where Δmt(t) and Δq(t) represent the increments in torque and
flow, respectively; Δy(t), Δh(t), and Δx(t) indicate the relative
deviation variables of the guide vane opening, water head, and hydro
turbine speed, respectively; nx, ny, and nh represent the transfer
coefficients of the hydro turbine torque to the speed, guide vane
opening and water head, respectively; nqx, nqy and nqh are transfer
coefficients of the hydro turbine flow to the speed, guide vane
opening and the water head, respectively. Under stable
conditions, each transfer coefficient is regarded as a constant.

When n � nqynh
ny

− nqh, the transfer function from the guide vane
increment Δy(t) to the torque increment Δmt(t) of the hydro
turbine is as follows:

FIGURE 1
Main structure of the independent microgrid.
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Gym s( ) � Δm s( )
Δy s( )� ny

1 − nTws

1 + nqhTws
, (2)

where Tw indicates the inertia time constant of the water flow.
The hydro turbine governor can be simplified as a first-order

inertial link by ignoring the nonlinear factors, as Equation 3:

Gy s( ) � Δy s( )
u s( ) � 1

Tys + 1
, (3)

whereTy represents the response time constant of the hydro-turbine
governor. The corresponding differential equation is as follows:

dΔy t( )
dt

� − 1
Ty

Δy t( ) + 1
Ty

u t( ) (4)

Equation 2 is substituted into Equation 4 after the Laplace
transformation. The differential equation is obtained by the
Laplace transformation of Equation 2, and Equation 4 is
substituted into the differential equation to obtain the hydro
turbine differential equation as follows:

dΔmt t( )
dt

� 1
nqhTw

−Δmt t( ) + ny + nyn
Tw

Ty
( )Δy t( ) − nyn

Tw

Ty
u t( )[ ]

(5)
The second-order model of the generator includes the rotor

rotation motion equation and the equation that characterizes the
relationship between the power angle and speed, as follows:

dΔδ t( )
dt

� w0Δx t( )
dx t( )
dt

� 1
TJ

Δmt t( ) − ΔPe t( ) −DΔx t( )[ ],

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(6)

where δ indicates the generator power angle, which remains
constant under stable operating conditions, and ΔPe indicates
the electromagnetic power increment, which is equivalent to the
relative value of the load increment ΔPL.w0 � 100π indicates the
synchronous electrical angular velocity, D is the damping
coefficient, and TJ indicates the inertia time constant of the

generator. ΔPS is the sum of the incremental relative values of
power supplied by all sources within the microgrid. From the
Equation 6, we get ΔPS − ΔPL � TM

dΔf(t)
dt +DMΔf(t). TM

represents the equivalent inertia time coefficient of the system,
which is equal to the weighted sum of the inertia coefficients of all
the generators in the system. DM represents the equivalent load-
damping factor of the system.

By combining Equations 4–6, the following mathematical model
of the hydro-turbine group can be obtained:

dδ t( )
dt

� w0Δx t( )
dΔx t( )

dt
� 1
TJ

Δmt t( ) − ΔPe t( ) −DΔx t( )[ ]

dΔmt t( )
dt

� 1
nqhTw

−Δmt t( ) + ny + nyn
Tw

Ty
( )Δy t( ) − nyn

Tw

Ty
u t( )[ ]

dΔy t( )
dt

� − 1
Ty

Δy t( ) + 1
Ty

u t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

3.2 Establishment of the photovoltaic model

PV panels convert solar energy into electrical energy based
on PV effects. The main body of the frequency control in
this study was the hydropower unit. Therefore, in this
subsection, a first-order model with time constant Tsolar was
used to express the frequency characteristics of the PV power
as follows:

dΔPPV

dt
� − 1

Tsolar
ΔPPV + 1

Tsolar
ΔPsolar, (8)

where Tsolar represents the time constant of the PV power system,
ΔPPV represents the output power of the PV power system, and
ΔPsolar represents the solar power. Solar power has obvious
volatility, as PV panels are easily affected by light intensity and
ambient temperature. Therefore, solar power is regarded as a
disturbance term. A block diagram of the model is shown in
the Figure 2.

FIGURE 2
Block diagram of the model.
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3.3 Establishment of the hydropower-
photovoltaic microgrid power systemmodel

The transient changes in the voltage and power angle of the
system can be ignored in the frequency control analysis. Therefore,
in the analysis process of LFC, Δmt(t) � ΔPm(t) is the incremental
relative value of the output power of the hydro turbine group, the
relative value of the electromagnetic power increment ΔPe(t) is
replaced by the relative value of the load increment ΔPL(t), and the
relative value of the speed deviation Δx(t) is equal to the relative
value of the frequency deviation Δf(t).

By combining Equations 7, 8, the hydro-photovoltaic microgrid
power system can be derived as Equation 9:

dδ t( )
dt

� w0Δf t( )
dΔf t( )

dt
� 1
TJ

ΔPm t( ) − ΔPL t( ) −DΔf t( )[ ]
dΔPm t( )

dt
� 1
nqhTw

−ΔPm t( ) + ny + nyn
Tw

Ty
( )Δy t( ) − nyn

Tw

Ty
u t( )[ ]

dΔy t( )
dt

� − 1
Ty

Δy t( ) + 1
Ty

u t( )

dΔPPV

dt
� − 1

Tsolar
ΔPPV + 1

Tsolar
ΔPsolar.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Here, x(t) � [x1(t)x2(t) x3(t) x4(t) x5(t)]T =
[δ(t)f(t)ΔPm(t)Δy(t)ΔPPV]T are state variable. The load
frequency ΔPL(t) and solar energy ΔPsolar of the input system
are considered as the elements in the disturbance vector, and the PV
output power fluctuation and load power change cause the power
supply and demand of microgrid to lose balance. The system
disturbance vector can be obtained as follows:
w(t) � [ΔPL (t)ΔPsolar(t)]T; u � u(t) is the control vector signal.
Therefore, the load frequency model of the hydropower-
photovoltaic system can be obtained as follows:

_x � Ax + Bu + Fw, (10)
where the system state variable x ∈ R5×1 is the system control
variable and u ∈ R1×1 is the disturbance variable w ∈ R2×1. The
system matrix is expressed as follows:

A �

0 w0 0 0 0

0 −D
TJ

1
TJ

0 0

0 0 − 1
nqhTw

ny
nqhTw

1 + n
Tw

Ty
( ) 0

0 0 0 − 1
Ty

0

0 0 0 0 − 1
Tsolar

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

B �

0

0

− nyn

nqhTy

1
Ty

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F �

0 0

− 1
Ty

0

0 0

0 0

0
1

Tsolar

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Thus far, the load frequency control problem of the
hydropower-photovoltaic microgrid power system has been
transformed into a zero-sum game optimal control problem,
wherein the input of the governor was taken as the control
variable and the load frequency and solar power were taken as
the disturbance variables.

4 Results of the optimal controller
based on off-policy IRL algorithm

The hydropower-photovoltaic microgrid power system model
was established using Equation 10, where x, u and w are the state,
control input, and disturbance input of the system, respectively. x �
0 is the equilibrium point of the hydropower-photovoltaic microgrid
power system. The infinite-horizon performance index function can
be designed as follows:

J x 0( ), u, w( ) � ∫∞

0
r x t( ), u, w( ){ }, (11)

where in the utility function can be described as Equation 12:

r x t( ), u, w( ) � xTRx + uTSu − wTTw, (12)
where the coefficient matrices R, S and T are real symmetric positive
definite matrices. Please note that this performance indicator has
clear economic significance, in which xTRx is the penalty cost when
the quality of power supply at the node i deviates from the system’s
stable value and uTSu − wTTw is the control costs and disturbance
costs incurred by node i to reduce penalty costs.

The purpose of the zero-sum game is to solve for an optimal
control that satisfies Equation 13.

V* x 0( )( ) � inf︸︷︷︸
u

sup︸︷︷︸
w

J x 0( ), u, w( ) (13)

The zero-sum game selects to minimize the player set u and
maximize the player set w, the saddle point u* and w* must satisfy
the following inequality Equation 14:

J x, u*, w( )≤ J x, u*, w*( )≤ J x, u, w*( ) (14)

When there is a unique set of solutions that satisfy the following
Nash equilibrium condition Equation 15:

V* x( ) � inf︸︷︷︸
u

sup︸︷︷︸
w

J x, u, w( ) � sup︸︷︷︸
w

inf︸︷︷︸
u

J x 0( ), u, w( ), (15)

the cost function of every player can be written as Equation 16:

V x t( )( ) � ∫∞

t
xTRx + uTSu − wTTw{ }dt (16)

Using the Leibniz formula and differentiating Equation 6, the
Bellman equation of the zero-sum game can be obtained as follows:

H x,∇V, u, w( ) � xTRx + uTSu − wTTw + ∇VT Ax + Bu − Fw( ),
(17)

where ∇V � ∂V
∂x. The control and disturbance inputs can be obtained

as Equations 18, 19:
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∂H
∂u

� 2uS + ∇VTB � 0 (18)
∂H
∂w

� −2wT + ∇VTF � 0 (19)

The optimal control policy u* and the optimal disturbance w*
can be derived as follows:

u* � −1
2
S−1BT∇V (20)

w* � 1
2
T−1FT∇V (21)

The Hamilton-Jacobi-Bellman equation can be obtained by
substituting Equations 20, 21 into Equation 17 as follows:

0 � xTRx + ∇VTAx − 1
4
∇VTBS−1BT∇V + 1

4
∇VTFT−1FT∇V (22)

The following equations were used to update the control and
disturbance policies as Equations 23, 24:

u k+1[ ] � −1
2
S−1BT∇V k[ ] (23)

w k+1[ ] � 1
2
T−1FT∇V k[ ], (24)

where the superscript [k] represents the number of steps in the
iteration process.

The Equation 11 can be transformed as Equation 25:

_x � Ax + Bu k[ ] + Fw k[ ] + B u − u k[ ]( ) + F w − w k[ ]( ) (25)

The Equation 22 can be rewritten as follows:

V k[ ] x t + Δt( )( ) − V k[ ]x t( )
� ∫t+Δt

t
ΔV k[ ]T _xdτ

� ∫t+Δt

t
ΔV k[ ]T Ax + bu + Fw( )dτ

+∫t+Δt

t
ΔV k[ ]T B u − u k[ ]( ) + F w − w k[ ]( )( )

� −∫t+Δt

t
xTRx + u k[ ]TSu k[ ] − w k[ ]TTw( )dτ

+∫t+Δt

t
ΔV k[ ]T B u − u k[ ]( ) + F w − w k[ ]( )( ) (26)

By deriving Equation 23, we get ∇V[k]TB � −2u[k+1]S and
∇V[k]TF � 2w[k+1]T; upon substituting these parameters into
Equation 26, the following equation was obtained:

V k[ ] x t + Δt( )( ) − V k[ ]x t( )
� −∫t+Δt

t
xTRx + u k[ ]TSu k[ ] − w k[ ]TTw( )dτ

+∫t+Δt

t
− 2 u k+1[ ]TS u − u k[ ]( ) − w k+1[ ]TT w − w k[ ]( )( ) (27)

From Equations 26, 27, the system dynamic matrices A, B, and F
are replaced. Equation 27 overcomes the difficulty of obtaining the
dynamic information of the system in practical applications.
(V[k], u[k+1], w[k+1]) is a unique solution for the off-policy IRL
algorithm. Three neural networks were employed to solve the
solution (V[k], u[k+1], w[k+1]); the expressions are as follows:

V̂
k[ ] � PT

V x( )θ̂ k[ ]
V (28)

u k[ ] x( ) � P( a
u x( ))Tθ̂ k[ ]

ua
(29)

w k[ ] x( ) � P( b
w x( ))Tθ̂ k[ ]

wb
, (30)

PT
V(x), PT

u(x), and PT
w(x) satisfy PT

V(0) � 0, PT
u(0) � 0 and

PT
w(0) � 0, respectively, and are linearly independent. V̂

[k]
is

approached by a critical neural network (CNN), and u[k](x) and
w[k](x) are approached by an action neural network (ANN) and a
disturbance neural network (DNN), respectively. Here, θ̂

[k]
V , θ̂

[k]
ua
,

and θ̂
[k]
wb

indicate the weights of CNN, ANN, and DNN, respectively.
According to Equation 28, the residual can be written as follows:

ϵ k[ ] x, u, w( ) � V̂
k[ ]

x t( )( ) − V̂
k[ ]

x t + Δt( )( )
−∫t+Δt

t
xTRx + u k[ ]TSu k[ ] − w k[ ]TTw( )dτ

+∫t+Δt

t
− 2 u k+1[ ]TS u − u k[ ]( ) − w k+1[ ]TT w − w k[ ]( )( )

(31)
Substituting Equations 28–30 into Equation 31 yields

ϑ k[ ] x, u.w( ) � PV x t( )( ) − PV x t + Δt( )( )[ ]T θ̂
k+1[ ]
V − ∫t+Δt

t
xTRxdτ

−∑n

a�1∫t+Δt
t

θ̂
k[ ]T
ua

Pa
u x t( )( )S P( a

u x t( )( ))Tθ̂ k[ ]
ua
dτ

+∑m

b�1∫t+Δt
t

θ̂
k[ ]T
wb

Pw x t( )( )T P( b
w x t( )( ))Tθ̂ k[ ]

wb
dτ

+2∑n

a�1∫t+Δt
t

θ̂
k[ ]T
ua

Pa
u x t( )( )S Pa

u x t( )( )( )Tθ̂ k+1[ ]
ua

dτ

−2∑n

a�1∫t+Δt
t

uTS Pa
u x t( )( )( )Tθ̂ k+1[ ]

ua
dτ

−2∑m

b�1∫t+Δt
t

θ̂
k[ ]T
wb

Pb
w x t( )( )T P( b

w x t( )( ))Tθ̂ k+1[ ]
wb

dτ

+2∑m

b�1∫t+Δt
t

wTT P( b
w x t( )( ))Tθ̂ k+1[ ]

wb
dτ.

(32)
In order to simplify Equation 32, the following parameters are

defined as Equations 33–39:

QFA x t( )( ) � PV
T x t( )( ) − PV

T x t + Δt( )( ) (33)

QFB x t( )( ) � 2∑n

a�1∫
t+Δt

t
θ̂

k[ ]T
ua

Pa
u x t( )( )S P( a

u x t( )( ))Tdτ (34)

QFC x t( ), u( ) � 2∑n

a�1∫
t+Δt

t
uTS P( a

u x t( )( ))Tdτ (35)

QFD x t( )( ) � −2∑m

b�1∫
t+Δt

t
θ̂

k[ ]T
wb

Pb
w x t( )( )T P( b

wb
x t( )( ))Tdτ (36)

QFE x t( ), w( ) � −2∑m

b�1∫
t+Δt

t
wTT P( b

w x t( )( ))Tdτ (37)

QM x t( )( ) � ∫t+Δt

t
xTRxdτ (38)

QN x t( )( ) � ∑n

a�1∫t+Δt
t

θ̂
k[ ]T
ua

Pa
u x t( )( )S P( a

u x t( )( ))Tθ̂ k[ ]
ua
dτ

−∑m

b�1∫t+Δt
t

θ̂
k[ ]T
wb

Pb
w x t( )( )T P( b

w x t( )( ))Tθ̂ k[ ]
wb

dτ

(39)
Then, Equation 32 can be written as Equation 40:

ϑ k[ ] x, u.w( ) � QFA x t( )( )θ̂ k+1[ ]
V + QFB x t( )( )θ̂ k+1[ ]

u

−QFC x t( ), u( )θ̂ k+1[ ]
u + QFD x t( )( )θ̂ k+1[ ]

w

−QFE x t( ), w( )θ̂ k+1[ ]
w − QM x t( )( ) − QN x t( )( ) (40)
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The Equations 41–43 are then generated to obtain the
optimal solutions:

Ŵ
k[ ] � θ̂

k+1[ ]
V , θ̂

k+1[ ]
u1 . . . θ̂

k+1[ ]
ua , θ̂

k+1[ ]
w1 . . . θ̂

k+1[ ]
wb[ ] (41)

X k[ ]
A x, u, w( ) � [QFA x t( )( ), Q1

FB x t( )( ) − Q1
FC x t( ), u( ) . . . , Qn

FB x t( )( )
−Qn

Fc x t( )( ), Q1
FD x t( )( ) − Q1

FE x t( ), w( ), . . . ,
Qn

FD x t( )( ) − Qn
FE x t( ), w( )] (42)

X k[ ]
B � QM x t( )( ) + QN x t( )( ) (43)

Finally, Equation 32 can be written as follows:

ϑ k[ ] x, u, w( ) � X k[ ]
A x, u, w( )Ŵ k[ ] −X k[ ]

B (44)

In order to solve weight Ŵ
[k]
, the residual error ϑ[k](x, u.w) is

approximated to zero. The inner product is applied to solve Ŵ
[k]

using Equation 45 as follows:

< dϑ k[ ] x, u, w( )/dŴ k[ ]
, dϑ k[ ] x, u, w( )> D � 0, (45)

upon substituting Equation 45 is substituted in Equations 44, 46 is
obtained as follows:

<X k[ ]
A , X k[ ]

A > DŴ
k[ ] − <X k[ ]

A , X k[ ]
B > D � 0 (46)

Ŵ can be calculated as follows:

Ŵ
k[ ] � <X k[ ]

A ,X k[ ]
A > D

−1 <X k[ ]
A , X k[ ]

B > D (47)

Various numerical integrals in domain D were acquired to
calculate <X[k]

A ,X[k]
A > D and <X[k]

A , X[k]
B > D. The Monte Carlo

integration was used to resolve this calculation. When
μD ≜ ∫

D
d(x, u, w), and QM ≜ [(xi, ui, wi)|(xi, ui, wi) ∈ D, i �

1, 2, . . . ,M], all of them are the sets sampled on domain D. M
indicates the dimensions of the QM, which should be as wide as
possible to ensure that the sample set provides full coverage of D.
Therefore, <X[k]

A , X[k]
A > D can be obtained as follows:

<X k[ ]
A ,X k[ ]

A > D � ∫
D

X k[ ]
A xi, ui, wi( )( )T X k[ ]

A xi, ui, wi( )( )d xi, ui, wi( ),
� μD
M

∑M

i�1( X k[ ]
A xi, ui, wi( )( )T X k[ ]

A xi, ui, wi( )( )
� μD
M

γ k[ ]( )Tγ k[ ]

(48)
in which, γ[k] �
[(X[k]T

A (x1, u1, w1), X[k]T
A ( x2, u2, w2), . . . X[k]T

A (xM, uM,wM)].

<X k[ ]
A , X k[ ]

B > D � μD
M

∑M

i�1 X k[ ]
A xi, ui, wi( )( )T( X k[ ]

B (xi(( )
� μD
M

γ k[ ]( )Tβ k[ ] (49)

where β[k] � [X[k]
B (x1), X[k]

B (x2), . . . , X[k]
B (xM)]T.

Upon substituting Equations 48, 49 in Equation 47, the
following equation is obtained:

Ŵ
k[ ] � γ k[ ]( )Tγ k[ ][ ]−1 γ k[ ]( )Tβ k[ ] (50)

The zero-sum problem can be solved using Algorithm 1
as follows:

Step 1: Start with the signals u and w as well as collecting

the hydropower-photovoltaic cogeneration system

data (xp ,up ,wp) to build the set QM; then, calculate

the QFA(x),QFB(x),QFC(x,u),QFD(x),QFE(x,w),QM(x)
and QN(x).

Step 2: The values of cost function, control, and

disturbance are set initial admissible weight

vectors as θ̂
[0]
V , θ̂

[0]
u1 . . . θ̂

[0]
ua , and θ̂

[0]
w1 . . . θ̂

[0]
wb , separately.

Step 3: Calculate the γ[k], and β[k] to renew the Ŵ
[k]

by the

Equation 50.

Step 4: Let k = k + 1, return to step 3, and go on.

Step 5: Until ‖ Ŵ[k+1] − Ŵ
[k]‖≤ α, where in α is a small positive

constant. Then, the iteration is stopped, and Ŵ
[k]

is used to acquire the control policy using

Equation 41.

Algorithm 1 Off-policy IRL method to solve the optimal control problem.

It is worth mentioning that the input and output data of the
hydropower-photovoltaic microgrid power system are necessary to
solve the zero-sum problem when the system dynamics are
completely unknown.

5 Discussion

The hydropower-photovoltaic microgrid power system model
was established, the proposed Algorithm 1 was utilized to solve the
LFC control, and the simulation was realized in the MATLAB
platform. Simulation results verified that the microgrid can
maintain frequency stability despite local load and PV
disturbances. The control and disturbance curves eventually
approach to 0, as shown in Figure 3. The Figure 3 illustrates the
behavior of two variables over a period of 10 time steps, designated
on the x-axis. The y-axis represents the Control Value ranging
from −0.5 to 1.0. The graph features two sets of trajectories for the
control u and ω, each represented by both initial estimated values
and adjusted values obtained using the Algorithm 1. The dashed and
solid lines indicate the approximation curves under initial admissive
control and Algorithm 1, respectively. It can be seen that the
convergence speed of Algorithm 1 is better than that of the
initial admissible control method. The frequency finally
stabilized. For variable ω, it starts from a lower value and
similarly converge towards zero. Overall, the obtained trajectories
using Algorithm 1 exhibit a more rapid convergence towards 0 for
both u and ω compared to their respective initial trajectories.
Demonstrating the enhanced performance of Algorithm 1 over
the initial admissible control method.

The weight convergence curves of the three networks are shown
in Figures 4–6. These three figures illustrates the convergence of
weights for every seven different networks θV, θu, and θω over
15 iterations, represented on the x-axis. The y-axis denotes the
Weight of Value Function, with values ranging from −10 to 15. At
the beginning of the iterations, the weights of these networks start
from various initial values. Some weights exhibit significant
fluctuations, particularly up to around the 5th iteration, where
noticeable oscillations are apparent. As iterations proceed, the
weights for all networks gradually stabilize and converge to
constant values between 0 and 1, indicating that the values no
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longer change significantly with additional iterations. By the 15th
step, all weights have reached their steady-state values. The
convergence of these weights within 15 iterations suggests that
the optimization process is effective, allowing the system to arrive
at an optimal control that approximates the Nash equilibrium point
for the zero-sum game problem.

Compared to traditional Dynamic Programming methods, the
proposed method effectively overcomes the “curse of
dimensionality,” significantly reducing the computational burden
when solving high-dimensional matrices. In contrast to previous
reinforcement learning approaches for controlling the optimal

frequency of hydropower-photovoltaic microgrid power systems,
this method incorporates the consideration of disturbance factors,
providing a robust theoretical basis for the grid integration of hybrid
power generation systems.

The desired voltage and current is 50 hz sinusoidal waves, such
that the systemis dynamic with high frequency. Yet the IRL method
depends a process to collect the control and states data from the
system under a quasi-optimal control, which may lead to the power
oscillation and need more time to turn the system from the transient
state to steady state. Therefore, the limitation of this method is that it
is currently only applicable to offline systems.

FIGURE 3
State traces of the system.

FIGURE 4
Convergence curves of the θV .
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6 Conclusion

This paper focused on the hydropower-photovoltaic hybrid
microgrid system and designed an optimal LFC using the IRL
algorithm. First, the mechanism models of the hydro turbine
generator and the photovoltaic generator were established,
respectively. Second, a state-space model of the hydropower-
photovoltaic hybrid microgrid system was developed, and based
on the power generation characteristics, it was transformed in
solving a zero-sum game problem. Third, the IRL algorithm was
employed to approximate the Nash equilibrium point of the zero-
sum game problem using three neural networks. Finally, the
simulation experiments were conducted to verify the effectiveness
of the proposed method.
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