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Introduction: In the domain of nuclear power plant operations, accurately and
rapidly predicting future states is crucial for ensuring safety and efficiency. Data-
driven methods are becoming increasingly important for nuclear power plant
parameter forecasting. While Transformer neural networks have emerged as
powerful tools due to their self-attentionmechanisms and ability to capture long-
range dependencies, their application in the nuclear energy field remains limited
and their capabilities largely untested. Additionally, Transformer models are
highly sensitive to data complexity, presenting challenges for model
development and computational efficiency.

Methods: This study proposes a feature selection method that integrates
clustering and mutual information techniques to reduce the dimensionality of
training data before applying Transformer models. By identifying key physical
quantities from large datasets, we refine the data used for training a Transformer
model, which is then optimized using the Tree-structured Parzen
Estimator algorithm.

Results: Applying this method to a dataset for predicting a shutdown condition of
a nuclear power plant, we demonstrate the effectiveness of the proposed “feature
selection + Transformer” approach: (1) The Transformer model achieved high
accuracy in predicting nuclear power plant parameters, with key physical
quantities such as temperature, pressure, and water level attaining a
normalized root mean squared error below 0.009, indicating that the RMSE is
below 0.9% of the range of the original data, reflecting a very small prediction
error. (2) The feature selection method effectively reduced input data
dimensionality with minimal impact on model accuracy.

Discussion: The results demonstrate that the proposed clustering and mutual
information-based method provides an effective feature selection strategy that
encapsulates operational information of the plant.
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1 Introduction

Nuclear power plants (NPPs) play a crucial role in meeting
global energy demands while contributing to low-carbon electricity
generation. Accurate prediction of operational states is critical for
enhancing safety and efficiency in NPPs. This approach aims to
improve current operations, support future autonomous control
systems, and enable real-time monitoring. By facilitating rapid
forecasting, it contributes to NPP automation, advancing safety,
efficiency, and sustainable energy production in the
nuclear industry.

In the domain of nuclear energy, forecasting methodologies
generally fall into two categories: model-driven and data-driven
approaches. Model-based predictions, when simplified for faster
computational speed, often come with the caveat of substantial
errors due to the simplification of physical models. On the other
hand, more detailed models demand extensive computational
resources, impeding the ability to forecast swiftly (Song et al.,
2023). With recent technological advancements, particularly in
data analytics and machine learning, we now have unprecedented
capabilities to forecast and optimize NPP operations with improved
precision and reliability. Data-driven methods can better handle the
complexities and uncertainties in NPP operations compared to
traditional model-driven approaches, as well as complex
interactions between various operating parameters (e.g.,
temperature, pressure, flow rate) that are often challenging to
fully account for in purely physics-based models.

Recent years have seen a proliferation of model-free machine
learning approaches, demonstrating promising results conducive to
NPP applications. Notably, deep learning models such as long short-
term memory (LSTM) (Lei et al., 2022; Nguyen et al., 2021) and
gated recurrent unit (GRU) (Kaminski and Diab, 2024) are well-
suited for handling sequential data and have demonstrated
exceptional performance in time series prediction tasks, which is
why they are widely applied in predicting parameters of NPPs.
Several studies highlight the effectiveness of these approaches. For
instance, Liu et al. (2015) develops a dynamic model with dual back-
propagation neural networks for continuous prediction of NPP
operating parameters, including coolant void fraction, water level
in steam generators, and pressurizers. Moshkbar-Bakhshayesh
(2019) evaluates various supervised learning methods for
forecasting NPP operating parameters. Bae et al. (2021) develops
a data-driven prediction model using LSTM networks for fast and
accurate forecasting of future parameter trends in NPPs, enhancing
operator decision-making and potentially reducing human error in
emergency situations. Li et al. (2022a) presents an automated deep
learning approach for short-term prediction of thermal hydraulic
parameters, achieving a maximum prediction error of about 4% and
an average prediction time of 0.7 ms. Song et al. (2023) illustrates the
GRU network’s ability to predict the future state of steam generators
in NPPs based on measured data; Kim and Kim (2023) presents an
algorithm that predicts and quantifies the uncertainty of NPP
parameters over 2 h with high accuracy, using a blend of
bidirectional LSTM, attention mechanisms, and a conditional
variational autoencoder. Although models like LSTM excel in
sequence comprehension, they may falter when broad context is
needed, particularly in capturing long-term dependencies. This
limitation is addressed by the Transformer architecture (Vaswani

et al., 2017) with its robust self-attention mechanism that accurately
captures complex contexts.

The Transformer model, originally developed for natural
language processing, has recently emerged as a promising tool in
time series forecasting. Characterized by its self-attention
mechanism, the Transformer excels at capturing long-range
dependencies in data (Wu et al., 2021), making it particularly
suited for complex temporal relationships in NPP operational
data. This ability potentially overcomes the limitations of
traditional recurrent neural network models, offering
improvements in prediction accuracy across various fields (Li
et al., 2022b; Zeng et al., 2023). Several studies have
demonstrated the superiority of Transformer models over
traditional methods in various forecasting tasks. Zhao et al.
(2021) points out the accuracy of Transformer models in short-
term load forecasting, underscoring its advantages over regression-
based models and traditional methods. Shen and Wang (2022)
highlights how Transformer models, when integrated with classic
CNN architectures, significantly improve time series forecasting,
showing their superiority over traditional approaches. Mazen et al.
(2023) shows the advantages of integrating Transformer models
with GRU units for solar power forecasting, showing the
Transformer’s superior handling of complex patterns over
traditional models. Lim and Zohren (2021) reviews deep learning
approaches for time series forecasting, particularly noting the
superior performance of Transformer models in capturing long-
range dependencies compared to traditional ARIMA and
exponential smoothing methods. Despite its success in various
domains, the adoption of Transformer models within the nuclear
energy sector remains relatively nascent. Some notable applications
include: Yi et al. (2023) discusses the application of Transformer-
based models for detecting anomalies in NPP operational data,
showcasing the model’s effectiveness in handling complex datasets;
Aizpurua et al. (2019) integrates machine learning techniques,
including Transformer models, for predicting the lifespan of
power transformers within nuclear facilities, addressing
operational parameter prediction; Tohver et al. (2023) employ
the Temporal Fusion Transformer to forecast critical parameters
of NPPs with high accuracy, enabling clear distinction among
various accident scenarios and offering significant insights for
enhancing operations; Xing et al. (2023) created a network model
based on the Transformer architecture, aimed at predicting essential
safety parameters in pressurized water reactor (PWR), which
effectively forecasts the trends in water levels within pressurizers.
In this paper, we employ Transformer as a predictive model to assess
its suitability for operational data in NPPs. Despite its advantages,
Transformer faces high computational complexity when dealing
with long sequences (Cao et al., 2024).

To address this issue, feature selection can be employed. This
approach is particularly relevant for NPP data management, which
is characterized by diverse data sources, strong variable
interdependencies, and low data value density (He et al., 2021).
By retaining only key physical quantities, feature selection reduces
the dimensionality of data, naturally decreasing the model’s
computational complexity and shortening prediction times. From
a view of machine learning, by selecting a subset of relevant features
from the original data, feature selection also retains physical
interpretability while improving learning performance, preventing
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overfitting, reducing computational costs, and minimizing memory
usage without substantial loss of information (Li et al., 2017).
Advancements in feature selection techniques have further
enhanced the predictive capabilities of machine learning models
across various domains: Mohamad et al. (2023) presents a hybrid
physics-informed method for fault diagnostics in rotor-bearing
systems, integrating physics and data-based techniques for feature
extraction, ranking, and selection to improve fault classification
accuracy across various operating conditions; Zha et al. (2022)
proposes a wind power forecasting method using feature
selection with the eXtreme Gradient Boosting (XGBoost)
algorithm, improving forecast accuracy and reducing
computational time; Lin and Li (2021) presents a Hybrid
Kmeans-GRA-SVR method for short-term photovoltaic power
generation forecasting, integrating feature selection to improve
forecast accuracy and reduce training time compared to standard
SVR models under ideal and non-ideal weather conditions. In the
context of NPPs, Ramezani et al. (2023) evaluates multiple feature
selection techniques to enhance the identification of transients in
NPPs using deep learning models. He et al. (2021) proposes a
correlation-based feature selection algorithm for NPP operating
data, improving computational efficiency and generalization
ability in machine learning applications. In this study, we explore
the combination of Transformer models and feature selection
techniques to address the specific challenges in NPP forecasting.
This integrated approach aims to leverage the Transformer’s ability
to capture complex temporal patterns while using feature selection
to manage large-scale datasets efficiently.

To enhance the model’s predictive accuracy and generalization
capability, this study employs the Tree-structured Parzen Estimator
(TPE) algorithm for hyperparameter optimization during the
training process. TPE, a sophisticated Bayesian optimization
technique (Nguyen et al., 2020), has garnered attention for its
remarkable search efficiency and adaptability across diverse
domains. Recent applications of TPE have demonstrated its
versatility and power: in agricultural sciences, it has improved
soil water content estimation when combined with CatBoost
algorithms (Yu et al., 2022); in environmental studies, it has
accurately predicted biochar’s impact on N2O mitigation in
constructed wetlands (Jiang et al., 2024); and in soil science, it
has enhanced XGBoost model performance for salinity estimation
through optimized feature selection and hyperparameter tuning
(Chen et al., 2022). In the energy sector, TPE has significantly
contributed to ultra-short-term wind power forecasting when
integrated with XGBoost and Temporal Convolutional Networks
(Zha et al., 2022). Building on these successes, our research leverages
TPE to optimize the Transformer model’s hyperparameters, aiming
to maximize its performance in predicting NPP operational data.

In this study, we propose a Transformer-based prediction
framework for nuclear power plant (NPP) operational
forecasting. Our approach integrates a novel data preprocessing
method (combining clustering and mutual information) to identify
key operational data types. Using data from a shutdown case, we
construct time series reflecting operational state changes. A
Transformer-based neural network is then trained on this
preprocessed data, with hyperparameters optimized using the
Tree-structured Parzen Estimator (TPE) method. This framework
aims to enhance NPP operational forecasting, contributing to

improved safety, efficiency, and potential future autonomous
control systems.

This paper is structured as follows: Section 2 introduces the
components of the proposed method, including the framework,
feature extractionmethods, neural networkmodel, and optimization
algorithm. Section 3 presents an overview of the operational data
from NPPs used in this study. Section 4 discusses the results
obtained from this method. Finally, Section 5 presents the
conclusions drawn from the study.

2 Methods

2.1 Framework

The proposed framework utilizes time series measurement data
of multiple physical quantities from NPP to select key features.
Subsequently, a predictive model is established using the data of
these key features to perform predictions. The basic flowchart of the
framework is shown in Figure 1 and includes the following four
main steps.

2.1.1 Creation of a state sequence through
clustering analysis

In our dataset, each time step is represented by a vector, where
each element corresponds to a distinct physical quantity. For
example, with 12 monitored physical quantities, each time step is
represented by a 12-dimensional vector. As shown in Figure 2A, at

FIGURE 1
Framework of proposed method.
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any given time step, several measurement points in the nuclear
power plant (NPP) generate data. These points monitor different
physical quantities such as pressure, temperature, and flow rate. The
measurement values from all points at the same time are combined
into a single vector, where each vector represents the operational
state of the reactor at that moment. As time progresses, each time
step produces a new vector, resulting in a series of vectors that
capture the evolving state of the system. The dimensionality of each
vector corresponds to the number of monitored physical quantities
(i.e., the number of measurement points), and the number of vectors
is determined by the number of time steps collected. Ideally, we aim
to collect as many time steps as possible to build a historical dataset
that covers a wide range of operational states, which is critical for
subsequent clustering analysis.

Before applying clustering, we normalize the data to ensure that all
physical quantities are on comparable scales, as their units and
magnitudes may differ significantly (e.g., pressure vs. flow rate). This
step prevents any single variable from dominating the clustering
process due to its larger numerical values. The details of the
normalization procedure are described in Section 3 (“Datasets and
Pre-processing”). After normalization, we apply the K-means clustering
algorithm to group the 12-dimensional vectors (shown in Figure 2B).
Each vector represents the system’s state at a specific time step, and the
clustering groups these states based on their similarity (with Euclidean
distance as the metric). The number of clusters (K) is determined using
methods such as the silhouette score, which helps evaluate the cohesion
and separation of clusters. In this study, we found that K = 3 provided
the most meaningful grouping of operational states.

The result of the clustering process is a set of clusters, each
representing a group of similar time steps. These clusters are then
used to construct a state sequence, which provides a simplified
representation of the NPP’s operational states (Figures 2C, D).
Details of the clustering implementation are provided in Section 2.2.

The state sequence derived from clustering offers two main
advantages over using the original time-series data for feature

selection: it simplifies the process of correlating physical quantities
with the reactor’s operational states, and it facilitates the calculation of
mutual information for identifying key physical variables.

First, the selection of key physical quantities is based on their
relevance to the reactor’s operational state. However, the operational
state is not a single variable—it is the result of the complex interaction
of multiple physical quantities. To represent this complexity, we use
clustering to group the reactor’s operating conditions into distinct
clusters, where each cluster represents a specific operational state. This
allows us to transform the reactor’s continuous, high-dimensional
operational data into a discrete state sequence, where each point in the
sequence corresponds to a particular cluster. By using this state
sequence, we can easily analyze the correlation between each
individual physical quantity and the reactor’s operational states.
Instead of trying to directly correlate a physical quantity’s time
series with the entire multivariate dataset, we can now compare
each physical quantity’s time series with the discrete state
sequence, which simplifies the analysis process.

Second, we will use mutual information to quantify the
relationship between each physical quantity and the reactor’s
state transitions. Mutual information requires two sets of
data—one representing the physical quantity and the other
representing the reactor’s operational state. The state sequence
serves this purpose perfectly, as it provides a discrete
representation of the operational states. If we were to use the
original time-series data directly, we would face the challenge of
correlating a single variable’s time series with a high-dimensional
dataset, which is both computationally complex and less intuitive.
The state sequence reduces this complexity, making the mutual
information calculation more efficient and meaningful.

2.1.2 Identification of key physical quantities using
the state sequence

We use the state sequence, derived from clustering analysis, to
identify critical physical quantities in the NPP operation. This

FIGURE 2
Generate state sequence from time series data. (A) Vectors in time steps. (B) Clustering. (C) Coding. (D) State sequence.
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process involves computing the mutual information between the
state sequence and all individual time series data, shown in Figure 3.
The physical quantities corresponding to the highest mutual
information values are then selected as key features. This
approach effectively pinpoints the most significant physical
quantities that are strongly correlated with the NPP’s operational
state, facilitating efficient feature selection for further analysis.

2.1.3 Modeling with key physical quantities
Using the selected critical physical quantities, we develop a

Transformer-based neural network model for single-step time
series prediction, forecasting the next time step based on a
sequence of previous observations. The model is constructed and
trained using data from the training and validation sets. To
determine suitable hyperparameters, we employ the Tree-
structured Parzen Estimator (TPE) algorithm. This optimization
process covers Transformer architecture parameters (e.g., number of
layers, number of heads in multi-head attention, hidden dimension),
training parameters (e.g., learning rate, batch size). The TPE
algorithm is used to search for a combination of these
hyperparameters within predefined ranges, with the aim of
minimizing the model’s validation loss.

2.1.4 Prediction on the test dataset
In the final phase, we apply the optimized model to the test set.

The model generates predictions on this previously unseen data, and
we calculate performance metrics to evaluate its predictive accuracy.

Overall, the process involves several steps of data collection,
clustering, and feature selection to analyze the system’s operational
states. The process begins with the collection of real-time
measurements from n physical quantities over T time steps,
forming the raw data matrix X ∈ Rn×T. This raw data is then
compiled into a historical database, represented by the same
matrix X. K-means clustering is applied to the historical data
matrix X ∈ Rn×T, where each column of X (i.e., each vector
xt ∈ Rn, for t = 1, 2, ..., T) represents the measurements of n
physical quantities at a specific time step. Therefore, a total of T
vectors x1, x2, . . . , xT{ } are clustered into k clusters, with each cluster
representing a distinct operational state of the system. This results in
a state sequence S ∈ RT, where each element St indicates the cluster
(or state) to which the corresponding time step t belongs. Following
this, mutual information between each physical quantity and the
state sequence S is calculated, yielding a vector I ∈ Rn that indicates
the relevance of each quantity. Optionally, based on the selected

features from X, a reduced data matrix Xselected ∈ Rm×T (withm ≤ n)
can be used for predicting future system states or behaviors.

2.2 K-means clustering

K-Means clustering (KMC) (Ahmed et al., 2020) is a popular
and robust clustering algorithm that partitions data points into K
clusters, optimizing for maximal intra-cluster similarity and
minimal inter-cluster similarity. It iteratively adjusts cluster
centroids to ensure each data point is assigned to the cluster with
which it shares the most similarity. This unsupervised method is
particularly effective for self-classification tasks. For instance,
(Benmouiza and Cheknane, 2013), uses KMC to group the solar
radiation time series in the research of solar radiation forecasting,
dividing all data into three categories with meaningful solar
radiation level or cloud condition; (Song et al., 2022); uses KMC
to group NPP similar operational states in order to build specific
prediction model on each subset.

The fundamental steps of KMC include selecting initial
centroids, assigning data points to the nearest centroids, and
updating the centroids until convergence. The formula (Equation
1) is:

Ci � argmin∑
x∈Si

‖ x − μi ‖2 (1)

where Ci is the ith cluster, Si is the set of samples in that cluster, μi is
the center of cluster Ci, and x is the points in the cluster.

The implementation process of KMC is as follows (Ahmed
et al., 2020):

• Set the desired number of clusters K and select K data points as
initial cluster centroids. Alternatively, randomly assign data
points to K groups and compute the centroids for each group.

• Calculate the distances between all data points and the K
centroids, assigning each point to the cluster with the
closest centroid.

• Recalculate the centroids for each of the K clusters.
• Compare the new centroids with the previous centroids. If
they remain the same, the process terminates; otherwise,
return to second step.

In KMC, the predetermined number of clusters significantly
influences the clustering outcome. In this study, the number of

FIGURE 3
Calculate mutual information value of every physical quantities (features) with state sequence.
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operational state types cannot be directly ascertained. Therefore, to
more accurately represent working conditions, this paper adopts the
silhouette coefficient to determine the optimal number of clusters.

The silhouette score (also silhouette coefficient) (Rousseeuw,
1987) is a metric for evaluating the quality of clustering results,
commonly applied in algorithms like KMC. For example, silhouette
scores are used in (Jin et al., 2022) for the clustering for
categorization of source terms for risk assessment of NPPs. In
(Choi and Seong, 2020), the silhouette score was used to
determine the optimal number of clusters in hierarchical
clustering analysis, contributing to the evaluation of operator
fitness-for-duty in NPP scenarios. Silhouette score provides an
objective measure of clustering efficacy by assessing both the
cohesion within clusters and the separation between them. For
each data point, the silhouette coefficient considers two crucial
factors: the average distance to other points within the same
cluster, reflecting intra-cluster similarity, and the average distance
to points in the nearest cluster to which it does not belong, indicating
inter-cluster dissimilarity. The formula (Equation 2) is:

s i( ) � b i( ) − a i( )
max a i( ), b i( ){ } (2)

where s(i) is the silhouette coefficient of sample i. a(i) represents the
average distance between the sample i and all other points within the
same cluster, reflecting intra-cluster similarity, calculated as:
a(i) � 1

|C(i)|−1∑j∈C(i),j≠id(i, j), where C(i) is the cluster to which
sample i belongs, |C(i)| is the number of samples in that cluster,
and d(i, j) is the distance between samples i and j. b(i) denotes the
average distance between the sample i and all points in the nearest
cluster to which it does not belong, indicating inter-cluster dissimilarity,
calculated as: b(i) � min

C≠C(i)
1
|C|∑j∈Cd(i, j) ,where C is any cluster

different from C(i), and the minimum is taken over all such clusters.
The overall silhouette score is the mean of the silhouette scores

of all individual samples in the dataset. If there are N samples, then
the overall silhouette score S is given by: S � 1

N∑N
i�1 s(i). This overall

silhouette score ranges from −1 to 1, where a high value indicates
that the data points are well matched to their own cluster and poorly
matched to neighboring clusters, signifying good clustering.

2.3 Mutual information-based
feature selection

During the operational process of an NPP, the collected data
contains numerous features, not all of which are equally relevant to
the NPP’s operational state. To enhance computational efficiency
and focus on the most informative aspects, it is crucial to identify
and select the features most closely associated with the NPP’s
operational dynamics. This feature selection process builds upon
the previously constructed state sequence, which reflects the NPP’s
operational states over time. To accomplish this feature selection, we
employ the mutual information method (Vergara and Estévez,
2014). This approach assesses the degree of association between
each feature and the state sequence, identifying the features most
relevant to the NPP’s operational states.

Mutual information is grounded in the concept of information
entropy, quantifying the reduction in uncertainty about one random
variable given knowledge of another. A high mutual information

value indicates a strong relationship between two variables. The
mutual information method is particularly effective at identifying
relevant features whilemitigating the effects of redundant information
and noise. By comparing the joint probability distribution with the
marginal probability distributions, it quantifies the contribution of
each feature to the target variable through the calculated mutual
information. Its formula (Equation 3) is:

I X1;X2( ) � ∑
x2∈X2

∑
x1∈X1

p x1, x2( )log p x1, x2( )
p x1( )p x2( )( ) (3)

where I(X1;X2) is the mutual information value to evaluate the
degree of association between X1 , X2 data, p(x1, x2) is the joint
probability distribution of X1 and X2, and p(x1) and p(x2) are their
marginal probability distributions, respectively.

The estimation of probability distributions is essential for the
calculation of mutual information for time series data. Traditional
methods like histogram-based approaches or kernel density
estimation are often insufficient for capturing the complexities
of time series data. Instead, more advanced techniques are typically
employed. For continuous time series data, non-parametric
methods such as the k-nearest neighbor (k-NN) approach (Ircio
et al., 2020) or the Kraskov-Stögbauer-Grassberger (KSG)
estimator (Kraskov et al., 2004) are frequently used. These
methods avoid direct probability distribution estimation,
making them suitable for high-dimensional data and complex
dependencies often present in time series. In this study,
probability estimation is performed using a k-nearest neighbors
(k-NN) method to calculate the mutual information between each
feature and the target variable (i.e., state sequence). This approach
estimates the probability density function for each data point,
capturing the dependencies between the data points without
explicitly constructing probability distribution functions.

In brief, the k-NN method for density estimation is based on the
idea that in high-density regions of data distribution, points are
closer together, while in low-density regions, points are farther
apart. This approach estimates density by observing the local
distribution of data points. It assumes that points in high-density
areas are closer to each other, while those in low-density areas are
more distant. For each data point, the method finds its k nearest
neighbors and calculates the volume of the smallest hypersphere
containing these neighbors. The density estimate is inversely
proportional to this volume. This technique is used to estimate
the densities of the joint distribution p(x1, x2) and the marginal
distributions p(x1) and p(x2), which are then applied to the mutual
information formula to get I(X1;X2). Refer to (Liu et al., 2016) for
the more detailed formulas to obtain mutual information
using k-NN.

Important features are obtained for building a prediction model
after feature selection by mutual information methods.

2.4 Transformer neural network

The Transformer architecture consists of two primary
components: the encoder and the decoder. The encoder is
composed of multiple identical layers, each containing a multi-
head self-attention mechanism and a feed-forward network. The
decoder follows a similar structure, with an additional multi-head
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encoder-decoder attention layer to facilitate interactions between
input and output sequences. Figure 4 illustrates the key structural
components and associated equations.

The Transformer utilizes an attention mechanism, defined by
Equation 4, where Q, K, and V represent the query, key, and value
sets respectively. The term dk denotes the dimensionality of the key
vectors. T stands for transpose. “softmax” is an activation function
that normalizes the input vector into a probability distribution. The
“Attention” function on the left side of the equation computes a
matrix of attention values, which are used to produce weighted
sums. These weighted sums are subsequently processed through
feed-forward networks, layer normalization, and residual
connections within the Transformer’s attention heads. This
mechanism computes the relevance between different positions in
the input sequence and is used within the self-attention and cross-
attention modules of the Transformer.

Attention Q,K,V( ) � softmax
QKT��
dk

√( )V (4)

Equations 5, 6 depict the multi-head attention mechanism
within the Transformer architecture, where WO,W

Q
i ,W

K
i ,W

V
i are

learnable parameter matrices. This mechanism partitions self-
attention into multiple heads, each executing calculations
independently before concatenating their outcomes. Equation 5
means that the outputs of h attention heads (heads) are
concatenated together, and then multiplied by the output weight
matrixWO to obtain the final multi-head attention output. Equation
6 means that the output of the ith attention head is calculated by
multiplying the query matrixQ, key matrixK, and value matrixV by
their corresponding weight matricesWQ

i ,W
K
i ,W

V
i respectively, and

then passing the resulting matrices as inputs to the
attention function.

FIGURE 4
Transformer neural network (Vaswani et al., 2017).
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MultiHead Q,K,V( ) � Concat head1, . . . , headh( )WO (5)
headi � Attention QWQ

i , KWK
i , VW

V
i( ) (6)

The positional encoding in Transformer, added to the input
embeddings, is defined by Equation 7:

PE pos,2i( ) � sin
pos

100002i/dmodel
( )

PE pos,2i+1( ) � cos
pos

100002i/dmodel
( ) (7)

Where pos is the position in the sequence, i is the dimension index,
and dmodel is the dimensionality of the model’s input embeddings.
Positional encoding enables the model to utilize the position
information of elements in the sequence. The use of sine and
cosine functions allows the model to easily learn to attend by
relative positions.

The feed-forward network (FFN) module in Transformer is
represented by Equation 8:

FFN x( ) � max 0, xW1 + b1( )W2 + b2 (8)
where max(0, •) is the Rectified Linear Unit (ReLU) activation
function. x is the input vector of the FFN. W1 and W2 are weight

matrices, b1 and b2 are bias vectors, which are all learnable parameters.
Layer normalization is applied to the output of each sub-layer (such as
the self-attention layer). These mechanisms and modules collectively
form the core structure of Transformer, enabling it to effectively
process and model complex sequential data.

The Transformer architecture, as described above, introduces
several key hyperparameters that significantly influence its
performance and efficiency. These include the number of encoder
and decoder layers, the number of attention heads, the
dimensionality of the model, the size of the feed-forward
network. Additionally, training-specific hyperparameters such as
learning rate, batch size, also play crucial roles. The optimal
configuration of these hyperparameters can vary depending on
the specific task and dataset. With the Transformer’s architecture
defined, our focus now shifts to optimizing its performance through
hyperparameter tuning. Techniques for neural network
hyperparameter optimization will be discussed in Section 2.5.

2.5 Hyperparameter optimization by TPE

For hyperparameter optimization in neural networks, we
employ the TPE method (Nguyen et al., 2020). TPE is a Bayesian
optimization approach tailored for hyperparameter optimization. It
constructs a probabilistic model with a tree-structured framework,
iteratively refining the search space to pinpoint the best
hyperparameter settings efficiently. The optimization procedure
illustrated in Figure 5 involves the following steps:

(1) At the start-up iterations, a random search initializes the
distribution by sampling the response surface
θi, ei, i � 1, . . . ,Ninit{ }, where θ represents a set of
hyperparameters, and e denotes the corresponding
performance metric, which in this work is the validation
error of Transformer model training with a hyperparameter
set.Ninit denotes the number of initial iterations. In this way, a
function f: Θ → E, mapping the hyperparameter space Θ to
the performance metric space E, is established.

(2) Construct probability models l(θ) and g(θ), representing the
distributions of hyperparameters leading to good and poor
performance, respectively. These are defined as l(θ) �
P(θ|e< e*) and g(θ) � P(θ|e≥ e*), where e* is the
performance metric threshold. These models aid in
differentiating between more and less promising
hyperparameter values based on their anticipated impact
on model performance.

(3) For each hyperparameter set θ, compute the Expected
Improvement (EI) = l(θ)

g(θ), selecting the configuration θ* �
arg max θ( l(θ)

g(θ)) that maximizes EI. This step aims to choose
hyperparameters more likely to enhance model performance.

(4) Iterate step 3, updating l(θ) and g(θ) with new observational
data (θ, e) after each round. This iterative process enables
continual refinement of the hyperparameter search based on
empirical results, directing the search toward the most
effective configurations.

Upon determining the optimal hyperparameters for the
Transformer neural network, it will be utilized in the prediction

FIGURE 5
TPE parameter optimization flowchart (Nguyen et al., 2020).
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model. The root mean squared error (RMSE) serves as the
evaluation metric for assessing the Transformer model’s
prediction outcomes.

3 Datasets and pre-processing

3.1 DataSets

In this study, the data we used comes from measurement data
during the shutdown of an NPP: the main transformer trips, leading
to the loss of the main off-site power, the onsite power automatically
switches to the auxiliary power supply, the turbine trips, and the
reactor is shut down.

The main event sequence is shown as Table 1. The insertion
of control rods leads to the emergency shutdown of the reactor,
with the nuclear power decreasing from 8.9%Pn to around 0%
Pn. The main feedwater pumps of the secondary loop system
stop, and the auxiliary feedwater system is activated. At this
time, the coolant temperature drops, causing the pressure in the
primary loop to decrease. After 678 s, when the pressurizer
pressure drops below 14.6 MPa, the isolation valve acts, causing
the pressurizer pressure to rise back to 15.5 MPa, after which the
pressurizer pressure and water level again decrease with the drop
in coolant temperature. Due to the decrease in feedwater flow

rate to the steam generators on the secondary side, the heat
absorption of the secondary loop decreases, causing the coolant
temperature in the primary loop to rise. After 18,288 s, the heat
transfer and heat dissipation in the primary loop gradually reach
a dynamic balance, and the core thermal power also increases
and stabilizes.

During the process, a total of 12 types of physical quantities,
representing 12 features, were collected as listed in Table 2. Each
type of data is in a time-series format, with a total of 2,000 time steps.
The curves of these data are shown in Figures 6, 7.

To prevent information leakage and ensure unbiased model
evaluation, we employ a three-way data split: training, validation,
and test sets. The training and validation sets are used for model
fitting and hyperparameter optimization, respectively. This
approach keeps the test set independent, allowing for an accurate
assessment of the model’s performance on unseen data. The dataset
is divided into training, validation, and test sets in the ratio of 60%,
10%, and 30% respectively. The two vertical lines in the figures
indicate this division.

3.2 Data pre-processing

To ensure that the measurements of different physical quantities
are comparable and processed on the same scale, we apply Min-Max
Normalization to each physical quantity. This method linearly
transforms the data into a specified range, typically between
0 and 1. Specifically, for each physical quantity, the minimum
value is mapped to 0, the maximum value is mapped to 1, and
the other data points are scaled according to the following formula:
x′ � x−xmin

xmax−xmin
。where x represents the original data point, x′ is the

normalized value; xmin and xmax are the minimum and maximum
values of the physical quantity, respectively. This normalization
process helps to bring all physical quantities into a consistent
numerical range, eliminating the influence of different units or
magnitudes and improving the effectiveness of subsequent
analysis or modeling tasks.

4 Results and discussion

In this Section, we use the aforementioned data to build and
apply a prediction model. We first describe the process and results of
feature selection in Section 4.1, followed by a description of the
modeling process and prediction results of the Transformer model
in Section 4.2.

TABLE 1 Event sequence.

Event No. Event description

Event 1 Main transformer trip, loss of external power

Event 2 Control rod position of the regulating rod dropped to 0 step

Event 3 Control rod position of the power rod dropped about 47 steps

Event 4 Pressurizer pressure dropped below threshold; isolation valve action causing the pressurizer pressure recovered

Event 5 Heat transfer and dissipation in the primary loop reached a dynamic equilibrium gradually

TABLE 2 Physical quantities collected during the shutdown of an NPP.

Physical quantities

Core Pressure Vessel Water Level

Core Outlet Temperature (Average)

Hotleg Temperature

Coldleg Temperature

Pressurizer Liquid Temperature

Pressurizer Pressure

Pressurizer Water Level

Primary Loop Coolant Average Temperature

Steam Line Pressure

Steam Generator Secondary Side Feedwater Flow Rate

Steam Generator Secondary Side Feedwater Temperature

Boron Concentration
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4.1 Feature selection results

The first step involves clustering the 12-dimensional time series
data. Based on the silhouette score analysis shown in Figure 8, the
optimal number of clusters was found to be 3.

Next, using KMC clustering, we cluster 2000 12-dimensional
vectors into 3 groups, labeling them as Group 1, Group 2, and
Group 3. Specifically, the visualization of clustering results for the
time series is illustrated in Figure 9. Due to the difficulty in directly
visualizing the clustering results of 12-dimensional vectors, in
Figure 9A, we selected two normalized physical quantities
(steam generator secondary side feedwater flow rate and
temperature) to visualize the clustering results. With flow rate
Mflow as the x-axis and temperature T as the y-axis, we plot
2,000 points in the form of (Mflow, T) on a two-dimensional
plane, using different colors to represent points belonging to
different clusters. This simple visualization demonstrates to
some extent that the clustering can produce clusters with
relatively good separation. Figure 9B shows the cluster number
to which each time step belongs, resulting in a sequence of length
2,000, which is the state sequence.

In the dataset of this study, the results were obtained through
the calculation of mutual information in Table 3. Mutual
information calculations were performed between the time
series data of 12 physical quantities and the obtained state

sequence, resulting in correlation values between the
12 physical quantities and the state. In this study, physical
quantities with mutual information values above 0.65 were
selected as important. The Core Pressure Vessel Water Level
obtained the highest mutual information value of 0.7628,
which may be due to its three distinct phases in the curve,
which closely align with the division of time by the k-means
clustering results, i.e., the state sequence.

Table 3 presents the mutual information calculations between
the time series data of 12 physical quantities and the derived state
sequence. These calculations quantify the correlation between each
physical quantity and the state. Physical quantities with mutual
information values exceeding 0.65 were deemed significant. This
threshold was often chosen in correlation studies such as (Peng
et al., 2018), which considers correlations above 0.6 as strong. We
opted for 0.65 to ensure an even stronger correlation and to achieve
better feature distinction, as illustrated in Figure 10. The Core
Pressure Vessel Water Level exhibited the highest mutual
information value of 0.7628. This strong correlation is likely
attributable to its three distinct phases, which closely align with
the temporal divisions produced by the k-means clustering in the
state sequence.

Following the selection process via the mutual information
method, this study has chosen seven types of data as primary for
the next phase of prediction, highlighted in bold in Table 3. These

FIGURE 6
Curves for physical quantities 1–6, with vertical lines indicating the division into training (60%), validation (10%), and test (30%) sets.
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include Core Pressure Vessel Water Level, Steam Generator
Secondary Side Feedwater Temperature, Core Outlet
Temperature (Average), Pressurizer Liquid Temperature,
Pressurizer Water Level, Steam Generator Secondary Side
Feedwater Flow Rate, and Steam Line Pressure.

4.2 Transformer modelling and prediction

The prediction process employs a single-step forecasting
approach. Once the optimal network is obtained through training
and validation, it is employed to make single-step predictions on the
test set. The performance evaluation involves comparing the
predicted values with the actual values. Python is used as the
programming language for implementation. The optimization
process focuses on determining suitable hyperparameters,
including batch size, number of heads, hidden dimension,
number of layers, and learning rate. The relevant parameters for
the TPE setup are as follows: TPE training generations number is
3,000, TPE iteration cycles number is 10 and model training
generations number is 100,000. The optimal hyperparameters are
finally found as shown in Table 4.

Next, the established neural network model was used for
prediction. To evaluate its performance, we compared it with an
LSTMmodel. The LSTM algorithmwas selected as a benchmark due
to its advanced capabilities in handling sequential data and its
widespread use in time series forecasting. After undergoing a
similar hyperparameter optimization process, an LSTM
prediction model was obtained. This optimized LSTM model
utilized a batch size of 187, 16 hidden units, 1 layers, and a
learning rate of 0.00035. Its results on the test set were then
compared with those of our method. The prediction results in

FIGURE 7
Curves for physical quantities 7–12, with vertical lines indicating the division into training (60%), validation (10%), and test (30%) sets.

FIGURE 8
Silhouette score for different number of clusters. A higher
Silhouette score indicates a better clustering.
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the figures start from the test set (the 1400th time step), as the
training and validation sets were used to build the model. The results
of training the Transformer model (green lines) and the LSTM
prediction results (blue lines) are shown in Figures 11, 12,
highlighting significant differences from the actual data.

The comparison of RMSE between the LSTM and Transformer
results is presented in Table 5. The data shows that our method’s
Transformer prediction model has better predictive performance. It
should be noted that the RMSE of normalized results represents the
ratio of actual prediction error to the data range. This can be derived
from the normalization equation yi � Yi−Ymin

Ymax−Ymin
, where Y is the real

value and y is the normalized value. The normalized RMSE,

calculated as RMSENor �
�����������������
1
n∑n
i�1
(ypred,i − yreal,i)2

√
, can be

simplified to 1
Ymax−Ymin

�����������������
1
n∑n
i�1
(Ypred,i − Yreal,i)2

√
� RMSEreal

Ymax−Ymin
, where

Ymax − Ymin is the real data range. This equation shows that the
normalized RMSE scales the actual prediction error by the
data range.

From Figures 11, 12, we can see that the prediction results of this
method for almost every physical quantity align well with the actual

FIGURE 9
Visualization of clustering results used to generate the state sequence. (A) Simple presentation of clustering results using two physical quantities (B)
Cluster group numbers over time steps.

TABLE 3 Mutual information value between physical quantities and state sequence.

Physical quantities Mutual information value

Core Pressure Vessel Water Level 0.7628

Steam Generator Secondary Side Feedwater Temperature 0.7496

Core Outlet Temperature (Average) 0.7322

Pressurizer Liquid Temperature 0.6928

Pressurizer Water Level 0.6876

Steam Generator Secondary Side Feedwater Flow Rate 0.6844

Steam Line Pressure 0.6788

Hotleg Temperature 0.6162

Boron Concentration 0.5923

Coldleg Temperature 0.5534

Primary Loop Coolant Average Temperature 0.4582

Pressurizer Pressure 0.4295

The bold values indicate the meaning of the chosen seven features with mutual information value larger than 0.65.
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data, where the red line represents the actual measured values
(normalized) and the green line represents the predictions by the
Transformer model. The good prediction results can be attributed to
the powerful predictive capability of the Transformer model and
possibly also to the single-step prediction mode. Whether the actual
data is near-stable, rapidly increasing, or showing a stepwise rise, the
Transformer model demonstrates excellent predictive performance.
As seen in Table 5, the RMSE values of Transformer model are all
below 0.0088, which could be seen as 0.88% of the data range, a very
small error.

In the single-step prediction results, we observed significant
differences between the Transformer and LSTM models. Although
both models perform single-step predictions, their performance
differences can be explained by the fundamental mechanisms of
the models. LSTM relies on its internal state and the output from the
previous time step at each time step. While single-step prediction
can reduce cumulative errors, LSTMmay still face challenges such as
struggling to effectively utilize earlier historical information for long
sequences and the gating mechanism not completely mitigating
long-term dependency issues in some cases. This error accumulation
is most evident in the core outlet temperature and steam pipe
pressure. On the other hand, the Transformer utilizes a self-
attention mechanism that allows it to fully leverage the entire

historical sequence, even in single-step predictions. Its advantages
include the ability to directly attend to any part of the input
sequence, unrestricted by position; the capability to capture
patterns at multiple time scales simultaneously through multi-
head attention; and the ability to reassess the importance of the
entire historical sequence for each prediction step. In this case, the
Transformer demonstrated better prediction accuracy, likely
because even in single-step predictions, the Transformer can
more effectively leverage long-term historical information. The
self-attention mechanism allows the model to dynamically adjust
its focus on different historical time points for each prediction,
reducing potential errors from sequential processing.

4.3 Further discussion

4.3.1 Clustering methods
Here we elaborate on the choice of K-means clustering for state

sequence generation.While K-means clustering was initially selected
for its computational efficiency and ease of implementation, we
conducted comparative experiments using other clustering
methods, including hierarchical clustering and DBSCAN, to
evaluate their relative performance.

4.3.1.1 Hierarchical clustering algorithm
Hierarchical clustering is an agglomerative method that builds a

hierarchy of clusters, where each data point starts as its own cluster
and pairs of clusters are successively merged based on a linkage
criterion. In this analysis, we used Ward’s method, which minimizes
the total within-cluster variance, making it well-suited for generating
compact clusters. The distance between clusters is represented by the
increase in variance when clusters are merged. The dendrogram
provides a visual representation (Figure 13) of the clustering process,
with the height of the merges indicating the dissimilarity
between clusters.

FIGURE 10
Mutual information values between different physical quantities and the state sequence.

TABLE 4 Optimal hyperparameters.

Hyperparameters Value

Batch Size 199

Heads Number 18

Hidden Dimension 36

Layers Number 1

Learning Rate 0.00032
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The dataset consists of 2,000 time steps, each described by
12 variables. Before clustering, the data was standardized using
Z-score normalization to ensure that each feature contributes
equally to the clustering process. The hierarchical clustering was
performed using theWard linkage method, and the dendrogramwas
constructed based on the resulting linkage matrix.

The dendrogram illustrates these clusters, with each branch
representing the hierarchical merging process based on the distances
between data points. The significant distance between certain
branches suggests that the three clusters are distinct from each
other. We chose to cut the dendrogram into three clusters based on
the visual identification of a significant jump in the merge distances
at a certain height. Note that the X-axis here does not represent time
steps; instead, it shows sample indices, which do not necessarily
follow any specific order and simply indicate the position of samples
in the dataset. The clustering results show that the 2,000 time steps
were grouped into three distinct clusters: 1 to 232, 233 to
888, 889 to 2,000.

4.3.1.2 DBSCAN
We also applied the DBSCAN (Density-Based Spatial Clustering

of Applications with Noise) algorithm to cluster the dataset.
DBSCAN is advantageous as it does not require predefining the
number of clusters and can detect noise points (outliers) in the data.

DBSCAN is well-suited for identifying clusters of arbitrary shapes
and handling datasets with varying densities. The key parameters of
DBSCAN are eps and min_samples. The eps defines the
neighborhood radius around each point. If there are enough
points within this radius (determined by min_samples), the point
is considered a core point and forms part of a cluster. The min_
samples specifies the minimum number of points required to form a
dense region. Points that do not meet this requirement are classified
as noise (labeled as −1).

In this experiment, after standardizing the data, DBSCAN
identified several clusters, with some points labeled as noise.
Clustering results: 1 to 229, 230 to 233 (noisy data), 234 to 598,
599 to 756, 757 to 2000. These noise points are likely isolated or
outlier data points that do not belong to any cluster.

4.3.1.3 Comparison of different clustering methods
Figure 14 shows the comparison of three clustering methods.

The same color in the chart represents the same cluster. By
comparing the results of hierarchical clustering, K-means
clustering (KMC), and DBSCAN, we can observe that K-means
clustering provides sufficient performance in grouping the data. The
first group on the far left is almost identical across all three methods,
and all of them cluster the data after index 880 into a single large
group. K-means and hierarchical clustering show very similar

FIGURE 11
Prediction results compared to measurement data (physical quantities 1–4).
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grouping patterns, both dividing the data into three main clusters. In
comparison, the first two groups from the left in DBSCAN are
almost perfectly aligned with the K-means results. While DBSCAN
reveals more detailed groupings, each boundary point in K-means
corresponds closely to a division point in DBSCAN. Furthermore,
DBSCAN’s handling of noise (Cluster −1) did not significantly
impact the overall structure in this dataset, indicating that
K-means provides sufficiently clear clustering.

From a practical standpoint, K-means is an ideal choice for this
dataset due to its simplicity and efficiency. It not only captures the
main patterns in the data effectively but also avoids the
computational complexity of hierarchical clustering and the
parameter sensitivity of DBSCAN. Therefore, considering the
high consistency of K-means with the other methods and its
computational efficiency, K-means is more than adequate for
meeting the clustering needs of this dataset.

FIGURE 12
Prediction results compared to measurement data (physical quantities 5–7).

TABLE 5 RMSE of prediction results.

Physical quantities Prediction RMSE (Normalized), this
method

Prediction RMSE (Normalized),
LSTM

Core Pressure Vessel Water Level 0.005241 0.041866

Steam Generator Secondary Side Feedwater
Temperature

0.006837 0.008230

Core Outlet Temperature (Average) 0.008787 0.044829

Pressurizer Liquid Temperature 0.002960 0.048762

Pressurizer Water Level 0.008676 0.089443

Steam Generator Secondary Side Feedwater Flow Rate 0.001554 0.002934

Steam Line Pressure 0.004875 0.042768
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4.3.2 Parameter selection and impact
In this section, we discuss the effect of different parameter

choices made for the Transformer model. Based on the optimal
hyperparameters used in previous sections, we systematically varied
two key parameters—training epochs and attention head
numbers—to observe their impact on the model’s performance.

Effect of Training Epochs: The impact of training epochs on the
performance of the Transformer model is evident in Table 6, where
the normalized RMSE progressively decreases as the number of
epochs increases. Specifically, after 100 epochs, the model achieves
an RMSE of 0.0290. With further training, the RMSE drops
significantly to 0.0123 at 500 epochs and continues to decrease to
0.0058 at 1,000 epochs. This consistent reduction in RMSE indicates
that the model benefits from extended training, refining its ability to
fit the data as the number of epochs increases. The results suggest

that longer training enables the Transformer model to capture more
intricate patterns in the data, leading to more accurate predictions.
Notably, the substantial improvement between 500 and
1,000 epochs highlights the importance of sufficient training time
for achieving optimal performance.

Effect of Attention Head Numbers: Table 7 demonstrates how
the number of attention heads affects the model’s performance.
Based on our previous hyperparameter search, 18 attention heads
were identified as the optimal value. When using this number of
heads, the model achieves the lowest normalized RMSE (0.0058). In
contrast, using fewer attention heads (=9) results in a normalized
RMSE of 0.0065, while increasing the number to 36 gives an RMSE
of 0.0061. These results confirm that the number of attention heads
is a critical hyperparameter in the Transformer model. Too few
attention heads limit the model’s ability to capture diverse
relationships in the input data, while too many heads introduce
redundancy and potential overfitting. The best performance is
achieved with 18 attention heads, indicating that this value
strikes an ideal balance betweenmodel complexity and performance.

In summary, both training epochs and attention head numbers
significantly affect the Transformer model’s performance.
Increasing the training epochs consistently improves accuracy,
while the number of attention heads has a more pronounced
effect on the model’s ability to generalize and avoid overfitting.

FIGURE 13
Hierarchical clustering dendrogram.

FIGURE 14
Comparison of three clustering methods.

TABLE 6 Prediction results RMSE of Transformer model with different
training epochs.

Training epochs Transformer model normalized RMSE

100 0.02901595

500 0.01232710

1,000 0.00579971
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Given the importance of the attention mechanism in the
Transformer model, an optimal number of attention heads is
crucial for achieving the best prediction results.

5 Conclusion

This paper presents a combined feature selection and
Transformer approach for predicting operational parameters of
nuclear power plants. The K-means clustering method is
employed to identify state sequences from the time series data of
the power plant. Mutual information between each physical quantity
and the state sequences is then calculated to select the key
parameters strongly correlated with the plant’s operation. Based
on these key parameters, a single-step prediction model is
constructed using a Transformer neural network. The
methodology is illustrated using data from a nuclear power plant
shutdown caused by the loss of off-site power.

The results demonstrate that the proposed clustering and
mutual information-based method provides an effective feature
selection strategy that encapsulates operational information of the
plant. From twelve physical quantities, seven critical ones highly
correlated with the operational state were selected. The Transformer
network, built on these selected parameters, achieved high
prediction accuracy, with normalized RMSE values below
0.009 for critical physical quantities. This indicates that the
RMSE is less than 0.9% of the original data range, reflecting a
very small prediction error.

Although our study uses a relatively small number of
parameters, it is important to note that the effectiveness of our
feature selectionmethod is not dependent on the number of features.
The key advantage of our approach lies in its ability to incorporate
operational state information of the nuclear power plant into the
feature selection process. This method is also effective when dealing
with large volumes of operational data that need to be reduced to a
manageable size. Future work could explore the application of our
method to datasets with a larger number of parameters to further
demonstrate its scalability and effectiveness.

Despite the promising results presented in this study, there are
several directions for improvement. (1) Feature Selection and
Dimensionality Reduction: While the current approach
successfully leverages clustering to reduce dimensionality, more
advanced feature extraction techniques could be explored to
handle increasingly complex and high-dimensional datasets. For

instance, methods such as autoencoders or deep mutual
information-based feature selection could complement the
current approach by providing more robust and automated
feature extraction, which may further improve the overall
performance of the model on more intricate datasets. (2)
Computational Efficiency: Although the clustering step alleviates
some of the computational burden associated with training the
Transformer model, further optimization is necessary when
applying the model to larger datasets or real-time monitoring
systems. Future research could explore more efficient
Transformer variants, such as using sparse attention, model
pruning, or lightweight attention mechanisms, to reduce
computational costs while maintaining high prediction accuracy
and scalability.
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TABLE 7 Prediction results RMSE of Transformer model with different
attention head number.

Attention head number (with
hidden dim = 36)

Transformer model
normalized RMSE

9 0.00651368

18 0.00579971

36 0.00614482
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