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In the field of renewable energy, accurate long-term time series forecasting
is crucial for optimizing the operation of power systems and reducing risks.
Due to the intermittency of renewable energy sources, traditional data-driven
deep learning methods face challenges in capturing long-term dependencies.
This paper proposes a hybrid model that combines Sparse Identification (SI)
with Convolutional Neural Networks (CNN) to enhance the interpretability
and generalization of predictions. The SI method is utilized to extract trends,
seasonality, and periodicity, while the deep neural network captures complex
relationships. Experimental results demonstrate that the model exhibits high
accuracy and practicality in forecasting new energy scenario data, contributing
to the advancement of time series prediction methodologies.
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1 Introduction

As the global energy landscape undergoes a significant transformation, driven by
heightened environmental concerns and the pressing need to transition toward sustainable
energy practices, the focus has shifted dramatically from traditional fossil fuel-based systems
to renewable energy sources, such as wind and solar power (Pachauri et al., 2014). This
transition is motivated not only by the imperative to mitigate climate change and reduce
greenhouse gas emissions but also by the pursuit of sustainable energy development and the
enhancement of energy security.

Renewable energy sources are characterized by their cleanliness and low carbon
footprint, but their volatility and unpredictability present new challenges to the stability
and reliability of power systems. The power generation of wind and solar energy
is influenced by various factors, including geographical location, seasonal changes,
and weather conditions. The uncertainty of these factors increases the complexity of
power system scheduling (Denholm and Hand, 2011). Therefore, the development
of accurate long-term time series forecasting technology is of great significance for
optimizing the allocation of electrical resources, reducing operational costs, improving
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system efficiency, and ensuring the stability of power supply.
Accurate forecasting can not only assist electricity operators
in formulating more reasonable power generation plans and
scheduling strategies but also provide decision support for the
expansion and upgrading of the power grid. Long-term time
series forecasting thus becomes a critical tool in addressing
these challenges, enabling grid operators to optimize resource
management, reduce operational costs, and ensure the continuous
stability of the power supply. Accurate forecasting, particularly for
renewable energy sources, helps in crafting informed scheduling
strategies and making well-founded decisions for grid expansion.

Conventional forecasting methodologies, such as ARIMA
models and exponential smoothing, are often predicated on
linear relationships and statistical assumptions, which may limit
their efficacy in addressing the complex dynamics characteristic
of renewable energy data (Box et al., 2015); (Wei et al., 2024).
These methods frequently fall short in capturing the nonlinear
patterns and long-term dependencies present in the data,
thereby compromising the accuracy of predictions in practical
scenarios (Liu et al., 2024b). The advent of deep learning
has heralded new opportunities for enhancing the accuracy
of time series forecasts. Recurrent Neural Networks (RNNs),
and specifically Long Short-Term Memory Networks (LSTMs),
have risen to prominence due to their capacity to capture
long-range dependencies in sequential data (Hochreiter and
Schmidhuber, 1997). LSTMs mitigate the vanishing gradient issue
associated with standard RNNs through the incorporation of
gating mechanisms, thereby enhancing the model’s proficiency
in time series forecasting tasks. Despite these advancements,
LSTMs encounter challenges when processing extremely lengthy
sequences, and their “black box” nature can obfuscate the
interpretability of the model. In the pursuit of excellence in
forecastingmodels, recent studies have also explored the potential of
models such as autoformer Wu et al. (2021) and DLinear Zeng et al.
(2023) as benchmarks for evaluating the performance of new
forecasting models.

Sparse Identification (SI) is utilized in this study as a method
to extract primary temporal patterns, such as seasonality and
periodicity, which are essential in renewable energy systems where
dependencies extend across both short and long-term horizons.
Although SI has traditionally been applied in dynamic system
modeling, recent research has demonstrated its applicability in long-
term forecasting. For instance, Liu et al. (2024a) showed that SI
can provide interpretable and effective long-term predictions by
distilling key components of time series signals, thereby offering a
compact structure suitable for extended forecasting tasks in time-
series data (Liu et al., 2024a). Moreover, the prowess of CNN
in the realm of image recognition, where it has demonstrated
an adeptness at capturing local features and spatial relationships,
can be harnessed in time series forecasting to effectively seize
local patterns and temporal dependencies within the data, thus
refining the accuracy of forecasts (LeCun et al., 2015). The hybrid
model framework outlined in this study endeavors to augment
the precision and reliability of renewable energy power generation
forecasting. It synergizes the feature selection prowess of SI with the
local feature capture capabilities of CNN, bolstered by an innovative
fine-tuning strategy that optimizes the coefficient matrix during
the SI process.

The importance of our research in renewable energy is further
highlighted by the recent innovative achievements within the field.
For instance, Liu and Zhang have reviewed the development and
trends in deep learning methods for wind power predictions,
highlighting the importance of accurate forecasting in wind energy
management (Liu and Zhang, 2024). Zhang et al. have proposed
a wind power forecasting system with data enhancement and
algorithmic improvements, emphasizing the role of advanced
algorithms in improving predictive accuracy (Zhang et al., 2024).
Furthermore, Liu and Zhang introduced a bi-party engaged
modeling framework for renewable power predictions with privacy-
preserving features, showcasing the potential of collaborative
models in ensuring data security while maintaining forecasting
efficacy (Liu and Zhang, 2022). The innovative work by Kang et al.
on cross-modal generative adversarial networks (CM-GAN) further
underscores the potential for scenario generation in renewable
energy contexts, marking new frontiers in energy forecasting
(Kang et al., 2023). Additionally, Kang et al. presented CM-GAN
as a solution for imputing completely missing data in digital
industries, highlighting the versatility and robustness of suchmodels
in handling data challenges (Kang et al., 2024). Zheng and Zhang
have introduced a stochastic recurrent encoder-decoder network
for multistep probabilistic wind power predictions, underlining
the growing interest in probabilistic forecasting to better manage
the inherent uncertainty in renewable energy sources (Zheng and
Zhang, 2023). Aswe delve into the intricacies of our proposed hybrid
model, we acknowledge the foundational contributions of these
studies. Our work builds upon these advancements, integrating the
strengths of deep learning and sparse identification to enhance
the accuracy and interpretability of long-term renewable energy
forecasts.Through continuous innovation and collaboration, we aim
to further refine the reliability of renewable energy power generation
forecasting, thereby contributing to a more sustainable and secure
energy future.

With proven effectiveness in managing complex time series
data, these models provide a strong foundation for developing
our hybrid model framework. To improve forecast precision and
interpretability, we propose a hybrid framework that combines
Sparse Identification (SI) with Convolutional Neural Networks
(CNN). This approach leverages SI’s feature selection capabilities
alongside CNN’s ability to capture local temporal and spatial
patterns, significantly enhancing the accuracy and robustness of
renewable energy power generation forecasts. Additionally, we
introduce a fine-tuning strategy that optimizes the SI coefficient
matrix, further adapting the model to specific datasets and
improving predictive performance. The main contributions of this
work are as follows:

1) Innovative Hybrid Forecasting Model: This paper introduces
a novel hybrid model that integrates Sparse Identification
(SI) with Convolutional Neural Networks (CNN), specifically
tailored for electrical energy data, particularly long-term time
series forecasting of wind power generation. This integration
not only enhances the accuracy of predictions but also
strengthens the model’s adaptability to the characteristics of
new energy data.

2) New Framework for Mechanism and Data Fusion: We have
developed a computational framework thatmergesmechanism

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1461410
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


He et al. 10.3389/fenrg.2024.1461410

and data, combining the powerful learning capabilities
of deep learning with the mechanistic interpretation of
sparse identification to address complex forecasting issues
in power systems. This fusion method enhances the
model’s interpretability and generalization ability, especially
in dealing with the nonlinearity and randomness of
wind power data.

3) Innovative Fine-Tuning Strategy: We introduce an innovative
fine-tuning strategy aimed at optimizing the coefficient matrix
obtained during the sparse identification process to adapt to
specific tasks or datasets. This fine-tuning is implemented
through learnable parameters within the neural network,
typically involving minor adjustments, thereby significantly
improving themodel’s adaptability andpredictive performance
for specific datasets.

2 Problem definition

Recognizing the profound impact of physical mechanisms on
engineering systems within the realm of renewable energy, we
have redefined time series prediction from the perspective of
physical dynamics. In the context of renewable energy systems,
each node’s features evolve according to dynamic mechanisms that
can be described by ordinary differential equations. Specifically,
for a system with N nodes, we define the feature vector for each
node i as xi ∈ ℝd, where d represents the number of features
(e.g., power output, wind speed, etc.) associated with node i. The
dynamics include self-dynamics (function F) and coupled dynamics
(function G). Specifically, the rate of change for a node i is given
by Equation 1:

ẋi = F(xi) +
n

∑
i=1

G(xi,xj)Aij. (1)

In this equation, ẋi ∈ ℝd denotes the rate of change for node
i, F(xi) ∈ ℝd represents the node’s intrinsic dynamic function, and
G(xi,xj) ∈ ℝ

d×d describes the coupling dynamics betweennodes.The
term Aij represents the element of the coupling matrix A ∈ ℝN×N,
where Aij indicates the strength of interaction between nodes i and
j.

Traditional single-channel sparse identification methods can
determine F(xi) for individual signals but often struggle to capture
the interconnections between signals, which is critical in renewable
energy systems where components are highly interdependent.
To address this challenge, we propose a novel approach that
integrates sparse identification with a 3D Convolutional Neural
Network (STCNN). This hybrid method uses sparse identification
to establish the intrinsic dynamics for individual variables F(xi) ∈
ℝd and then employs a neural network model to capture the
complex coupling relationships among variables: ∑ni=1G(xi,xj)Aij ∈
ℝd. The integration of these two methodologies allows us to
simultaneouslymodel the evolution of individual variables and their
intricate coupling relationships, which is essential for accurately
forecasting renewable energy generation. Further details of this
framework and its application to renewable energy forecasting are
provided in Section 3.

3 Methodology

3.1 Sparse identification of fusion neural
network model

This section provides a detailed exposition of the Sparse
Identification Fusion Neural Network Model (SINN) designed
for forecasting in the domain of electric power energy data.
SINN represents an innovative hybrid model that integrates Sparse
Identification (SI) with a Three-Dimensional Convolutional Neural
Network (3D CNN), with the aim of enhancing the accuracy and
efficiency of time series predictions.

As depicted in Figure 1, the core concept of this model is to
utilize SI as a pre-training step. Initially, the input multivariate
time series data is represented as X ∈ ℝT×N in Figure 1A, where
n is the number of features (e.g., power output, wind speed) and
T is the number of time steps, which is processed to generate a
sparse coefficient matrix through SI. In the subsequent steps in
Figures 1B, C, the preliminary forecast results are generated by
leveraging this matrix and combining it with candidate functions
from a library Θ(xti) via a weighted summation.

Subsequently, a tailored 3D CNN is employed to further
extract features from the multivariate time series data. This CNN
architecture includes convolutional layers designed to capture both
spatial and temporal dependencies, enhancing the model’s ability
to learn complex relationships within the data. To adapt the sparse
identification (SI) results to the nuances of the input data, a learnable
parameter matrix W is introduced. The initial sparse matrix Ξ is
adjusted with the learnable weight matrix W to form a refined
prediction, enabling the model to integrate richer spatial and
temporal dependencies. By multiplying the initial SI results with
W, the model enhances the predictive power of the SI strategy,
utilizing the learned parameters from the neural network to refine its
forecasts.This process is optimized through backpropagation, where
a gating mechanism combines the SI’s interpretable outputs with the
neural network’s refined predictions.The result is an enhanced,more
accurate prediction. For an in-depth explanation of this process,
including the role of W in fine-tuning, please refer to Section 3.1.2.

Overall, the SINN model integrates the interpretability of sparse
identification (SI) with the precision of a 3D CNN, forming a
robust architecture for time series prediction in energy systems.
Initially, SI pre-training captures the fundamental dynamics of the
data, setting a strong foundation (Section 3.1.1). The 3D CNN then
extracts complex spatial and temporal features, while a learnable
parameter matrix W fine-tunes the SI outputs, aligning predictions
with actual system behaviors (Section 3.1.2). This architecture,
further enhanced by a novel gating mechanism, optimizes final
forecasts by seamlessly combining SI’s interpretable outputs with
CNN’s refined predictions, ultimately improving accuracy and
adaptability (Section 3.1.3).

3.1.1 Sparse identification model
In the context of time series forecasting for electric power energy

data, we transform the observed wind power output variables into
their time derivatives to better capture their dynamic variations. For
a time series x ∈ RT×N, we propose a sparse identification model to
describe the evolution of its state over time, expressed as follows:
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FIGURE 1
Sparse identification fusion neural network model.

Equation 2):

ẋi = [Θ(x
t
i)]Ξ+N , t = 1,2,…,T, (2)

here, N represents the noise term, this term accounts for random
errors or uncertainties present in the system. ẋi ∈ ℝ

d denotes the
time derivative of the i-th dimension of the input multivariate time
series, which captures the rate of change in the time series variable
and reflects its temporal dynamics. Specifically, xi represents the
wind power output, and ẋi reflects the temporal evolution of the
wind power output over time, encapsulating the underlying dynamic
patterns as they evolve across each time step. The coefficient matrix
Ξ ∈ ℝM×N is the sparse matrix to be learned, which determines
the weights assigned to each candidate function in Θ(xti) ∈ ℝ

T×M.
The goal is to identify a small subset of non-zero coefficients in
Ξ, which describe the dynamics of the system in a compact form.
The sparsity of Ξ reflects the model’s ability to capture essential
features of the system while avoiding overfitting. We initially apply
the Discrete Fourier Transform (DFT) to analyze the periodic
frequency components within the time series and construct a library
of nonlinear candidate functions Θ(t) based on these periods.
These candidate basis functions include trigonometric functions for
periodicity, polynomial functions for trend changes, and constant
functions for invariant information, exploring the relationship
between time and the values of the output variable. Our goal is to
minimize the number of non-zero elements in the matrix Ξ, which
is a non-convex optimization problem. By employing the Lasso
method and substituting the l0 norm with the lq norm, we transform
the problem into a convex optimization problem, enabling the use
of existing convex optimization techniques for solution (Tibshirani,
1996; Chen et al., 2001). Specifically, we utilize the Lasso (Tibshirani,
1996) method to solve this optimization problem, formulated as
Equation 3:

arg min
Ξi

‖ẋi −Θ(x
t
i)Ξi‖

2 + λ‖Ξi‖
q
(ℓq)
, (3)

here, q = 1, and λ is an adjustable hyperparameter that controls
the trade-off between sparsity and fitting accuracy (James et al.,
2013). Here, i ∈ {1,2,…n} represents the dimension of the input
multivariate time series, Ξ denotes the sparse coefficient matrix (i.e.,
the matrix of weight coefficients for the basis functions), and N is
themodel tolerance term following a normal distribution. Naturally,
we assume that the basis function representation of the time series
in the test set should be consistent with that in the training set, i.e.,
Θ(⋅) = Θ′(⋅),Ξ = Ξ′.Thereby, as shown in Figure 2, we can derive the
predicted values yLtesti ∈ ℝ

T×N for future time steps using the basis
functions and coefficients obtained during themodel training phase.

3.1.2 Neural network
In this research, we harness the power of a Three-Dimensional

Convolutional Neural Network (3D CNN) to enhance the sparse
identification model’s predictive accuracy for electric power energy
data. Specifically, we enhance the predictive capability of the
sparse identification (SI) model for electric power forecasting
by embedding geographic dependencies inherent in spatially
distributed wind turbines directly into a 3D CNN framework. Each
turbine’s geographic coordinates, specifically longitude and latitude,
are first normalized and then embedded into a 2D coordinate
grid to match the spatial layout of the turbines, thereby encoding
relative positions in a spatial grid G ∈ ℝH×W, where H and W
represent the dimensions of the spatial layout. This grid structure
is combined with the preliminary output of the SI model, ySI ∈
ℝT×N, where T denotes time steps and N represents the number
of turbines. By reshaping ySI ∈ ℝ

T×N and combining it with G,
we form a spatiotemporal tensor Y3D ∈ ℝT×H×W×C, where C = N
initially represents the number of channels, T denotes the temporal
steps. The 3D CNN, consisting of spatiotemporal convolutional
blocks, processes this tensor by performing spatial convolutions
across H and W, capturing spatial correlations based on turbine
proximity, and temporal convolutions along T, capturing temporal
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FIGURE 2
Sparse identification model. (A) Observed data analysis. (B) Construct library of candidate basis. (C) Solve the optimization equation for the sparse
matrix. (D) Predict.

dependencies within the data.This procedure yields a refined feature
representation h ∈ ℝT

′×H′×W′×C′ , where T′, H′ and W′ are reduced
dimensions, and C′ denotes the updated channels.

Additionally, a learnable parameter matrix W ∈ ℝC
′×M fine-

tunes the SI predictions by adjusting the sparse coefficient matrix
ẋi, producing Ξ′ =W×Ξ to align SI outputs with spatiotemporal
dependencies learned by the CNN. This step ensures that learned
features reflect both SI’s interpretable trends and CNN’s pattern
recognition in the refined prediction.

This embedding of geographic information enables the model
to capture the complex spatial and temporal interactions among
turbines, advancing forecasting performance by effectively adapting
to both spatially and temporally dependent dynamics in renewable
energy generation. The integration of these advanced techniques
positions ourmodel at the forefront of renewable energy forecasting,
offering a nuanced and robust framework capable of adapting to the
intricate dynamics of power generation from renewable sources.

3.1.3 Fusion Gate
Fusion Gate represents the culmination of our approach,

seamlessly integrating the outputs of the neural network and the
sparse identification model to forge a more precise forecasting
model. This synthesis is facilitated by a gating mechanism that is
learned through the neural network, harnessing average pooling

to extract global average input data, which then serves as input
to the network for generating gating signals. The fusion process is
encapsulated by the Equation 4:

gate = FC (Pool (X))

Output = gate ∗ out STCNN + (1− gate ) ∗ out SI,
(4)

here, “gate” signifies the gating information derived from the
neural network, FC denotes the fully connected layer that processes
the pooled features, Pool represents the pooling operation that
condenses input data to its essential average values, and “outSTCNN”
and “outSI” correspond to the outputs of the convolutional neural
network and the sparse identification model, respectively.

Expanding on this, the Fusion Gate is a critical component that
allows for the dynamic weighting of the contributions from both
models, ensuring that the final prediction benefits from the strengths
of each while mitigating their individual weaknesses. The gating
mechanism itself is a sophisticated construct that adjusts based
on the learned patterns within the data, effectively balancing the
predictive power of the CNN’s spatial-temporal insights with the SI
model’s ability to capture underlying trends and seasonality.

The fully connected layer within this mechanism plays a pivotal
role in the final stage of the fusion process, translating the pooled,
averaged data into a gating signal that dictates the influence of each
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FIGURE 3
The layout of Wind power units, located at a range of 44.875°N∼44.924°N, 123.682°E∼123.767°E.

model’s output on the final prediction. This signal, a continuous
value between 0 and 1, dynamically adjusts to the predictive context,
ensuring that the combined output is not only an aggregation but a
thoughtful integration of the two models’ insights.

The resulting fusion of expertise from both the CNN and
SI models through the gating mechanism is a testament to
our approach’s adaptability and robustness. It is this strategic
integration that propels our forecasting model to new heights
of accuracy and reliability in the complex domain of renewable
energy prediction, where the interplay of various factors must be
precisely understood and forecasted. Here, “gate” represents the
computed gating information, FC denotes the fully connected layer,
Pool represents the pooling operation, and “outSTCNN” and “outSI”
respectively denote the outputs from the convolutional neural
network and the sparse identification model.

4 Experiment

4.1 Description of datasets

4.1.1 Wind power dataset
The dataset utilized in this experiment is derived from public

data of a wind farm located in Jilin Province, China. Comprising
66 wind turbines (WTs), each with a standard rated power output
of 1,500 kW, the dataset provides a rich source of information
for our analysis. To balance representativeness with computational
tractability for the purposes of this study, a random sampling
method was employed to select 7 wind turbines as the subjects of
our research. Each wind turbine is treated as an independent power
generation unit within the scope of this study.

TABLE 1 The comparison of prediction results among different methods.

Method Metrics

MSE MAE MAPE

Our model (SI-NN) 0.7801 0.7067 2.046

SI 0.8466 0.7423 1.831

Itransformer 0.9247 0.7607 3.891

RNN 1.0562 0.8054 2.64

LSTM 0.9439 0.7615 1.726

autoformer 1.08 0.7813 2.723

Dlinear 0.9528 0.7637 1.798

The dataset spans a period of 10 months and includes a variety
of meteorological and power production parameters such as wind
speed, wind direction, temperature, and corresponding power
output. All data have been aggregated at a 1-h granularity, providing
sufficient temporal resolution for analyzing both short-term
fluctuations and long-term trends of thewind farm.Additionally, the
spatial resolution of the dataset is defined by the GPS coordinates of
the wind turbines within the farm, which are illustrated in Figure 3
of the document.

To ensure the quality and accuracy of the data, preprocessing
steps were undertaken, encompassing the treatment of missing
values, detection of outliers, and standardization of data. Missing
values were imputed using interpolation methods, while outliers
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FIGURE 4
Random target variable future prediction of SINN model (len = 336).

were identified and corrected based on statistical tests. The
standardization process ensures the comparability of different
parameters and enhances the model’s ability to generalize across
various conditions.

4.2 Metrics

In our experimental assessment, we employed three standard
metrics for evaluating time series prediction:

MAE (Mean Absolute Error) measures the average
absolute deviation between predicted and actual values. It is
calculated using Equation 5:

MAE = 1
n
Σn
i=1|yi − ŷi|, (5)

where n is the number of samples, yi is the actual observed value,
and ŷi is the corresponding predicted value.

MSE (Mean Squared Error) measures the average squared
difference between the predicted values and the actual values. It’s
calculated using Equation 6:

MSE = 1
n

n

∑
i=1
(yi − ŷi)

2 (6)

MAPE (Mean Absolute Percentage Error) quantifies the average
relative difference between predicted and observed values, typically
expressed as a percentage, and is computed by Equation 7:

MSE = 1
n

n

∑
i=1
(yi − ŷi)

2 (7)

4.3 Renewable energy generation
forecasting

Thecentral objective of this study is to substantiate the efficacy of
the proposed hybrid model, termed the Sparse Identification Fusion

Neural Network (SINN), in practical tasks of renewable energy
generation forecasting. To achieve this, extensive experiments were
conducted on a wind power generation dataset, sampled at an
hourly granularity over a total duration of 7,288 h. The dataset was
meticulously partitioned into training, validation, and testing sets
in an 8:1:1 ratio, ensuring the model demonstrates commendable
stability and generalization across various data phases.

In the forecasting task, a prediction time window of 96 steps
was established, and predictions spanning up to 336 steps were
performed on the test set to evaluate the model’s capability to
capture long-term trends. The assessment criteria selected for
evaluation encompass Mean Squared Error (MSE), Mean Absolute
Error (MAE), and Mean Absolute Percentage Error (MAPE), which
collectively provide a comprehensive reflection of the model’s
predictive accuracy and error distribution.

The experimental outcomes shown in Table 1 demonstrate the
SINN model’s superiority across all evaluation metrics compared to
other comparative models. Specifically, the SINN model yielded an
MSE of 0.7801, MAE of 0.7067, and MAPE of 2.046%, indicating
lower forecasting errors and higher precision. In contrast, the
traditional Sparse Identification (SI) model reported MSE, MAE,
and MAPE values of 0.8466, 0.7423, and 1.831%, respectively.
Other deep learning models, such as iTransformer, RNN, LSTM,
Autoformer, and DLinear, exhibited varying degrees of predictive
performance but none surpassed the SINN model.

Expanding on this, as shown in Figure 4, the SINN model’s
exceptional performance is attributed to its hybrid nature, which
synergistically merges the sparse identification’s ability to capture
underlying trends and seasonality with the CNN’s prowess in
recognizing intricate spatial-temporal patterns. This amalgamation
results in a model that not only excels in precision but also
offers enhanced interpretability and adaptability to the nuances of
renewable energy data. This disparity in performance suggests that
the SINNmodel’s ability to capture complex, nonlinear relationships
and long-term dependencies within the data is more pronounced
than that of the traditional SI model, which may struggle to fully
encapsulate the dynamic nature of renewable energy data.
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FIGURE 5
Random target variable future prediction of Baseline model
(len = 336).

By combining it with other core model objects,
as shown in Figure 5, the experimental results unequivocally
highlight the SINN model’s preeminence, setting a new benchmark
for renewable energy forecasting. The model’s lower MSE, MAE,
and MAPE signify its ability to closely align with actual energy
generation values, translating to more reliable and actionable
forecasts for stakeholders in the renewable energy sector.

4.4 Ensemble experiments

To further validate the applicability of the proposed hybrid
model (SINN) across various prediction tasks, we designed a series
of ensemble experiments that combine Sparse Identification (SI)

with classical deep learning models such as LSTM, DLinear, and
Autoformer.The core objective of these experiments is to investigate
how the SImodel, when used as an initial feature extractionmodule,
complements other deep learningmodels, thereby improving overall
predictive performance.

In these experiments, the SI model first performs sparsification
of the input time series data, generating a sparse matrix Ξ to capture
global features. These sparse representations are then fed into
other deep learning models, which further capture local patterns
and temporal dependencies within the time series. Since different
models excel in handling different types of time series tasks, the
performance of the ensemble models varied accordingly.

As shown in the table, all ensemble models demonstrated
strong performance across the 96-step, 336-step, and 720-step
prediction tasks. Overall, the SI-NN model exhibited the lowest
mean squared error (MSE) and mean absolute error (MAE) in
long-term prediction tasks, with its mean absolute percentage
error (MAPE) also remaining at a lower level. This indicates
that the SI-NN model is particularly accurate in handling
long-term forecasts.

The SI-DLinear model performed notably well in short-term
prediction tasks (96 steps), with its MSE and MAPE lower
than those of other linear models, demonstrating its stronger
adaptability to short-term local patterns. The SI-Autoformer
model exhibited better generalization in handling high-dimensional
time series data.

4.5 Analysis and discussion

To further validate the applicability of the proposed hybrid
model (SINN) across various prediction tasks, we designed a series
of ensemble experiments that combine Sparse Identification (SI)
with classical deep learning models such as LSTM, DLinear, and
Autoformer.The core objective of these experiments is to investigate
how the SImodel, when used as an initial feature extractionmodule,
complements other deep learningmodels, thereby improving overall
predictive performance.

4.5.1 Results analysis
Tables 1, 2 clearly show that the fusion model combining Sparse

Identification (SI) with neural networks (SI-NN) outperforms
both the standalone traditional SI model and other deep learning
models (e.g., LSTM, iTransformer, Autoformer) in several
metrics, such as MSE, MAE, and MAPE. This demonstrates the
effectiveness of integrating these techniques for prediction tasks.
As shown in Table 1, SI-NN consistently outperforms traditional
SI and other deep learning models across metrics like MSE and
MAE. SI-NN successfully combines the strengths of the SI module
and neural networks, capturing both global and local features of
wind power data. This integration proves particularly effective in
long-term prediction tasks (e.g., 720-step predictions), where SI-
NN exhibits stronger adaptability to complex time series data,
accurately capturing fluctuations and trends. This fusion is key
to SI-NN’s superior performance in handling non-stationary and
stochastic wind power data. However, LSTM’s superiority in the
MAPE metric raises a noteworthy point. LSTM outperforms
SI-NN in MAPE, likely due to its ability to capture long-term
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TABLE 2 Performance comparison of SI-based hybrid models across various prediction tasks.

Pred_len SI-NN SI-LSTM SI-DLinear SI-autoformer

MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE MSE MAE MAPE

96 0.65 0.60 1.9% 0.66 0.61 1.6% 0.67 0.61 1.6% 0.68 0.63 2.0%

336 0.78 0.70 2.0% 0.85 0.71 1.7% 0.93 0.72 1.7% 0.99 0.76 2.2%

720 0.95 0.78 2.3% 1.00 0.79 2.4% 1.05 0.81 2.3% 1.10 0.83 2.6%

dependencies more effectively, particularly in time-series data with
strong temporal correlations. Moreover, MAPE is more sensitive
to small actual values, which could result in higher values when
small actual values but large errors occur. SI-NN relies on the sparse
matrix Ξ for feature extraction, which is better suited for capturing
global features.

The shortcomings of iTransformer and Autoformer are also
evident in the experimental results. As shown in Figure 5, these
models fail to capture dynamic features in wind power data,
particularly during periods of high-frequency fluctuation. While
these models perform well with structured or stationary data,
wind power data’s non-stationary and volatile nature causes them
to underperform in MSE and MAPE metrics. Their predictive
curves are overly smooth, suggesting underfitting when dealing
with high-frequency variations in wind power data. While baseline
models such as iTransformer and Autoformer handle temporal
dependencies in a linear fashion, the SI layer in SINN pre-filters
time series data to isolate primary temporal patterns, which are
then refined by CNN for complex spatiotemporal dependencies. SI’s
sparse processing enables effective global feature extraction, while
DLinear excels in capturing local linear trends. Therefore, both
LSTM and DLinear show limitations when dealing with complex
nonlinear fluctuations.

When discussing the generalizability of the model, the Sparse
Identification Fusion Neural Network (SINN) model is also
highly renewable for other renewable energy sources, especially
photovoltaic (PV) energy. PV generation data, like wind power,
involves periodic and nonlinear characteristics influenced by
meteorological factors, but it exhibits a more regular daily cycle
driven by solar irradiance variations. The SI component in SINN
can capture these recurring patterns efficiently, while the CNN
component is effective at detecting long-term changes caused by
fluctuations in irradiance, temperature, and cloud cover. To adapt
SINN for PV forecasting, additional features such as solar irradiance,
ambient temperature, and cloud cover can be integrated into the
model, enhancing its ability to capture the unique influences in PV
energy data. Further validation of SINN’s versatility in these different
energy types through future experimental testing supports its
potential as a general framework for renewable energy forecasting,
not only for wind and solar but also potentially extending to
hydropower and geothermal energy.

4.5.2 Waveform discussion
Figure 4 showcases SI-NN’s strength in capturing overall trends.

The model’s predictive curve (red) closely follows actual data,
particularly in stable regions. However, in areas with sharp

fluctuations, SI-NN’s predictions appear somewhat smooth. This
could be due to the neural network’s limited sensitivity to extreme
fluctuations, leading to a delayed response in such regions. Figure 5
further highlights the deficiencies of iTransformer and Autoformer.
Their predictive curves remain smooth and fail to capture sharp
variations in wind power data, indicating an inability to adequately
fit complex nonlinear features. This discrepancy is especially
pronounced in high-frequency fluctuation regions, where their
predictions diverge significantly from actual values, resulting in
large errors. Although DLinear performs relatively well in capturing
local linear trends, its accuracy diminishes when confronted
with global nonlinear fluctuations. This indicates that while
DLinear excels in short-term prediction, it struggles with longer
time series data.

4.5.3 Fusion discussion
We integrated sparse identification (SI) with several classic deep

learning models, including LSTM, DLinear, and Autoformer, to
evaluate their adaptability and performance in different forecasting
tasks. The experimental results demonstrate that all integrated
models exhibit strong adaptability across 96-step, 336-step, and
720-step forecasting tasks. The SI-NN model excels in long-
term forecasting, particularly in the 720-step task, achieving MSE
of 0.95, MAE of 0.78, and MAPE of 2.3%. The integration of
sparse representation within our model substantially enhances its
capacity to detect both long-term fluctuations and long-term trends,
with a notable superiority in long-term forecasting performance
compared to conventional baseline models. This enhancement is
complemented by the neural network component, which fortifies
the model’s ability to extract non-linear features, leading to highly
precise predictive outcomes. Additionally, the model’s swift training
velocity presents a significant operational advantage, making it
particularly suitable for real-world applications where efficiency
is paramount. SI-DLinear also performs in short-term tasks, with
an MSE of 0.67 and MAPE of 1.6% for the 96-step forecast. The
combination of linear modeling and sparse feature extraction allows
SI-DLinear to efficiently capture short-term trends. However, as
the forecasting horizon extends, its performance diminishes, with
a MAPE of 2.3% in the 720-step task. This highlights the limitations
of linear models in handling complex, long-term dependencies.
SI-Autoformer maintains stable performance across longer time
horizons. While its short-term performance (MAPE of 2.0% for 96-
step) is slightly lower compared to other models, it demonstrates
strong long-term forecasting ability with an MSE of 1.10 and MAE
of 0.83 for the 720-step task. The Autoformer effectively handles
complex fluctuations in high-dimensional, non-stationary data,
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making it a suitable choice for long-term time series forecasting with
intricate dynamic features.

5 Conclusion

In this paper, we have developed the Sparse Identification
Fusion Neural Network (SINN), a hybrid model that integrates
sparse identification and convolutional neural networks to improve
long-term forecasting accuracy and interpretability in renewable
energy prediction. Our results on wind power generation data
show that SINN significantly reduces forecasting errors compared
to traditional methods. This model not only advances renewable
energy forecasting but also establishes a novel approach to
combining deep learning and sparse identification techniques.

In summary, this work offers a new, effective tool for renewable
energy prediction while paving the way for further research
into integrating advanced machine learning techniques. Future
directions include enhancing SINN’s generalization, optimizing
the model’s structure, expanding its application in multi-task
and ensemble learning, and improving its real-time forecasting
capability and robustness to noisy data. The potential of SINN for
broader applications across various domains will also be explored,
contributing to the growth of intelligent, sustainable energy systems
and the ongoing global energy transition.

Looking to the future, we aim to investigate ways to refine
the SINN model for even greater scalability and adaptability,
particularly in diverse renewable energy contexts such as solar and
hydroelectric power forecasting. Moreover, efforts will be directed
toward improving the interpretability of the model, making it more
accessible for real-time decision-making in energy management
systems. We also plan to explore SINN’s potential in integrating
with advanced energy storage systems and smart grids, helping
to optimize energy distribution and consumption, and ultimately
supporting the global shift toward a more resilient and sustainable
energy infrastructure.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

JH: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Software, Validation, Visualization,
Writing–original draft. TT: Data curation, Formal Analysis,
Methodology, Resources, Software, Visualization, Writing–original
draft. YW: Conceptualization, Investigation, Methodology,
Writing–original draft. XL: Conceptualization, Data curation,
Funding acquisition, Investigation, Project administration,
Supervision, Writing–review and editing. MW: Conceptualization,
Methodology, Software, Supervision, Writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work is supported by the National Natural Science Foundation
of China under Grants No. 62203210, the Jiangsu Postdoctoral
Science Foundation (2021K397C), the Natural Science Foundation
of Jiangsu Province of China (BK20210929), and the Scientific
Research Foundation for the introduction of talents of NJIT
(YKJ202015).

Conflict of interest

Authors JH and TT were employed by State Grid Lianyungang
Power Supply Company.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Box,G. E., Jenkins, G.M., Reinsel, G. C., and Ljung,G.M. (2015).Time series analysis:
forecasting and control. John Wiley and Sons.

Chen, S. S., Donoho, D. L., and Saunders, M. A. (2001). Atomic decomposition by
basis pursuit. SIAM Rev. 43, 129–159. doi:10.1137/s003614450037906x

Denholm, P., and Hand, M. (2011). Grid flexibility and storage required to achieve
very high penetration of variable renewable electricity. Energy Policy 39, 1817–1830.
doi:10.1016/j.enpol.2011.01.019

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural
Comput. 9, 1735–1780. doi:10.1162/neco.1997.9.8.1735

James, G., Witten, D., Hastie, T., Tibshirani, R., and Taylor, J. (2013) An introduction
to statistical learning, 112. Springer.

Kang, M., Zhu, R., Chen, D., Li, C., Gu, W., Qian, X., et al. (2023). A cross-modal
generative adversarial network for scenarios generation of renewable energy. IEEE
Trans. Power Syst. 39, 2630–2640. doi:10.1109/tpwrs.2023.3277698

Kang, M., Zhu, R., Chen, D., Liu, X., and Yu, W. (2024). Cm-gan: a cross-
modal generative adversarial network for imputing completely missing data
in digital industry. IEEE Trans. Neural Netw. Learn. Syst. 35, 2917–2926.
doi:10.1109/TNNLS.2023.3284666

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. nature 521, 436–444.
doi:10.1038/nature14539

Liu, H., and Zhang, Z. (2022). A bi-party engagedmodeling framework for renewable
power predictions with privacy-preserving. IEEE Trans. Power Syst. 38, 5794–5805.
doi:10.1109/tpwrs.2022.3224006

Liu, H., and Zhang, Z. (2024). Development and trending of deep learning methods
for wind power predictions. Artif. Intell. Rev. 57, 112. doi:10.1007/s10462-024-10728-z

Liu, X., Chen, D., Wei, W., Zhu, X., and Yu, W. (2024a). “Interpretable sparse system
identification: beyond recent deep learning techniques on time-series prediction,” in
The twelfth international conference on learning representations.

Frontiers in Energy Research 10 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1461410
https://doi.org/10.1137/s003614450037906x
https://doi.org/10.1016/j.enpol.2011.01.019
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1109/tpwrs.2023.3277698
https://doi.org/10.1109/TNNLS.2023.3284666
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/tpwrs.2022.3224006
https://doi.org/10.1007/s10462-024-10728-z
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


He et al. 10.3389/fenrg.2024.1461410

Liu, X., Shao, Q., and Chen, D. (2024b). Long-term prediction on graph
data with causal network construction. IEEE Trans. Artif. Intell. 5, 3445–3455.
doi:10.1109/tai.2024.3351105

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., et al.
(2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and
III to the fifth assessment report of the. Copenhagen, Denmark: Intergovernmental Panel
on Climate Change Ipcc.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. J. R. Stat. Soc.
Ser. B Stat. Methodol. 58, 267–288. doi:10.1111/j.2517-6161.1996.tb02080.x

Wei, M., Yang, J., Zhao, Z., Zhang, X., Li, J., and Deng, Z. (2024). Defedhdp:
fully decentralized online federated learning for heart disease prediction in
computational health systems. IEEE Trans. Comput. Soc. Syst. 11, 6854–6867.
doi:10.1109/tcss.2024.3406528

Wu, H., Xu, J., Wang, J., and Long, M. (2021). Autoformer: decomposition
transformers with auto-correlation for long-term series forecasting. Adv. neural Inf.
Process. Syst. 34, 22419–22430.

Zeng, A., Chen, M., Zhang, L., and Xu, Q. (2023). Are transformers effective
for time series forecasting? Proc. AAAI Conf. Artif. Intell. 37, 11121–11128.
doi:10.1609/aaai.v37i9.26317

Zhang, Y., Kong, X., Wang, J., Wang, H., and Cheng, X. (2024).
Wind power forecasting system with data enhancement and algorithm
improvement. Renew. Sustain. Energy Rev. 196, 114349. doi:10.1016/j.rser.2024.
114349

Zheng, Z., and Zhang, Z. (2023). A stochastic recurrent encoder decoder network for
multistep probabilistic wind power predictions. IEEE Trans. Neural Netw. Learn. Syst.
35, 9565–9578. doi:10.1109/tnnls.2023.3234130

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1461410
https://doi.org/10.1109/tai.2024.3351105
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1109/tcss.2024.3406528
https://doi.org/10.1609/aaai.v37i9.26317
https://doi.org/10.1016/j.rser.2024.114349
https://doi.org/10.1016/j.rser.2024.114349
https://doi.org/10.1109/tnnls.2023.3234130
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

	1 Introduction
	2 Problem definition
	3 Methodology
	3.1 Sparse identification of fusion neural network model
	3.1.1 Sparse identification model
	3.1.2 Neural network
	3.1.3 Fusion Gate


	4 Experiment
	4.1 Description of datasets
	4.1.1 Wind power dataset

	4.2 Metrics
	4.3 Renewable energy generation forecasting
	4.4 Ensemble experiments
	4.5 Analysis and discussion
	4.5.1 Results analysis
	4.5.2 Waveform discussion
	4.5.3 Fusion discussion


	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

