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Extreme weather causes an increase in power system failure. Previous studies on
system resilience have often overlooked the user-side of a microgrid. This study
proposes composite resilience indices (RI) based on the power supply of a large-
scalemanufacturing campusmicrogrid to quantify its ability towithstand extreme
events. The proposed RI consider load priority, minimum supply load, total energy
supplied, and the performance recovery-to-degradation slope ratio in an
islanding microgrid. Accordingly, this study presents a three-stage resilience
optimal dispatch and reconfiguration strategy, including energy-level
scheduling, grid-level reconfiguration, and dynamic-level verification. A multi-
objective optimization approach is used for energy scheduling, followed by
system reconfiguration via DIgSILENT system modeling to meet the grid code
and maximize load supply. Value at Risk methods are used to verify microgrid
stability and load shedding requirements, supported by the virtual synchronous
generator control of the energy storage system. The test results from a practical
large-scale manufacturing campus microgrid validate the proposed approaches
for enhancing system resilience considering load values.
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1 Introduction

Recently, extreme weather disasters have occurred frequently, leading to an increasing
number of considerable impacts on power systems. These events unfold rapidly and cause
extensive damage, resulting in high repair costs and economic loss. In the United States,
weather-related power outages cost between $250 to $750 billion annually (Vugrin et al.,
2017). Infrastructure damage is not limited to singular occurrences and may result in
complex events affecting communication, water, transportation, natural gas, and other
systems (Stankovic et al., 2023).

Globally, governments invest in carbon reduction technology to combat the greenhouse
effect and promote the integration of renewable energy (RE) into the grid. However, RE
lacks inertia and stops operating during power outages, limiting its effective utilization
despite its capacity to supply electricity.

Technological progress and societal advancements have increased the demand for
reliable electricity supplies, prompting a focus on grid resilience (Bie et al., 2017).Microgrid
technology improves resilience by integrating and managing distributed energy resources
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(DERs) to minimize costs and facilitate seamless transitions between
grid-connected and islanded modes as required (Hamidieh and
Ghassemi, 2022).

Microgrid technology ensures an uninterrupted power supply
during outages by enabling grid-following DERs to continue
generating power, optimizing energy efficiency, and enhancing
resilience. This makes microgrid deployment attractive to users
affected by power interruptions.

Traditional reliability indices consider the performance of a
power system in withstanding unexpected failures or outages of a
single or multiple facilities (N-1 or N-2) within a specified period.
For example, probabilistic indices such as loss of load probability
and expected power not supplied (da Costa et al., 2021). These
accidents have a high probability of occurrence, but a relatively low
impact, affecting only a few users for seconds to hours.

However, high-impact, low-probability (HILP) events resulting
from disasters can cause multiple system component failures.
During such events, system operators are primarily concerned
with maintaining functionality throughout the event to reduce
potential losses (Braun et al., 2020). The literature Kaloti and
Chowdhury (2023) extensively describes reliability and resilience,
and explains the clear distinction between the two.

Resilience quantification involves assessing the entire process from
a HILP event occurrence to restoration, considering the time-response
relationships at each stage. HILP event severity profoundly affects
resilience assessments, with event selection being crucial and often
contingent on maintenance manager budgets and risk tolerance.

Reference Huang et al. (2022) resents a method for developing
multiple scenarios of HILP events, accounting for equipment failure
probabilities. Modern power grids, categorized as cyber-physical
power systems, require the consideration of failures in information
and communication facilities (Ti et al., 2022). Assessing HILP event
severity (Zhou et al., 2020) recommends employing the conditional
value at risk (VaR) method, allowing managers to set confidence
levels for decision making.

Resilience indices (RI) are often quantified using resilience
trapezoids (Li et al., 2017; Mahzarnia et al., 2020; Panteli et al., 2017;
Yao et al., 2023) or customized formulas (Chanda et al., 2018). However,
customized formulas may rely on the dispatcher experience and lack
universal applicability. Additionally, resilience assessment based on
predicted weather intensity (Ti et al., 2022; Wang et al., 2021a), such
as typhoon wind speed, is common. However, regions that face multiple
natural disasters may simultaneously challenge the applicability of
specific resilience assessment mechanisms. Further discussion of their
universal applicability is required.

Regarding resilience improvement methods, several studies have
focused on determining the repair sequences of damaged components.
According to Liu et al. (2023) maintenance resources are limited, and
the repair sequence affects system resilience. Therefore, it proposed a
method based on stochastic search to determine the arrangement of
repair sequences. To reduce the computation time and ensure solution
quality, (Li et al., 2022), adopts a reinforcement learning method for
decision making in the repair stage.

Reference Jiang et al. (2022) first calculated the impact of each
component on resilience based on the probability of equipment
failure and its impact on the system. The repair sequence was
determined according to the impact indicator. When a system
includes multiple microgrids, prioritizing the restoration with

shorter islanding durations can enhance grid resilience (Liu
et al., 2017).

Microgrid applications support grid resilience. Reference Hong
et al. (2022) introduces a dynamic shedding strategy that leverages
real-time system inertia, validated through dynamic simulations, but
is limited by measurement, communication, and computation
speeds. With advancements in energy storage system (ESS)
technology, Wang et al., (2021) proposed a multi-objective
optimization method to determine ESS capacity and location,
alongside a three-stage scheduling method to enhance resilience.

In (Mohan et al., 2022), a fuzzy control method was proposed to
control ESS for preventing microgrid blackouts. The method can
effectively delay the depletion of energy, but it lacks integration with
other technologies. The method of mutual support between
microgrids Bian et al. (2018) has also been proposed to enhance
resilience. However, the method is limited to closely connected
situations and are not feasible during interruptions in the utility grid.
Reference Confrey et al. (2020) focused on scheduling methods for
microgrids with high photovoltaic (PV) penetration, while
overlooking system constraints.

In practical applications, the scheduling of power resources
should be integrated with system reconfiguration (SR) to ensure
that solutions can satisfy system constraints. Literature Huang et al.
(2017) proposes an optimization method to obtain generator
scheduling and system topology that minimize load shedding and
costs. Additionally, a two-stage optimization method to achieve
minimal load shedding through reconfiguration has also been
proposed Shen et al. (2021). Although reducing load shedding
can mitigate system performance degradation, it does not
consider other aspects such as degradation or recovery speed.

Furthermore, both Yang et al. (2023); Xia et al. (2022) use system
reconfiguration as a method for power restoration. Yang et al. (2023)
proposes an optimal investment strategy for soft open points, which
can be combined with distribution system reconfiguration to reduce
costs and enhance resilience. Xia et al. (2022) employs fuzzy control
to execute the optimal power restoration strategy, considering load
importance and generation ramp rate. However, both methods focus
solely on the reconfiguration during the power restoration phase,
and only (Xia et al., 2022) considers system stability.

In terms of improving decision-making speed, Chowdhury and
Zhang (2024), uses the two-stage stochastic optimal power flow
method to improve system resilience. Reinforcement learning (RL)
techniques have also been used to enhance system resilience (Kadir
et al., 2024; Fan et al., 2024). While RL’s fast computation can
facilitate real-time decision-making, training decisions through a
reward mechanism does not guarantee that the decisions will always
meet system constraints.

To improve user-side system resilience, He et al., (2018),
proposes a three-stage optimization method that simultaneously
considers electricity and gas demand. The proposed strategy not
only accounts for load priority and energy limited but also handles
HILP events from onset to completion (holistic coverage). However,
the lack of discussion on system constraints and stability may affect
its practical feasibility. In contrast, Tong et al. (2024) provides a
comprehensive analysis of users’ gas and electricity demand but
lacks consideration of system and equipment-level constraints.

Most existing methods for distribution system reconfiguration
to enhance resilience only consider capacity constraints without
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addressing the issue of limited energy because the upstream side is
generally assumed to have sufficient energy. However, this is not
applicable to user systems when the main grid interrupts.

Based on the discussion above, this paper proposes a three-stage
resilience enhancement optimal scheduling strategy, which involves
energy, grid, and dynamic levels. From the three perspectives, the
strategy ensures that scheduling meets system constraints and
manages net load fluctuations, thereby maintaining system
stability. In addition, the proposed method can also cope with
HILP accidents from start to finish. A comparison of resilience
enhancement strategies is detailed in Table 1. The main
contributions of this study are as follows:

• Modification of composite resilience indices: This paper refines
the existing composite RI tomake the indexmore suitable for large
power consumers rather than transmission/distribution systems.
The load curve used to calculate resilience is passed through a
weighted process to incorporate load prioritization considerations.
In addition, the index that considers degradation and recovery
ratios (Yao et al., 2023) wasmodified to account for both time and
amplitude, rather than just time. All indices are presented as
percentages or ratios, enhancing comparability between different
sites. Furthermore, the index representation method has been
standardized to ensure that “the bigger, the better” applies to all
composite indices, facilitating easier comparisons.

• Three-stage resilience enhancement optimal scheduling
strategy: This paper proposes a three-stage resilience
enhancement optimal scheduling strategy. Given that the
values in the composite RI are not consistent with each
other, resilience optimization is treated as a multi-objective
optimization problem. Most existing distribution system
restoration methods consider only capacity constraints,
neglecting the issue of limited energy since upstream side is
assumed to have sufficient energy. To properly manage energy
supply and avoid a complete blackout, the first stage of
proposed algorithm uses multi-objective genetic algorithm
(MOGA) to search for an optimal power scheduling that
maximizes the composite RI. In the second stage, SR

strategy is designed to incorporate system constraints based
on the optimal power scheduling.

• Dynamic simulation in outage process: In the third stage of
proposed method, dynamic simulation is considered. Existing
scheduling methods seldom addresses stability throughout the
entire outage process. By analyzing the probability distribution
of the rate of change in historical load and PV generation data,
the proposed method employs value at risk (VaR) and
predefined confidence levels to assess the necessary
variation conditions. Using the dynamic simulation
function of DIgSILENT PowerFactory software, the system
tolerability of the power scheduling obtained in the first two
stages is tested. If oscillations cause frequency to drop below
the lower limit, load shedding is performed until the
constraints are met, enhancing practical applicability.

• Integration of virtual synchronous generator (VSG) control
and dynamic Modeling: This study integrates the VSG control
of ESS and constructs a dynamic model. In the third stage,
dynamic simulations demonstrate that VSG can effectively
support frequency, thereby reducing the need for load
shedding and further enhancing resilience.

The remainder of this study is organized as follows: Section 2
introduces RI for power systems. The detailed three-stage resilient
optimal dispatch and reconfiguration strategies are presented in
Section 3. The computational results are presented in Section 4.
Finally, Section 5 concludes the study.

2 Resilience indices

Resilience assessment methods for power systems often focus on
calculating the duration from event occurrence to full recovery,
referred to as event duration (ED). Early studies, such as the
resilience triangle (Vugrin et al., 2017), emphasized post-incident
recovery capability. Recent discussions have expanded this concept
to a trapezoid Li et al. (2017), as shown in Figure 1, considering
factors such as degradation speed and extent, and investigating the

TABLE 1 A comparison of resilience enhancement strategies.

References Loads priority Energy limited System constrains System stability Holistic coverage

Xia et al. (2022) o x o o x

Yao et al. (2023) x x o x o

Mohan et al. (2022) o x o o x

He et al. (2018) o o o x o

Tong et al. (2024) x x o x o

Chowdhury and Zhang (2024) o o o x x

Kadir et al. (2024) o x o x o

Fan et al. (2024) o x o x o

Hong et al. (2022) x x o o o

Huang et al. (2022) x o o x o

Proposed method o o o o o
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impact of ED. The event process was divided into three stages: Stage
I, degradation; Stage II, recovery; and Stage III, infrastructure
recovery (IR). An explanation of each stage and its
corresponding time points is provided in Table 2; Figure 1.

When system encounters a HILP event, a performance measure
(MoP) is often used to assess its resilience. The MoP can represent
various state variables of the grid such as voltage, frequency, and
supplied load. For large-power users, primary consideration of the
load supply is to support production. Therefore, it is more
appropriate to use the supplied load or critical demand as MoP
to measure resilience. Based on different considerations, existing RI
can be categorized into two types: those based on resilience trapezoid
and those that consider the cost. These are described as follows.

In the calculation of the indicators mentioned in Section 2.1, the
definitions of the related variables are shown in Table 2; Figure 1.

2.1 Resilience indicators based on the
resilience trapezoid

The vulnerability index (VI), calculated as (Equation 1), is
suitable for assessing the extent of MoP decline during extreme
events (Li et al., 2017), which can be improved by applying

microgrid technology. Ideally, VI should be zero and reach
1 when the system is completely out of power.

VI � Mo −Mpe

Mo
(1)

A drawback of VI is lack of representation of the temporal
behavior. To address this, the normalized degradation index can be
adopted to assess system resilience (Li et al., 2017), as shown in
(Equation 2). The physical significance of degradation index (DI) is
the ratio of electrical energy lost during the degradation period to the
original electrical energy supplied over the same time interval
without any events. Therefore, a smaller value of DI is preferable.
The time interval considered ranges from the degradation start time,
td, to the time when degradation reaches its lowest point, tpe , as
illustrated in Figure 1. Besides, the restoration efficiency index (Li
et al., 2017) also be proposed to assess the efficiency of the
restoration phase.

DI �
∫tpe

td
Mo −M t( )( )dt

Mo tpe − td( ) (2)

Literature Mahzarnia et al. (2020) introduces a composite index
based on the resilience trapezoidal concept by incorporating three
performance metrics, including power-supply shortage, recovery
speed, and recovery degree. Simultaneously, the probability of
occurrence of different HILP scenarios was also considered.
Reference Panteli et al. (2017) proposed a composite index, ΦΛΕΠ,
to represent each stage’s characteristics separately. Φ indicates decline
rate, Λ reflects extent, Ε signifies degradation duration post-event, and
Π represents recovery speed, as shown in (Equation 3–6). In (Ti et al.,
2022), multiple events with the probability of occurrence, ps, were
considered to estimate power resilience, as shown in (Equation 7).

Φ � Mpe −M0

tpe − te
(3)

Λ � M0 −Mpe (4)
Ε � tr − tpe (5)

Π � Mo −Mpe

tpir − tpe
(6)

FIGURE 1
Schematic diagram of resilience trapezoid evolution (Li
et al., 2017).

TABLE 2 Variables and timing description of resilience trapezoid curve.

Stage Timing

I I.1 From event to the beginning of degradation, usually very short te Event occurs

td Degradation starts

I.2 Performance degradation tpe Event ends

II II.1 Wait for microgrid restoration tr Restoration starts

II.2 During microgrid restoration tpr Restoration finished

III III.1 Wait for IR tir IR starts

III.2 During IR tpir IR finished

Variables definition Mo Original performance without events

Mpe Minimum performance degraded by events

M(t) Performance response curve
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RIexp � ∑S
s�1
ps

∫tir

te
M t( )dt∫tpir

td
Mo −M t( )[ ]dt

⎛⎜⎝ ⎞⎟⎠
s

(7)

Most indicators focus on the trapezoidal area. Although the area
of power trapezoidal can represent a partial symbol of resilience, an
assessment of response capability is lacking. Literature Yao et al.
(2023) highlights the significance of shape, noting that varying rates
of degradation and recovery can affect resilience. Therefore, the
resistance to recovery ratio (RR/R) Yao et al. (2023) was proposed as
an evaluation indicator, as shown in (Equation 8).

RR/R � tpe − te
tpir − te

(8)

2.2 Resilience indicators with cost
considerations

A previous study Panteli et al. (2017) proposed a RI, recovery
resilience (RR), that considered costs, as shown in (Equation 9). Lost
revenue impact (LRI) represents the energy shortage indicator and total
restoration (TR) represents cost investment, which is aggregated using a
weight factor (μ). The denominator is the product of load weight factor
(Wi), peak load (PLNi) of the ith load under normal conditions, and
recovery phase duration (Dt) at time t.

The unit of LRI is the same as that of energy, representing the
product of restored energy quantity completed by the tth recovery phase
and its duration. LRI is expressed in (Equation 10), which mainly
represent the energy shortage, but calculate based on the difference of
actual peak load (PLNi) and original peak load (PLRi,t).

TR considers labor, component replacement, and generator
operation costs, as shown in (Equation 11). LCj represents the
labor cost per hour for category j, andWHj,t represents the working
hours. The component replacement cost is the product of cost (RCn)
per component n and quantity (RPn,t) replaced. The difference in the
generator operating costs is the cost of deploying generators during a
disaster. This was calculated as the discrepancy between normal
(OCn) and event process operating costs (OCt) multiplied by
generated power (PGz,t) and duration.

RR � LRI + μ × TR∑
t
∑
i
Wi PLNi( )Dt

(9)

LRI � ∑
t

∑
i

Wi PLNi − PLRi,t( )Dt (10)

TR � ∑
t

∑
j

LCj × WHj,t + ∑
n

RCn × RPn,t
⎛⎝ ⎞⎠ + ∑

z

OCt − OCn
⎛⎝ ⎞⎠ × PGz,tDt

⎡⎢⎢⎣ ⎤⎥⎥⎦
(11)

Determining the weighting values between LRI and TR is
challenging. Additionally, consumers should prioritize the
recovery of power supply over the cost of additional investments
required to enhance resilience. For example, in steel enterprises, an
unexpected power outage can cause blast furnace slag solidification,
leading to significant economic losses. The resilience indices, RR, is
comprehensive but prioritize economic factors over load supply.
This makes RR more suitable from the perspective of power
companies and for use in a distribution or transmission system.

This study focuses on optimizing resilience in user-side
microgrid systems, necessitating the modification of existing
indices to a more suitable form. Industrial loads have varying
levels of importance and priority. Therefore, the original load
curve Pori

t , obtained by summing the individual loads Pn,t, as
shown in (Equation 12), should be weighted. The weighting
method used in this paper is shown in (Equation 13), where the
weighted load Pweight

t is calculated using pre-defined weights ωi for
each load assigned by the operator. For calculations of RI, the
weighted load curve should be used to better reflect power usage
and industrial needs of consumer.

Pori
t � ∑

n

Pn,t (12)

Pweight
t � ∑

i

∑
n

ωi · Pn,i,t( ) (13)

Based on the analysis above, it can be observed that composite
indicators provide a more comprehensive representation of system
resilience. Therefore, this paper proposes RI tailored for user-side
applications, as shown in (Equation 14–16). Where R1 is minimum
load supply, R2 is supplied energy, and R3 is recovery-to-degradation
slope ratio. Many existing indicators are not conducive to cross-site
comparison. Hence, the proposed indices are presented as percentages
or ratios. Additionally, these indices are calculated based on the
weighted adjustments in (Equation 13) rather than the original load,
to meet users’ needs for prioritizing loads.

Equations 14, 15 respectively represent robustness and
restorability of the system, which are more classical and
frequently used indicators in the existing literature. However,
current indicators seldom inspect the shape of resilience
trapezoid, specifically the degradation and recovery slopes. In
practical applications, even if the supplied energy or minimum
load values are the same, users prefer slower power supply
degradation and faster recovery. Although (Yao et al., 2023)
mentions the shape of resilience trapezoid, the indicators are
ratios of time lengths and do not consider the magnitude.
Therefore, this paper proposes a modified index, as shown in
(Equation 16), representing the ratio of recovery to degradation
slop. To ensure all three indices are interpreted as “the larger, the
better,” R3 considers the absolute value.

R1 � min
M t( )
Mo t( )[ ] (14)

R2 �
∫tpir

te
M t( )[ ]dt∫tpir

te
Mo t( )dt

(15)

R3 � recoverary slope
degradation slope

� Mpr −Mpe( )/ tpr − tr( )
Mpe −Mo( )/ tpe − te( )

∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣ (16)

3 Three-stage resilience optimal
dispatch and reconfiguration strategy

The methodology proposed in this study (Figure 2) consists of
three stages: energy, grid, and dynamic levels. Defining the detailed
characteristics of HILP event beforehand is crucial, including the
event type, ED, and DERs status. Factors such as equipment
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availability, ESS State of Charge (SOC), and fuel storage conditions
influence the blackout occurrence. Consideration of RE and load
forecasting during events is essential for comprehensive supply
scheduling and planning.

The first stage, energy-level scheduling, aims to ensure a
continuous power supply during an event by optimizing DERs
scheduling while considering the limited energy capacity. It
prioritizes resilience optimization and energy adequacy without
considering grid code compliance.

In the second stage, SR is adjusted to satisfy grid codes andmaximize
load supply based on the first-stage power scheduling results. The first
two stages focus on steady-state planning and scheduling, without
considering operational variations. The third stage verifies the
dynamic-level capability of handling system fluctuations.

3.1 Energy-level scheduling

In the first stage, the generation scheduling of each DER within
the microgrid considers energy adequacy and grid resilience. The
input data for the generation scheduling model includes ED of
HILP, as well as the status of DERs and loads. The status of DERs
and loads must be obtained through forecasting techniques.
Objective function (Equation 17) optimizes three RI: minimum
load supply (R1), total supplied energy (R2), and recovery-to-
degradation slope ratio (R3).

Min
PDG
t,n ,PESS

t,n

R1, R2, R3[ ] (17)

This is a multi-objective optimization problem, where the
decision variables are the output powers of ESS and diesel
generators (DGs). The optimal solution is searched using a
multi-objective genetic algorithm to ensure that permitted
solutions satisfy the constraints of DERs’ equipment. The ESS
charging or discharging power (PESS

t,n ) should be less than or
equal to rated power (SPCSn ) of the power conversion system
(PCS), as expressed in (Equation 18):

In addition, ESS instant energy storage behavior conformed to
charging and discharging in continuous time intervals (Equation
19). PESS

t,n ≤ 0 represents charging. The actual energy stored in ESS is
the charging energy consumption multiplied by charging efficiency
(ηch). Conversely, during discharge (PESS

t,n ≥ 0), the released power
divided by discharging efficiency (ηdisch) represents the actual energy
consumed by battery.

The SOC of ESS is defined as ratio of the stored energy to
battery capacity, as shown in (Equation 20), where EESS

t,n and
EESS,cap
n represent the current energy stored and energy storage

capacity, respectively. To prevent overcharging or over
discharging, a battery is typically constrained to operate
within a specific SOC range, as illustrated in (Equation 21),
where SOCn

min and SOCn
max represent the minimum and

maximum SOC of the nth ESS, respectively.

PESS
t,n

∣∣∣∣ ∣∣∣∣≤ SPCSn (18)

EESS
t,n �

EESS
t−1,n − ηch · PESS

t,n ,whenP
ESS
t,n ≤ 0 charge( )

EESS
t−1,n −

PESS
t,n

ηdisch
,whenPESS

t,n ≥ 0 discharge( )
⎧⎪⎪⎪⎨⎪⎪⎪⎩ (19)

FIGURE 2
Flowchart of the proposed three-stage resilience optimal dispatch and reconfiguration strategy.
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SOCt,n � EESS
t,n

EESS,cap
n

(20)

SOCn
min ≤ SOCt,n ≤ SOCn

max (21)
For DG, the power output (PDG

t,n ) should be less than rated
capacity (SDGn ) , as shown in (Equation 22). The capacity of fuel tank
is limited, and the remaining fuel (LDGt,n ) during event decreases
because of continued power generation (Equation 23). Here, ηDG

represents the efficiency of conversion between fuel and electricity.
The remaining fuel should be above the user-defined lower limit
(LDG,min

n ) as shown in (Equation 24).

PDG
t,n ≤ SDGn (22)

LDG
t,n � LDG

t−1,n − ηDG · PDG

t,n
(23)

LDG
t,n ≥LDG,min

n (24)

Equation 25 represents the power-balance constraint, where PPV
t,n

and Pload
t,n are the power of PV generation and load, respectively.

Typically, after entering islanded mode, the original demand far
exceeds the available supply capacity of microgrid. To achieve an
immediate balance between supply and demand, the power supply
and load demand must be adjusted at any time.

∑nPV
n�1

PPV
t,n +∑nDG

n�1
PDG
t,n + ∑nESS

n�1
PESS
t,n ≤ ∑nload

n�1
Pload
t,n ,∀t ∈ T (25)

The power output from DG and ESS in this stage optimizes the
trapezoidal shape of resilience. However, energy-level scheduling
does not consider power flow analysis, leading to overly ideal results
due to the neglect of line losses. Therefore, in the second stage, grid-
level scheduling incorporates simulation analysis to correct
scheduling results and ensure feasibility.

3.2 Grid-level reconfiguration

In this stage, the objective is to minimize the disparity between
energy-level scheduling results and actual supply load by optimizing
SR while meeting the grid code. In addition, DIgSILENT power
simulation software ensured grid safety through power flow analysis.

The objective function of grid-level scheduling (Equation 26) is to
maximize power supplied while minimizing total system losses. The
total power is calculated by summing the product of importance-based
weight factor of each load and its respective demand.

Particle Swarm Optimization (PSO) is used to maximize
resilience considering load value and system losses. The PSO
algorithm adjusts the controllable switches sCBt,n in microgrid to
optimize the objective function (Equation 26), ensuring
convergence through power flow analysis. In (Equation 26), each
load Pload

t,n,p has its own weight wp . By summing up the loads of nloadp

total loads and pPrio types of weighted loads, the weighted total load
value is obtained. After subtracting the system loss losstotal obtained
through power flow analysis from the total load value, the result is
defined as the objective function value.

Max
sCBt,n

∑pPrio
p�1

wp · ∑nloadp

n�1
Pload
t,n,p

⎛⎜⎜⎝ ⎞⎟⎟⎠ − losstotal⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (26)

A schematic representation of distribution network is shown in
Figure 3. According to Kirchhoff’s voltage law, voltage (Vbus

t,b ) at bus
b equals the voltage drop across branch plus voltage (Vbus

t,b+1) at the
connected bus b + 1, as shown in (Equation 27). Ilinet,b b+1 represents
current flowing from bus b to bus b + 1 through the branch, and
zlineb b+1 represents impedance of the branch.

Vbus
t,b � Ilinet,b b+1 · zlineb b+1 + Vbus

t,b+1 (27)

The feeder impedance is a complex number comprising resistive
(rlineb b+1) and reactive (xline

b b+1) components, as shown in (Equation
28). The losses caused by feeder impedance were calculated using
(Equation 29), where rlineb b+1 represents resistive component of the
feeder impedance. Based on power conservation theorem, power
flow must satisfy the balance Equation 30 and reactive power must
be the same (Equation 31), where Pline

t,b b+1 andQ
line
t,b b+1 means the real

and reactive power flow from bus b to bus b + 1, respectively.

zlineb b+1 � rlineb b+1 + j · xline
b b+1 (28)

losslineb b+1 � Ilinet,b b+1
∣∣∣∣ ∣∣∣∣( )2 · rlineb b+1 (29)

Pline
t,b b+1 � Pbus

t,b+1 + Pline
t,b+1 b+2 + losslineb b+1 (30)

Qline
t,b b+1 � Qbus

t,b+1 + Qline
t,b+1 b+2 + Ilinet,b b+1

∣∣∣∣ ∣∣∣∣( )2 · xline
b b+1 (31)

Compliance with the grid code, including bus voltage limits
(Equation 32) and branch current limits (Equation 33), is crucial at
this stage, where Vbus,max

b and Vbus,min
b are the upper and lower limit

of bus voltage. Also, Ibus,max
b b+1 represents the current limit from bus b

to bus b + 1. DIgSILENT initializes the power generation of DG and
ESS based on the results of energy-level scheduling. The simulation
software uses Newton-Raphson method to solve the power flow
equations iteratively until system convergence, potentially resulting
in different power outputs from the initial settings.

The adjusted real and reactive power from DERs satisfy power
conservation theorems (Equation 34) and (Equation 35), where Pbus

t,b

and Qbus
t,b are the real and reactive power load at the bus b. DG

generation is subject to a rated capacity limit SDGn , as shown in
(Equation 36). Similarly, the real (PESS

t,n ) and reactive (QESS
t,n ) powers

from ESS through PCS are constrained to lower than the apparent
power capacity, SESSn , as shown in (Equation 37).

However, power systems that incorporate hybrid energy sources
involve significant uncertainty. When system operators need to
consider energy uncertainty while performing unit commitment
or economic dispatch, the interval power flow (IPF) method is
required (Zhang et al., 2023). The algorithms used to solve IPF

FIGURE 3
Schematic diagram of distribution network.
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models mainly include the interval iteration method, affine
arithmetic, optimizing-scenarios method, and central limit
theorem (Wang et al., 2024).

Most IPF methods must incorporate probabilistic statistics and
optimization techniques. Therefore, the proposed method separates
power flow and energy uncertainty into two stages. In this stage, grid-
level reconfiguration, AC power flow analysis is performed using
DIgSILENT to ensure compliance with system constraints. Energy
uncertainty is addressed in the third stage, as introduced in Section 3.3.

Vbus,min
b ≤V

bus

t,b ≤Vbus,max
b (32)

Ilinet,b b+1 ≤ Ibus,max
b b+1 (33)

∑B
b�1

Pbus
t,b + losslineb−1 b � ∑nPV

n�1
PPV
t,n +∑nDG

n�1
PDG
t,n + ∑nESS

n�1
PESS
t,n (34)

∑B
b�1
Qbus

t,b + Ilinet,b−1 b

∣∣∣∣ ∣∣∣∣( )2 · xline
b−1 b � ∑nDG

n�1
PDG
t,n (35)��������������

PDG
t,n( )2 + QDG

t,n( )2√
≤ SDGn (36)��������������

PESS
t,n( )2 + QESS

t,n( )2√
≤ SESSn (37)

3.3 Dynamic-level verification

After energy- and grid-level scheduling, the optimal DER
scheduling and SR for each time period were obtained and
confirmed to be feasible through power flow analysis. However,
practical operations often involve fluctuations that are not validated
using dynamic simulations during the first two stages.

In particular, the penetration of RE was relatively high in
islanded microgrids. Microgrids may experience system-wide
blackouts owing to excessive transient fluctuations that trigger
protection systems. Therefore, the results obtained from the first
two stages must undergo a dynamic-level analysis to ensure grid
reliability during operation.

The net load depicted in (Equation 38) using historical data
drives the microgrid fluctuations calculated using (Equation 39).
The net load fluctuation probability density function and cumulative
distribution function curves is shown in Figure 4, where PL

t and P
PV
t

represent the load and PV generation power at time t.
The VaR method applies a confidence level to evaluate net load

fluctuations against acceptable thresholds. For example, at a 90%
confidence level, the net load fluctuation at point A can be computed
using (Equation 40). A dynamic simulation was performed to assess
the system’s ability to withstand these fluctuations.

Pnet
t � PL

t − P
PV

t (38)

ΔPnet,rate
t � PL

t − PPV
t( ) − PL

t−1 − PPV
t−1( )

PL
t−1 − PPV

t−1
× 100% (39)

ΔPnet,VaR
t � PL

t − P
PV

t( ) × A

100
(40)

Islanded microgrids adjust DER output in real-time to restore
the supply-demand balance, often using droop control for frequency
regulation and power sharing. When there is a deviation between

measured frequency (fm) and nominal frequency (fn), the output
variation (ΔPref

i ) of the nth DER is adjusted by parameter (kn),
which is calculated using (Equation 41).

Frequency variation is represented by the swing Equation 42
(Hong et al., 2022), where HDG

n and SDGn denote inertia and rated
capacity of the nth generator, respectively, and fpu is system’s
nominal frequency.

The frequency variation rate (RoCoFt) and power imbalance (ΔPt)
are related. ΔPt is the difference between total mechanical power (Pm

t )
and electrical power (Pe

t ). Assuming operation at the rated frequency,
that is, fpu = 1 pu, swing equation can be simplified as (Equation 43).

ΔPref
i � − 1/kn( ) fm − fn( ) (41)

2∑HDG
n SDGn
fn

fpu · RoCoFt � Pm
t − Pe

t � ΔPt (42)

2∑HDG
n SDGn
fn

· RoCoFt � ΔPt (43)

ΔPt is a time-varying variable. Assuming a constant load during
frequency response, ΔPt represents the initial net load variation plus
responding power from power source (Presp

t ), as illustrated in
(Equation 44). The frequency deviation, a cumulative value over
time, can be derived from (Equation 43) as shown in (Equation 45):

ΔPt � ΔP0 + Presp
t (44)

Δft � ∫RoCoFt dt � ∫ ΔP0 + Presp
t( ) · fn

2∑HDG
n SDGn

dt (45)

To avoid triggering under frequency relay, the maximum
allowable frequency deviation (Δfallow) is defined as the
difference between minimum allowable frequency (fL) and
normal system frequency (f0), expressed in (Equation 46) (Hong
et al., 2022). Since it represents a frequency drop, Δfallow is negative.
The total duration spans from the event occurrence t � 0 until the
frequency reaches nadir (tL). Presp

t can be expressed as power-
ramping rate (kTotal) multiplied by total duration.

Δfallow � fL − f0 � ∫tL

0

ΔP0 + kTotal · t( ) · fn

2∑HDG
n SDGn

dt

� ΔP0 · tL + kTotal

2 · tL( )2( ) · fn

2∑HDG
n SDGn

(46)

FIGURE 4
Schematic diagram of VaR on change-rate of net-load with 90%
confidence level.
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From (Equation 46), tL can be derived as shown in (Equation 47)
(Hong et al., 2022).

tL �
−ΔP0 ±

�����������������������
ΔP0( )2 + 4Δfallow · kTotal ·∑HDG

n SDGn
fn

√
kTotal

(47)

If there are no real roots for the solution to (Equation 47),
triggering the lower limit of permissible frequency is impossible.
Therefore, the constraint that must be satisfied is given by (Equation
48). Using (Equation 48), the maximum permissible initial net load
power variation (ΔP0,allow) can be derived by (Equation 49).

ΔP0( )2 + 4 ·Δfallow · kTotal ·∑HDG
n SDGn

fn
< 0 (48)

ΔP0 <ΔP0,allow �
������������������������
−4 ·Δfallow · kTotal ·∑HDG

n SDGn
fn

√
(49)

The net load variation is calculated at a specified confidence
level, as shown in (Equation 40). If ΔPnet,VaR

t exceeds ΔP0,allow, it
indicates that, at this confidence level, the planned islanded
microgrid cannot withstand the disturbance, as confirmed by
dynamic simulations. Thus, shedding additional demand (Pshed)
is necessary, as calculated in (Equation 50).

Pshed � ΔP0,allow − ΔPnet,VaR
t

A /

100
(50)

The load-shedding selection starts with the lowest priority and
smallest power demand, accumulating to Pshed. A dynamic
simulation was conducted to ensure that frequency nadir
remained above an acceptable threshold. The third stage
concludes, and the strategy returns to second stage for SR and
analysis of the next time interval, iterating until the end of event.

4 Simulation results

4.1 System parameters

The feasibility of the proposed method was validated using the
power system of a large-scale manufacturing campus in Taiwan. The
single-line diagram of the park is shown in Figure 5, which includes
13 DGs with a total installed capacity of 458 MW. Relevant
parameters are provided in Table 3. There are 51 controllable
switches, of which 3 are normally open, and the rest are
normally closed. Some modifications were made to the PV, ESS,
and tie lines.

The actual maximum power consumption of the campus is
approximately 800 MW, with load supply prioritized into three
categories. The assumed load curves for each category are illustrated
in Figure 6A, with the priority order being Load A > B > C. The PV
power generation curve is shown in Figure 6B. HILP event assumed
a power outage from the grid at different times with varying ED to
validate the improvement in system resilience using the
proposed method.

4.1.1 Energy-level scheduling
We assumed that HILP event occurred at 6 a.m. and lasted for

6 hours. The multi-objective optimization results of the first stage

(energy-level scheduling) are shown in Figure 7A. The figure
illustrates the Pareto front of multi-objective optimization
problem. Solutions on the Pareto front are non-dominated with
respect to each other. In this study, the solution closest to the origin
is selected, namely the knee point, as a compromising result for
scheduling.

The scheduling results of compromising solution during 6-h
ED are shown in Figure 7B. It can be observed that PV generation
starts to increase around 9 a.m. Consequently, the scheduling
results show that the energy output from DGs is more
concentrated before 9 a.m. to maximize the utilization of PV
generation. This demonstrates that the first stage of scheduling
method not only considers the capacity limitations of DGs but
also adaptively adjusts to solar generation trend. However, since
the load also begins to rise after 9 a.m., even though PV
generation increases, DGs still need to maintain a certain
output to balance supply and demand.

In the optimal scheduling stage, DERs should be properly
managed during event, ideally depleting their remaining energy
just as event concludes. This approach prevents premature energy
release that could lead to a complete blackout in the later stages of
event and avoids an overly conservative scenario where excessive
energy remains unused.

Figure 7C illustrates the residual energy trajectory for each
DERs. The values for ESS are represented as SOC, while for
DGs, the values reflect the remaining fuel corresponding to
residual energy. Figure 7C demonstrates that the proposed
method nearly exhausts fuel by the end of event. Although
G1 and G10-G13 still have 30% of their energy remaining, the
actual residual energy is low due to their smaller capacity and fuel
storage space.

4.1.2 Grid-level reconfiguration results
The first-stage of energy-level scheduling only optimizes DERs

power scheduling for resilience and does not guarantee compliance
with grid code. Therefore, the second-stage SR was verified through
power flow analysis using DIgSILENT. SR consider the differences
in load importance and line losses. The results at 10 a.m. after SR
optimization are shown in Figure 8A. This diagram indicates that
the manufacturing campus can be divided into four supply zones,
namely μGrid 1 to μGrid 4.

At 10 a.m., PV generation is sufficient; therefore, the tie line
2 from 402 to 301 is closed, allowing PV to supply loads A at buses
301 and 304, as indicated by the orange blocks, μGrid 2. Figure 8B
shows the scheduling results for HILP event. It can be observed that
the ideal results from energy-level scheduling require sacrificing
some load to comply with the grid code.

Figure 8C presents the power supply ratio for each load category
at 15-minute intervals following the SR optimization. The majority
of ED, power is prioritized to critical loads A. Post 9 a.m., the
increase in PV generation is capable of meeting almost 80% of the
demand for load A. By incorporating the design of load weight
factors, SR strategy can efficiently supply most of the power to loads
A and B, thereby enhancing RI.

The proposed method is compared with two intuitive
operational methods currently used on campus and the
method from Mohan et al., 2022. The methods currently used
on campus include “Supply A” and “Supply A + B.” Due to the
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lack of tie lines, the system is divided into eight small power
supply zones during a power outage, based on the primary
transformers (TR1-TR8). Since all PV inverters are grid-
connected types, PV in non-generator zones will shut down
due to the lack of a reference voltage.

In addition to comparing with the two existing intuitive
methods, references with similar application scenarios to the

proposed method are added for comparison. Mohan et al., 2022
aims to enhance the resilience of the distribution system through
optimized energy storage scheduling. The three comparison
methods are described as follows:

• Supply A + B method: Loads category of A and B are supplied
intuitively. If power capacity or energy in each zone is

FIGURE 5
Single-line diagram of the campus system.

TABLE 3 Related parameters of the considered campus.

Generator Capacity (MVA) G1 G2 G3 G4 G5 G6 G7

14 20 30 30 30 66 66

G8 G9 G10 G11 G12 G13

66 80 14 14 14 14

Duration of rate-power output (hours) G1 G2 G3 G4 G5 G6 G7

5 4.5 4 4 4 3 3

G8 G9 G10 G11 G12 G13

3 2 5 5 5 5

PV Capacity (MWp) PV1 PV2 PV3 PV4

50 50 50 50

ESS Capacity 15 MW/ 60 MWh

efficiency Charge 98%/discharge 98%

Demand Peak load 800 MW

Load Weight A: 0.5, B: 0.333, and C: 0.166
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insufficient, the smallest loads B are gradually shed until a
balance is achieved. If shedding all loads B is still insufficient,
the smallest loads A are gradually shed.

• Supply A method: Provides power exclusively to loads A and
gradually sheds the smallest loads first if power supply ability,
including capacity or energy, is insufficient.

• Ref. method (Mohan et al., 2022): Fuzzy logic is used to control
the charging and discharging of ESS to enhance system resiliency,
considering the load importance and the SOC of ESS.

Figure 8D compares the proposed method with different control
methods. All curves represent the weighted load supply. It is evident

FIGURE 6
Daily profile of (A) load and (B) PV.

FIGURE 7
Result of energy-level scheduling (A) Pareto front (B) the scheduling result of the knee point (C) residual energy of energy resources.
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that the proposed method supplies a higher load value during event
compared to the two intuitive operational methods. Particularly, the
power supply curve after 9:00 shows that the proposed method can
supply more load by fully utilizing PV generation through system
reconfiguration compared to “Supply A” and “Supply A + B”.
Compared to “Supply A + B”, “Supply A” delays load shedding
until 09:15 by shedding load B.

Moreover, since the method from Mohan et al. (2022) also
considers PV generation and load importance, the weighted power
supply curve is similar to that of the proposed method. However,
“Ref. method” only considers ESS charge and discharge control and
lacks the energy-level scheduling present in the proposed method.
Therefore, during HILP, the proposed method optimizes energy
allocation based on resilience index.

The comparison of RI for the four scenarios is listed in Table 4. It
is evident that the proposed method outperforms the intuitive
operational methods. Additionally, since R2 incorporates the
weight of demand, it is clear that the proposed method
prioritizes supplying loads with higher value. Although the
proposed method performs slightly worse than “Ref. method” in
R1, this is a trade-off characteristic of Pareto solutions in multi-
objective optimization.

R3 represents the recovery over degradation slope ratio. The
proposed method outperforms the other methods, indicating its

ability to mitigate the rate of power reduction and accelerate the
restoration of power supply. Additionally, the comparison of
“Supply A”, “supply A + B” and “Ref.” methods across three RI
reveals that a single indicator is insufficient for evaluating grid
resilience. A comprehensive set of indicators should be used to assess
resilience based on the needs of operator.

4.1.3 Grid-level reconfiguration results
The grid-level reconfiguration ensures that steady-state

operating conditions satisfy the grid codes. However,
uncertainties in load and PV can lead to net load fluctuations,
potentially causing stability issues in islanded microgrids. In other
words, microgrid must be able to ride through the fluctuations
caused by loads and RE.

In this study, VaR method was adopted, with a confidence level
of 97.5%, corresponding to a VaR of 2.5%. This is approximately
equivalent to a net load variation of 10%. Therefore, through
dynamic simulation, a 10% net load variation is applied to the
four μGrids obtained by the second stage. The system architecture
diagram of the four μGrids is shown in Figure 8A, respectively
represented by different colors. Dynamic simulation was performed
on each μGrid to confirm whether the respective minimum
frequency dropped below 59.5 Hz. If it does, it indicates that
when VaR = 2.5%, a μGrid may trigger low-frequency protection

FIGURE 8
Grid-level reconfiguration results of six-hour HILP event (A) Microgrid partition (B) Scheduling results (C) Power supply ratio (D) Weighted power
supply with different dispatch methods (Mohan et al., 2022).
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due to net load fluctuations. In other words, the current solution still
requires some load shedding to ensure stability.

Taking 10 a.m. as an example, Figure 9 depict the simulation
results of a 10% instantaneous net load surge occurring at 60 s for
four μGrids. Figure 9A shows the simulation results for μGrid 1. The
frequency nadir was 59.46 Hz, which triggered a low-frequency
relay. The system may enter a blackout state, indicating that μGrid
1 cannot withstand a 10% net load fluctuation. According to (50),
the shedding requirement of μGrid 1 should be at least greater than
Pshed. The final shedding value was determined to be 4.8 MW owing
to the nonlinear shedding behavior of breakers. After shedding, a
10% net load fluctuation resulted in frequency nadir of 59.61 Hz,
ensuring that low-frequency protection was not triggered.

Figure 9B shows the simulation results for μGrid 2. Under the
original load conditions, with confidence level of 97.5%, frequency
nadir was 59.45 Hz. Shedding 5.23 MW was necessary to increase
frequency nadir to 59.52 Hz. In μGrid 3, there are more PV system
connected. After experiencing a 10% net load fluctuation, frequency
nadir falls below 59.5 Hz, as shown in Figure 9C. It is worth noting
that the activation of low-frequency protection will cause the PV
system to disconnect, as shown in Figure 9D. This will exacerbate the
supply-demand imbalance during the transient period.
Consequently, the frequency further accelerates downward to
58.2 Hz. Through simulation verification,μGrid 3 needs to shed
13.15 MW of load to ensure the system can withstand net load
fluctuations at a 97.5% confidence level.

TABLE 4 Resilience indices of HILP event (Mohan et al., 2022).

Supply A+B Supply A Ref. Proposed

6-hour HILP event

R1(Min. supply load) 16.02 % 20.15% 50.82 % 41.98 %

R2 (Total energy supplied) 34.33 % 32.75 % 49.58 % 52.28 %

R3(Re-de slope ratio) 0.19 0.35 0.23 0.50

8-hour HILP event

R1(Min. supply load) 0 % 16.32% 0 % 34.29 %

R2 (Total energy supplied) 33.25 % 31.80% 39.56 % 49.28 %

R3(Re-de slope ratio) 0 0 0 0.31

FIGURE 9
Dynamic-level verification result under confidence-level 97.5% at 10 a.m. (A) μGrid one frequency (B) μGrid 2 frequency (C) μGrid 3 frequency (D) PV
power in μGrid 3 (E) μGrid 4 frequency (F) ESS power in μGrid 4.
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In addition to DGs and PV units, μGrid 4 was connected to ESS.
If ESS operates under fixed-power control, μGrid 4 cannot withstand
a 10% net load fluctuation. The frequency nadir drops to 59.14 Hz,
as shown in Figure 9E. A further reduction of 34.3 MW in supply
power is required to increase frequency nadir to 59.75 Hz.

The addition of VSG control to ESS helps increase the inertia of
the grid, enhancing the ability of microgrid to handle sudden
fluctuations in net load. When the frequency suddenly decreases,
ESS with VSG control can provide instant power to support system
frequency, as shown in Figure 9F. As shown in Figures 9E, F, when
there is a sudden increase in net load, the ESS with VSG control will
instantly increase its output to support the frequency. Based on the
simulation, VSG control effectively increases frequency nadir to
59.69 Hz without additional load shedding. Other frequency control
methods may have similar effects; however, this study merely used
VSG (Long et al., 2021) as a demonstrative case for analysis.

From the above results, it is evident that Grid-level
reconfiguration generally does not consider transient system
fluctuation issues. Through dynamic-level verification, it is
possible to plan for a higher level of supply stability within an
islanded area. Taking the event at 10 a.m. as an example, the
originally planned load supply was 646 MW.

However, considering 97.5% confidence level for the net load
fluctuations, an additional shedding of 57.48 MW was required,
which is equivalent to reducing the supply by 8.9% to ensure system
stability. If ESS with VSG control, the shedding requirement decreases
to 23.18 MW, thereby reducing the curtailed load from 8.9% to 3.59%.

4.2 Eight-hour HILP event

To verify the feasibility of the proposed method, different HILP
events were assumed to occur in the campus. The HILP event occurs
at 12 p.m. and lasts for 8 h. Due to limited oil storage capacity and
PV generation dropping to zero after 6:00 p.m., the 8-hour incident
poses a challenge to the power supply. If the load is not properly
scheduled, the system will experience blackouts, resulting in
additional restart costs.

Figure 10 shows the weighted power supply curves for the 8-
hour HILP event under different methods described in Section 4.2.2.
“Supply A”, which only supplies loads A, does not result in a
complete blackout during the event, but the total power supply is
significantly lower. Both “Supply A + B” and “Ref. Method”
experience total blackouts after PV generation ceases because
they lack the energy-level scheduling of the proposed method.

Additionally, Table 4 lists the RI for different scheduling
methods. When the HILP incident becomes more severe, the
proposed method demonstrates a more significant advantage over
other methods. The fact that R1 is zero indicates that both “Supply A
+ B” and “Ref. method” lead to total blackouts. Although “Supply A”
avoids a complete blackout, the proposed method improves R2 by
55% compared to “Supply A”.

The proposed method shows significant improvements across
all three indicators. In addition to preventing blackouts, the
minimum power supply increases from 68 MW with the “Supply
A” method to 177 MW. Compared to other methods, the first stage
of energy reservation in this method enhances the system’s
resilience.

4.3 Sensitivity analyses

In the proposed three-stage resilience enhancement method, ED is
required as an input for the first stage. However, actual situations often
differ from expectations. To validate the practical feasibility of the
proposed method, this paper conducts grid resilience enhancement
planning based on HILP event of 6 h ED. Compare the method
proposed with “Supply A + B” and “Supply A” methods to examine
the impact on RI when actual ED differs from originally set duration.

As shown in Figure 11, the proposedmethod outperforms the other
two methods across all three RI. Since R1 is defined as the minimum
load supplied, it primarily indicates system’s robustness.R1 isminimally
affected by ED, as it relates more to system’s ability tomaintain essential
loads during disruptions. Therefore, when ED is shorter than expected,
it does not affect the value ofR1, as illustrated in Figure 11A.However, if
the actual duration exceeds the expected time, the initially planned
energy may become insufficient towards later stages of the event,
potentially leading to a decrease in R1.

When ED is 8 hours, R1 decreases from 40% to 36%. The
“Supply A” and “Supply A + B” methods intuitively supply critical
loads without optimal planning based on system topology and PV
generation. Consequently, when ED exceeds 7.5 h, some units in the
traditional control methods deplete their energy, resulting in a
supply load lower than the initial minimum load, thereby
reducing R1. Particularly, “Supply A + B” method leads to a
complete blackout, which can be found by R1 equal to 0.

This mismanagement of energy is even more evident in R2. As
shown in Figure 11B,R2 for “SupplyA” and “SupplyA+B” are inversely
proportional to ED. The proposed method, within the scheduled
duration of 6 hours, utilizes available energy efficiently, leaving only a
small amount of residual energy in minor DGs due to topological
constraints. Therefore, even if ED extends, the supplied energy is not
significantly impacted. Instead, when the duration exceeds expectations,
R2 value only slightly decreases, from 53% to 50%, because the energy
planned for later stages is not fully utilized before the event ends.

The R3 represents the ratio of recovery to degradation slopes.
The degradation phase primarily tests system’s robustness, thus it is
less sensitive to ED. In other words, the denominator of R3 remains

FIGURE 10
Weighted power supply of eight-hour HILP event with different
dispatch methods (Mohan et al., 2022).
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almost unchanged in this sensitivity analysis. However, shorter
actual ED correspond to shorter recovery times, which positively
impacts R3 since recovery slope is in the numerator.

Conversely, if actual ED exceeds the expected length, the
recovery slope does not change significantly. However, if the
duration surpasses a certain threshold, such as more than 1.5 h
in this case, the insufficient energy in later stages may result in a loss
of recovery capability, as shown in Figure 11C.

The above analysis indicates that the proposed scheduling
method outperforms traditional “Supply A” and “Supply A + B”
methods under varying ED. The actual duration significantly
influences RI. Furthermore, optimal energy scheduling can
prevent microgrid from entering a complete blackout. However,
if ED significantly exceeds expectations and depletes energy sources,
even optimized scheduling may not improve R1 and R3.

5 Conclusion

This study proposes composite resilience indices for a user-side
microgrid, considering load priority, the speed of supply decline and
recovery, and energy shortages. Additionally, a three-stage optimal
dispatch and reconfiguration strategy for resilience is proposed,
analyzing aspects such as energy supply and demand, system steady-
state, and dynamic-state constrains. A feasible scheduling strategy
was obtained by integrating DIgSILENT simulations.

Furthermore, the proposed method can schedule heterogeneous
resources to optimize RE utilization. The integration of load and RE
forecasting techniques can be considered for future work. Dynamic-
level validation ensures that the protection system is not triggered by
net load fluctuations within appropriate risk tolerance levels. The
introduction of VSG in ESS reduces the need for demand shedding
at the same desired risk level.

Compared with the existing “supply A” method, simulation
results show that the proposed method increases the minimal power
supply (R1), supplied energy (R2), and recovery-degradation slope
ratio (R3) by 21.83%, 19%, and 1.5, respectively. For an 8-hour HILP
event, “supply A + B” and “Ref.” method would experience a
complete blackout, whereas the proposed method remains superior.

Sensitivity analysis of ED uncertainty indicates that the
proposed method maintains its advantage over existing methods
even with changes in ED. Moreover, when there is a discrepancy
between expected and actual ED, the proposed method still
outperforms the existing methods in all RI. The approach
proposed in this study not only provides more feasible
scheduling solutions for the user-side microgrid to cope with
HILP events but also significantly enhances system resilience.
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