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A virtual power plant (VPP) has the ability to aggregate numerous decentralized
distributed energy resources using advanced control technology, offering a
promising approach for low-carbon development. In order to enhance the
VPP’s contribution to reducing carbon emissions, a bi-level framework is
proposed that incorporates an integrated energy-carbon price response
mechanism. This model allows VPPs to participate in a multi-energy system
through amulti-agent Stackelberg game framework. Initially, a transactionmodel
is established where the power distribution system operator and the gas
distribution system operator act as leaders, while the virtual power plant
operator acts as a follower in the multi-energy system. Subsequently, an
integrated energy-carbon pricing method, rooted in carbon emission flow
theory, is introduced to encourage VPPs to proactively adjust their energy-use
and trading strategies within multi-energy systems, thereby promoting multi-
principal interactive trading. To achieve a distributed solution among multiple
entities while maintaining the privacy of each entity’s information, the adaptive
step-size alternating direction multiplier method is employed. The feasibility and
effectiveness of the proposed model and method are then demonstrated
through case studies.
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1 Introduction

The construction of a new type of power system primarily based on new energy
resources is being accelerated, emphasizing both centralized and distributed energy
resources. However, distributed energy resources (DERs), characterized by strong
uncertainty, decentralization, and heterogeneity (Chen et al., 2021), pose significant
threats to the security of grid-connected power systems due to their large numbers.
Virtual power plants (VPPs) are widely employed to effectively aggregate large,
dispersed, and diverse DERs through advanced control, metering, communication, and
other technologies (Vasirani et al., 2013; Zhao et al., 2018; Bhuiyan et al., 2021). This
facilitates accurate control of internal resources, providing a viable pathway for low-carbon
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development. In the context of the interactive integration of multiple
energy systems (Wang et al., 2018), VPPs participating in both the
power distribution and gas distribution systems can leverage the
complementary characteristics of electricity and gas. This enables
the realization of synergistic operations within a multi-energy
network, enhancing the economic efficiency and promoting low-
carbon objectives for all stakeholders involved.

To advance the role of VPPs in the low carbon economy, several
research studies have been conducted. Previous works in (Zhang
et al., 2023) examine the interactions between VPPs and the higher-
level grid based on peak and off-peak time-sharing tariffs. It also
developed an operational model for VPPs under carbon trading and
green certificate trading mechanisms, considering both economic
and low-carbon aspects. Reference (Yi et al., 2020a) addresses power
flow constraints in the distribution network by formulating a two-
layer planning problem involving VPPs and the distribution
network, optimizing dynamic pricing for VPPs. Reference (Yi
et al., 2020b) proposes a two-layer model for VPPs and the
distribution system, achieving co-optimization of multiple VPPs
with the distribution network through an integrated active and
reactive power pricing approach. These studies primarily focus
on transaction pricing strategies for VPPs in the distribution
market, with an increasing involvement of VPPs in multi-energy
system transactions due to the close integration of various energy
systems. Reference (Yang et al., 2021) introduces a model for energy
trading in micro-energy networks that considers electricity-heat
multi-energy sharing, ultimately reducing energy costs for multi-
energy micro-grids. Additionally, works in (Zhang and Hu, 2022)
suggest an optimal scheduling model for VPPs to engage in
simultaneous trading within the electricity-gas multi-energy
market, considering security constraints of the natural gas
network and bidirectional flow of electricity and natural gas.
However, the majority of these studies view VPPs predominantly
as passive recipients of energy prices, ignoring their potential for
active participation in multi-energy system trading and interactions
with other entities.

With the advancement of VPP technology, conflicts of
interest stemming from the involvement of various entities in
competitive multi-energy markets have become inevitable. Game
theory is increasingly being utilized to address optimization
problems related to VPPs. In (Xu et al., 2022), a VPP pricing
strategy is proposed within a two-tier market structure involving
multiple VPPs and distribution markets. A non-cooperative
pricing game model is established to enhance the economic
efficiency of multiple entities. Meanwhile, Reference (Liu,
2022) introduces a cooperative game model for VPP
scheduling in the context of multiple regional integrated
energy systems. This model aims to optimize multiple energy
sources to meet the electricity-heat-gas demand of each
integrated energy system within the VPP coordinated
scheduling strategy, fostering cooperative benefit sharing
among members. In analyzing the intricate interactions among
providers and responders of energy prices across multiple entities
in multi-energy system transactions, a master-slave game model
is deemed more appropriate for understanding the sequential
order of the game. The research in (Zangeneh et al., 2018) adopts
a multi-leader-follower master-slave game model to describe the
competition between multiple VPPs and the superior market,

determining the optimal pricing strategy for multiple parties to
realize optimal transactions for each entity. The study in (Wei
et al., 2017) investigates multi-energy interaction transaction
strategies between multiple distributed energy stations and
users by constructing an energy transaction model based on a
multi-leader-multiple-follower game. A model in (Chen et al.,
2023) constructs a Stackelberg game trading model involving
energy retailers and VPPs, where the energy operator guides the
power purchase and sale behavior of VPP through tariff
optimization. Research in (Lu Q. et al., 2023) proposes a one-
master-many-slave game optimization model for community
integrated energy systems, considering carbon trading
mechanisms and integrated demand response, which realizes
interactive equilibrium between energy suppliers and load
aggregators, significantly improving the economic and low-
carbon benefits of each entity.

However, there are still research gaps in the above studies, which
are mainly manifested in the following two aspects: 1) Existing
studies on low-carbon operation of VPPs primarily focus on carbon
emission measurement from the power supply side, with less
emphasis on the demand side. This limitation hinders the ability
to guide load-side low-carbon electricity consumption behavior.
Carbon emission flow (CEF) theory, as an effective analytical
method for the low-carbon development of power systems
(Cheng et al., 2019a; Cheng et al., 2019b; Sun et al., 2023), offers
new perspectives on load-side carbon emission responsibility
sharing and facilitates low-carbon demand response. Studies (Lu
Z. et al., 2023; Yan et al., 2023) have proposed low-carbon optimal
dispatch models for multi-energy systems based on CEF theory.
These models implement carbon-aware distribution locational
marginal pricing (CDLMP) and stepped carbon pricing to
actively guide loads in reducing system carbon emissions. 2) The
measurement methods of VPP carbon emissions in existing studies
are not sufficiently accurate. Most studies only consider the internal
carbon emissions of VPPs, neglecting the indirect carbon emissions
resulting from purchasing electricity from the higher grid and gas
from the gas grid. Furthermore, the purchase and sale of energy are
usually based on fixed or time-based pricing, which does not account
for the significant potential of integrated energy-carbon pricing to
reduce VPP carbon emissions.

This paper proposes a bi-level model that optimizes a multi-
agent Stackelberg game with VPP participation in multi-energy
systems under an integrated energy-carbon price response
mechanism. In this model, the distribution system operator
(DSO) and gas system operator (GSO) act as leaders, while the
VPP operator (VPPO) acts as a follower. The model focuses on
VPP participation in a multi-energy system under the energy-
carbon integrated price response mechanism. The paper also
introduces an integrated energy-carbon pricing method based
on CEF theory to help VPPs adjust their energy consumption
and trading strategies to reduce carbon emissions. The study
includes carbon flow tracking for distributed VPP energy
transactions, taking into account the carbon emission
responsibilities of VPPs when purchasing electricity and natural
gas. To ensure privacy, the adaptive step-size alternating direction
method of multipliers (ADMM) is used for a distributed solution.
The effectiveness of the proposed model and method is
demonstrated through case analysis.
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2 Electric-gasmulti-energy system and
VPP low-carbon operation bi-
level framework

The study aims to develop a low-carbon economic operational
model suitable for power distribution networks, gas distribution
networks, and VPPs. Due to conflicting objective functions among
the three stakeholders, i.e., DSO, GSO, and VPPO, and the presence
of multiple variables, a bi-level model for the interactions between
multi-energy systems and the VPP considering integrated energy-
carbon pricing is proposed. The transaction dynamics between DSO,
GSO, and VPPO are modeled as a multi-agent Stackelberg game,
where DSO and GSO are considered as the leaders and VPPO as the
follower. The bi-level transaction framework is illustrated
in Figure 1.

The upper level features the optimal scheduling model for
the electricity-gas multi-energy system. The DSO and GSO
calculate the optimal power flow (OPF) for the power
distribution network and the gas distribution network based
on the energy purchasing demand transmitted from the lower
level. Their objective is to minimize the total operating cost for
each of them. They also integrate the distribution network
trends to solve the distribution of the CEF and formulate the
integrated energy-carbon price. For energy pricing, this paper
adopts the locational marginal electricity price (LMEP) and
locational marginal gas price (LMGP). The decision
information derived from this process is then provided back
to the lower-level model.

The follower VPP at the lower level responds to the integrated
energy-carbon price information by optimizing the energy use of
internal gas turbine CHP units, gas boilers, power storage
equipment, and distributed wind power, with the goal of
minimizing the total operating cost. The VPP develops the
internal optimal scheduling strategy and uploads the power
purchasing demand and gas purchasing demand information to
the upper-level DSO and GSO, respectively.

In summary, the power distribution network and the gas
distribution network optimize OPF and CEF based on the energy
purchase demand of the VPP and its internal optimization results.
They then pass the integrated energy-carbon price and node carbon
intensity obtained from the solution back to the VPP. The VPP uses
this information to formulate the latest internal optimization
scheduling strategy and update its energy purchase demand. This
iterative process continues until the transactions of each subject in
the bi-level model reach a consensus and meet the convergence
conditions, thus achieving the overall optimal operation of the
power distribution network, gas distribution network, and VPP.

3 A bi-level formulation for energy
transaction

Since DSOs, GSOs, and VPPOs represent different stakeholders,
it is essential to establish transaction models for each party that
consider the interaction of electricity and natural gas between the
distribution and the VPP. This includes the energy pricing model of

FIGURE 1
A bi-level framework for electric-gas multi-energy systems and VPP transactions.
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the upper-tier electricity-gas multi-energy system, the carbon
pricing model, and the lower-level VPP energy optimization model.

3.1 Energy pricing modeling for electric-gas
multi-energy systems

3.1.1 Pricingmodel for power distribution networks
In this section, the LMEP pricing model for power distribution

networks based on second order cone programming (SOCP) is
constructed with the objective of minimizing the operating cost of
power distribution networks (Xie et al., 2023; Xie et al., 2024).

3.1.1.1 Objective function
The objective of the DSO is to minimize the total operating cost

fDSO of the power distribution network, including the cost Cb
t of

coal-fired unit generation and the cost Cgrid
t of purchased power

from the higher grid, as presented in Eqs 1–3 as follows:

minfDSO � ∑T
t�1

Cb
t + Cgrid

t( ) (1)

Cb
t � ∑

g∈G
ag Pg,t( )2 + bgPg,t + cg( ) (2)

Cgrid
t � λgridt Pgrid

t (3)
where T is the total number of scheduling hours; G is the set of coal-
fired units in the distribution network; ag, bg and cg are the
generation cost coefficients of the coal-fired units g; Pg,t is the
active power output of the units at the moment t; λgridt is the selling
price of the higher-level grid at the moment t; and Pgrid

t is the active
power purchased by the DSO from the higher-level grid at the
moment t.

3.1.1.2 Power system constraints

∑
g∈n

Pg,t + ∑
w∈n

Pwind
w,t + Pgrid

t − Pbuy
t � PL

n,t + ∑
b n,·( )∈n

PDN
b,t

− ∑
l ·,n( )∈n

PDN
l,t − al,trl( ): λLMEP

n,t

n ∈ NDN

(4)∑
g∈n

Qg,t + Qgrid
t − ηPbuy

t � QL
n,t + ∑

b n,·( )∈n
QDN

b,t − ∑
l ·,n( )∈n

QDN
l,t − al,txl( )

(5)
PDN
b,t( )2 + QDN

b,t( )2 ≤ S2l (6)
PDN
l,t − al,trl( )2 + QDN

l,t − al,txl( )2 ≤ S2l (7)
PDN
l,t( )2 + QDN

l,t( )2 ≤ al,tUn′,t (8)
Un′,t − 2 rlP

DN
l,t + xlQ

DN
l,t( ) + al,t r2l + x2

l( ) � Un,t (9)
U2

min ≤Un,t ≤U2
max (10)

Pg,min ≤Pg,t ≤Pg,max

Qg,min ≤Qg,t ≤Qg,max
{ (11)

where g ∈ n , w ∈ n denotes the coal-fired unit g and fan w
connected to node n, respectively; b(n, ·) ∈ n denotes the line

injected from node n to other nodes, denoted as b; l(·, n) ∈ n
denotes the branch l injected from other nodes to node n,
respectively; NDN is the set of nodes in the distribution network;
Pwind
w,t is the active power output of fan w at the moment t; Pbuy

t is
the purchased power of VPP to the distribution network at themoment
t; PL

n,t,Q
L
n,t are the active and reactive power loads connected to node n

at the moment t, respectively; PDN
b,t , P

DN
l,t , QDN

b,t , Q
DN
l,t are the active and

reactive power flowing through lines b and l at time t, respectively; al,t
denotes the square of the current of branch l at time t; rl, xl are the
resistance and reactance of branch l, respectively; λLMEP

n,t is the dyadic
variable corresponding to the active power balance constraint; Qg,t is
the reactive power output of coal-fired unit g at time t; Qgrid

t is the
reactive power purchased by the distribution network from the higher-
level grid at time t; η denotes the power factor of the loads; Un,t is the
square of the magnitude of the node n at time t; Sl is the upper limit of
the apparent power of line l;Umin,Umax are the lower and upper limit of
the magnitude of the node voltage, respectively; Pg,min, Pg,max, Qg,min,
Qg,max are the lower and upper limit of the active and reactive power
output of unit g, respectively. Eqs 4, 5 represent the nodal active and
reactive power balance constraints. Eqs 6, 7 represent the power flow
limits in each line. Eq. 8 represents convex SOC relaxation to the
original equality of the apparent power. Eq. 9 is the forward voltage
drop equation. Eq. 10 is the limits of the nodal voltage. Eq 11 represents
the generator active and reactive output constraints.

3.2 Pricing model for gas
distribution networks

This section constructs a SOCP-based LMEP pricing model for
gas distribution networks with the objective of minimizing the gas
distribution network operating costs.

3.2.1 Objective function
The gas distribution network consists of the gas source, gas

pipeline, air compressor, and gas load, and in this paper it is assumed
that the flow of natural gas in the gas pipeline has been determined.
The objective of the GSO is to minimize the operating cost fGSO of
the gas distribution network, i.e., to minimize the cost of natural gas
purchased by the GSO from the natural gas company, which is
expressed in the Eq. 12 as follows:

minfGSO � ∑T
t�1

∑
s∈Ns

ywell
s,t w

well
s,t

⎛⎝ ⎞⎠ (12)

where ywell
s,t , wwell

s,t are the price and volume of gas purchased by the
GSO from gas source s at time t, respectively; Ns is the set of
gas sources.

3.2.2 Gas system constraints

∑
s∈j

wwell
s,t + ∑

ij∈z j( )
wij,t − ∑

jk∈v j( )
wjk,t − wload

j,t − wbuy
t � 0: λLMGP

j,t

j ∈ NGN

(13)

wij,t � sign πi,t − πj,t( )Cij

�������������
πi,t( )2 − πj,t( )2∣∣∣∣∣ ∣∣∣∣∣√

(14)
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wij
min ≤wij,t ≤wij

max (15)
πj

min ≤ πj,t ≤ πj
max (16)

πj,t ≤ kπi,t (17)
ws

min ≤wwell
s,t ≤ws

max (18)

where s ∈ j denotes the natural gas source s at node j; z(j) is the set
of pipelines at the end node j; v(j) is the set of pipelines at the first
node j; NGN is the set of nodes in the distribution network; wij,t,
wjk,t are the amount of natural gas flowing through the pipelines ij
and jk, respectively, at time t;wload

j,t is the gas load at node j of the gas
distribution network; wbuy

t is the amount of natural gas purchased
from the gas distribution network by the VPP, respectively, at time t;
λLMGP
j,t is the dyadic variable corresponding to the natural gas node
flow equilibrium constraints; πi,t and πj,t are the pressures at nodes i
and j at time t, respectively; Cij is the pipeline transmission
characteristic parameters; wij

max, wij
min are the upper and lower

bounds on the amount of natural gas to be transmitted by the
pipeline; πj

max, πj
min are the upper and lower bounds on the gas

pressure at node j, respectively; k is the compressor coefficients;
ws

max, ws
min are the upper and lower bounds on the output of the

natural gas source s, respectively. Eq 13 is the natural gas node flow
balance constraint. Eq 14 is the Weymouth equation (Chen et al.,
2019) for the pipeline gas flow, where sign(·) is a sign function that
one when πi,t ≥ πj,t and −1 otherwise. Eq 15 is the gas network
pipeline flow limit. Eqs 16, 17 denote the natural gas nodal pressure
constraints. Eq. 18 denotes the gas supply constraints of gas wells.

3.3 Carbon pricing model for multi-energy
systems based on CEF theory

3.3.1 CEF modeling for multi-energy systems
While most of the CO2 in the energy industry is generated on

the source side, the ultimate driver of carbon emissions is on the load
side. The focus of this paper is on how to price carbon emissions
from generation to end-users so that the right incentives can be
provided between electricity-gas multi-energy systems. The theory
of CEF, which is based on the energy flow of the system, can
intuitively characterize the flow direction of carbon emission
during the system operation, and improve the new analysis
perspective for the low-carbon economic dispatch (Cheng et al.,
2020). In the CEF model, the carbon flow index is usually used to
describe the carbon emission apportionment, this paper mainly
needs to obtain the carbon intensity of each node of the electric-gas
multi-energy system as a carbon signal, and through the carbon tax
to establish the link between the carbon price and the node carbon
intensity accessed by the VPP, and the CEF model is established
as follows.

3.3.1.1 CEF modeling of power distribution networks
The node carbon intensity represents the value of carbon

emissions equivalent to the generation side caused by a unit of
electricity consumed at that node, calculated in Eq. 19 as follows:

eelen,t �
∑
g∈n

Pg,teg + ∑
l ·,n( )∈n

PDN
l,t − al,trl( )ρl,t

∑
g∈n

Pg,t + ∑
w∈n

Pwind
w,t + ∑

l ·,n( )∈n
PDN
l,t − al,trl( ) (19)

where eelen,t, ρl,t denote the nodal carbon intensity of node n and the
carbon flow intensity of branch l at time t, respectively; eg is the
carbon emission intensity of coal-fired unit g.

The branch carbon intensity denotes the equivalent value of
carbon emission on the generation side caused by a unit of
electricity transmitted by a tributary. According to the
proportional sharing principle (Kang et al., 2015), the carbon
flow intensity of all transmission lines flowing from node n is
equal to the carbon intensity of that node, which is expressed in Eq.
21 as follows:

ρl,t � eelen,t,∀l n, ·( ) ∈ n (20)

3.3.1.2 CEF modeling of gas distribution networks
The gas distribution network CEF model is similar to that of the

power distribution network, and the carbon intensity of each node
and the branch carbon intensity are calculated as follows:

egasj,t �
∑
s∈j

wwell
s,t e

well
s + ∑

ij∈z j( )
wij,tρij,t

∑
s∈j

wwell
s,t + ∑

ij∈z j( )
wij,t

(21)

ρij,t � egasi,t ,∀ij ∈ z j( ) (22)

where egasj,t is the carbon intensity of node j of the gas network at time
t; ρij,t is the carbon flow intensity of the gas flow into pipeline ij of
the pipeline connected to node j at time t; ewells is the carbon
emission intensity of the gas source s connected to node j.

3.3.1.3 An integrated energy-carbon pricing approach
based on the CEF theory

As consumers, the VPP must acknowledge their carbon
emission responsibility when procuring electricity and gas
from the power distribution and gas distribution networks. By
utilizing the CEF model to calculate the nodal carbon intensity of
these networks, a connection is established between the carbon
price and nodal carbon intensity through carbon tax.
Subsequently, the integrated electricity/gas energy-carbon
pricing method is developed by combining the LMEP/LMGP
with the carbon price in Eqs 23, 24 as follows:

ςelen,t � λLMEP
n,t + τeelen,t,∀n, t (23)

ςgasj,t � λLMGP
j,t + τegasj,t ,∀j, t (24)

where ςelen,t is the integrated electricity-carbon price at node n of the
power distribution network at time t; ςgasj,t is the integrated gas-
carbon price at node j of the gas distribution network at time t; τ is
the carbon tax. The integrated energy-carbon pricing system
encourages VPPs to proactively adjust their energy purchases and
internal scheduling strategies, leading to reduced carbon emissions
and operating costs.

3.4 VPP energy optimization model

The operational framework of the VPP established in this
study is illustrated in Figure 2. It comprises gas turbine combined
heat and power (CHP) units, gas boilers, distributed wind power,

Frontiers in Energy Research frontiersin.org05

Yan et al. 10.3389/fenrg.2024.1459667

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1459667


and energy storage units. The flexible loads encompass electric and
thermal loads, with consideration given to demand response for
both to assist users in making informed energy demand
adjustments. The VPP interfaces with the power distribution
network via an electric power contact line and transports
natural gas through a pipeline connecting it to the gas
distribution network. Notably, this paper does not address the
scenario of natural gas sales to the GSOs at this time.

3.4.1 VPP Objective Function
The objective of the VPP energy optimization model is to

minimize the total operating cost fVPPO in Eqs 25–28 as follows:

minfVPPO � ∑T
t�1

Cele,buy
t + Cgas,buy

t + CDR
t( ) (25)

Cele,buy
t � ςelet Pbuy

t (26)
Cgas,buy

t � ςgast wbuy
t (27)

CDR
t � λcute Pcut

t + λtrane Ptran
t + λcuth Hcut

t (28)
where Cele,buy

t is the cost of electricity purchased by VPP
interacting with the power distribution network; Cgas,buy

t is the
cost of natural gas purchased by VPP from the gas distribution
network; CDR

t is the cost of integrated demand response of
electricity and heat in VPP; Ptran

t , Pcut
t denotes the amount of

electric load transfer and load reduction in VPP at time t,
respectively; Hcut

t denotes the amount of heat load reduction
in VPP at time t; λcute , λtrane are the unit price of compensation for
electric load reduction and transfer; λcuth denotes the unit price of
compensation for heat load reduction.

3.4.2 VPP operational constraints
3.4.2.1 Power balance constraints

The power balance constraints for multiple energy flows within
the VPP are given in Eq. 29 as follows:

PCHP
t + PWind

t + PES,dis
t + Pbuy

t � PES,cha
t + Pload

t

HCHP
t +HGB

t � Hload
t

wbuy
t � wGT

t + wGB
t

⎧⎪⎪⎨⎪⎪⎩ (29)

where PCHP
t ,HCHP

t are the power supplied by the gas turbine and the
heat production power at time t, respectively; PWind

t is the actual
output of renewable energy at time t; PES,cha

t , PES,dis
t are the charging

and discharging power of the electrical energy storage at time t; Pload
t ,

Hload
t are the amount of load after the demand response of electric and

thermal loads at moment t;HGB
t is the gas boiler heat power at time t;

wGT
t , wGB

t are the amount of natural gas input to the gas turbine and
gas boiler at moment t, respectively.

3.4.2.2 Gas turbine CHP unit constraints
The mathematical model and constraints for power and heat

supply of CHP units are in Eq. 30 as follows:

PCHP
t � ηCHP

P

LCH4

QEH
wGT

t

PCHP
min ≤PCHP

t ≤PCHP
max

HCHP
t � ηCHP

H

LCH4

QEH
wGT

t

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(30)

where ηCHP
P , ηCHP

H are the gas turbine power supply efficiency and
heat production efficiency; LCH4 is the calorific value of natural gas
per unit volume; QEH is the thermal energy converted per unit of
electrical energy; PCHP

max , P
CHP
min are the upper and lower limits of the

power supply of the gas turbine.

3.4.2.3 Gas boiler output constraints

HGB
t � ηGB

LCH4

QEH
wGB

t

HGB
min ≤HGB

t ≤HGB
max

⎧⎪⎪⎨⎪⎪⎩ (31)

FIGURE 2
VPP operational framework.
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where ηGB is the electric heat conversion efficiency of the gas boiler;
HGB

max ,H
GB
min are the upper and lower limits of the heat output of the

gas boiler in the VPP, respectively. Eq. 31 represents the operating
constraints of GB.

3.4.2.4 Energy storage unit constraints
The introduction of energy storage devices can further improve

the operational flexibility of the VPP, the energy storage device is
modeled in Eq. 32 as follows:

St � 1 − ηloss( )St−1 + ηchaPES,cha
t − PES,dis

t

ηdis

S1 � S24

0≤PES,cha
t ≤ μES,chat P ES,cha

max

0≤PES,dis
t ≤ μES,dist P ES,dis

max

μES,chat + μES,dist ≤ 1

S min ≤ St ≤ S max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(32)

where St is the capacity of the energy storage device in the VPP at
time t; ηloss, ηES,cha, ηES,dis are the energy storage device energy loss
coefficient, energy charging and discharging efficiency; where
ηloss ≪ 1; P ES,cha

max , P ES,dis
max are the maximum charging and

discharging power of the energy storage device; S min, Smax are
the minimum and maximum storage capacity of the energy
storage device; μES,chat , μES,dist are the binary variable, respectively,
represents the charging and discharging state of the energy storage
device at t time.

3.4.2.5 Electric heat integrated demand response
constraints

Pload
t � P0

t + Ptran
t − Pcut

t

Ptran
t

∣∣∣∣ ∣∣∣∣≤P tran
max∑T

t�1
Ptran
t � 0

0≤Pcut
t ≤P cut

max

Hload
t � H0

t −Hcut
t

0≤Hcut
t ≤H cut

max

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(33)

Eq. 33 represents the Electric heat integrated demand response
constraints, where P0

t denotes the initial load of electric load in
VPP at time t; P tran

max denotes the upper limit of transferable electric
load; P cut

max denotes the upper limit of curtailable electric load; H0
t

denotes the initial load of thermal load at time t; H cut
max denotes the

maximum curtailable thermal load.

4 Solution method for the muti-agent
stackelberg game trading model

In the context of a multi-agent Stackelberg game transaction
model involving the leader DSO, GSO, and follower VPP in an
electricity-gas multi-energy system, each participant optimizes its
operation state according to individual interest objectives and
devises energy transaction strategies accordingly. Given the
intricate internal information and substantial transaction volume,
traditional centralized optimization algorithms are inadequate in

meeting the information privacy needs of each participant within
this model. Therefore, the proposed solution involves solving the
multi-participant Stackelberg game model through a distributed
approach using the adaptive ADMM algorithm.

4.1 Stackelberg game trading model

The game model contains three elements: the set of participants,
the set of strategies and the set of benefits (Li et al., 2022), and the
Stackelberg game is modeled in Eq. 34 as follows:

G �
DSO,GSO,VPPO{ };

Pg,t, P
grid
t , wwell

s,t , ς
ele
n,t, ς

gas
j,t{ };

Pbuy
t , wbuy

t{ };
fDSO, fGSO, fVPPO

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ (34)

(1) Participant set: DSO,GSO,VPPO{ } represents the set of all
participants. Where DSO and GSO are leaders and VPPO
are followers.

(2) Strategy set: the strategy of the leader DSO is the amount of
electricity purchased from each distributed generator and the
higher grid at each moment and the integrated electricity-
carbon price set, denoted as Pg,t, P

grid
t , ςelen,t{ }; the strategy of

the leader GSO is the amount of natural gas purchased from
each distribution station and the integrated gas-carbon price
set, denoted as wwell

s,t , ςgasj,t{ }; the strategy of the follower VPPO
is the amount of electricity purchased with the DSO and the
amount of gas purchased from the GSO, denoted as
Pbuy
t , wbuy

t{ }.
(3) Benefits: The benefits to each participant are their objective

functions, which can be expressed as fDSO, fGSO and fVPPO,
respectively.

4.2 Distributed solution of stackelberg game
transaction model based on adaptive
ADMM algorithm

The adaptive ADMM algorithm is utilized in this study for
distributed solving of the proposed multi-agent Stackelberg game
model. This approach ensures that the interaction between
participating subjects does not compromise their internal privacy.
Only the boundary information of each subject at the time of the
transaction is required, enabling distributed and efficient solving
while safeguarding the privacy of transactional information.

Based on the principle of ADMM algorithm, the auxiliary
condition is introduced as shown in Eq. 35 as follows:

Pbuy
t − Pex

t � 0, wbuy
t − wex

t � 0 (35)
where Pbuy

t , Pex
t are the amount of electricity that the VPPO expects

to trade with the DSO and the amount of electricity that the DSO
expects to trade with the VPPO at time t, respectively; wbuy

t , wex
t are

the amount of natural gas that the VPPO expects to buy from the
GSO and the amount of natural gas that the GSO expects to sell to
the VPPO at time t, respectively.

Distributed models for optimal pricing of power distribution
network, optimal pricing of gas distribution network and VPP
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energy optimization are obtained based on ADMM principle,
respectively.

4.2.1 Optimal pricing of power
distribution network

LDSO � min fDSO +∑T
t�1

λDSOt Pex
t − Pbuy

t( ) + ρ

2

������Pex
t − Pbuy

t

∣∣∣∣∣∣∣∣∣∣∣∣22[ ]⎛⎝ ⎞⎠
s.t. 1( )— 11( )、 19( )— 20( )、 23( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(36)

The optimal pricing of power distribution network is presented in
Eq. 36, where λDSOt and ρ are the corresponding Lagrange multipliers
and penalty factors of the DSO, respectively.

4.2.2 Optimal pricing of gas distribution network

LGSO � min fGSO +∑T
t�1

λGSOt wex
t − wbuy

t( ) + ρ

2

������wex
t − wbuy

t

∣∣∣∣∣∣∣∣∣∣∣∣22[ ]⎛⎝ ⎞⎠
s.t. 12( )— 18( )、 21( )— 22( )、 24( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(37)

The optimal pricing of gas distribution network is presented in Eq.
37, where λGSOt is the Lagrangian multiplier for the GSO
distribution solution.

4.2.3 Distributed model for VPP energy
optimization

LVPPO � min

fVPPO +∑T
t�1

λ1t Pbuy
t − Pex

t( ) + ρ

2

������Pbuy
t − Pex

t

∣∣∣∣∣∣∣∣∣∣∣∣22[ ]+
∑T
t�1

λ2t wbuy
t − wex

t( ) + ρ

2

������wbuy
t − wex

t

∣∣∣∣∣∣∣∣∣∣∣∣22[ ]
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
s.t. 25( )— 33( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(38)

Distributed model for VPP energy optimization is presented in Eq.
38, where λ1t , λ2t are the corresponding Lagrange multipliers
when the VPPO expects to trade with the DSO and GSO,
respectively.

The coupled variables and Lagrange multipliers are updated
as follows:

zex,k+1t � argminLz zex,kt , zbuy,kt , λz,kt[ ]
zbuy,k+1t � argminLVPPO zex,k+1t , zbuy,kt , λz,kt[ ]
λz,k+1t � λz,kt + ρ zex,k+1t − zbuy,k+1t( )

⎧⎪⎪⎨⎪⎪⎩ (39)

where z represents the energy type; k is the number of iterations for
distributed solving.

The original residuals, pairwise residuals are calculated and the
convergence conditions are provided in Eqs 40, 41 as follows:

rk+1t � zex,k+1t − zbuy,k+1t

sk+1t � zex,k+1t − zex,kt

{ (40)

∑T
t�1

rk+1t

���� ����2 ≤ εpri
∑T
t�1

sk+1t

���� ����2 ≤ εdual
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (41)

where rk+1t , sk+1t are the original residuals and pairwise residuals in
the k + 1 iteration, respectively; εpri, εdual are the convergence
thresholds of the original and pairwise residuals, respectively.

The choice of step size significantly affects the speed of the
ADMM solution. An inappropriate value can hinder convergence.
This paper proposes an adaptive ADMM algorithm that
dynamically updates the step size based on the relationship
between original residuals and pairwise residuals. This approach
aims to enhance algorithm convergence and reduce iteration time, as
formulated in Eq. 42:

ρk+1 �

τincrρk rk
���� ����2 > μ sk

���� ����2
ρk

τdecr
sk
���� ����2 > μ rk

���� ����2
ρk other

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ (42)

where μ is the scaling factor between the original residuals and the
pairwise residuals; τincr and τdecr are the acceleration and
deceleration factors of the step change, respectively.

The coupling variables are updated by the iterative form shown
in Eq. 39 until the convergence condition in Eq. 41 is satisfied, and
the specific algorithmic solution flowchart is shown in Figure 3.

5 Case study

5.1 Case description

In order to validate the models and algorithms proposed in
this paper, the IEEE 33-bus power distribution network, 7-
node gas distribution network, and 1 VPP coupling
composition are utilized. The network topology is illustrated
in Figure 4, where W represents the wind turbine located at
node 31 in the power distribution network. Additionally, G1 to
G5 represent five coal-fired units situated at nodes 3, 9, 29, 14,
and 21, with their operating parameters detailed in
Supplementary Appendix Table SA1; Supplementary
Appendix Figure SA1. W1 and W2 denote the gas
distribution stations connected to nodes six and seven of the
gas distribution network. Prediction curves for renewable
energy output and load within the VPP can be found in
Supplementary Appendix Figure SA2, along with unit
parameters in Supplementary Appendix Table SA2.

It is assumed that the power factor η of the node loads in the
distribution network is 0.85, and the price of power purchased
from the higher-level grid is set to 160$/MWh. The price of gas
purchased by GSO from the gas source is set at 0.52$/m3, and the
carbon tax τ is set to 45$/tCO2. In the ADMM algorithm of
adaptive step-size, the initial step-size ρ is set to 1, and the μ is set to
10, τincr, τdecr are set to 2, εpri and εdual the thresholds of
convergence, and are set to 10-3. In this paper, we build the
simulation model based on the platform of Matlab 2018b and
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the Gurobi solver is adopted to solve the simulation model. Solved
using Gurobi solver.

In order to verify the impact of the multi-agent Stackelberg game
on electricity-gas trading and the cost of energy purchase by each
subject under the energy-carbon integrated price response
mechanism, the following four energy settlement scenarios
are set up.

Case 1 : The settlement electricity price adopts fixed time-sharing
electricity price, the settlement gas price adopts fixed natural gas
price, the specific data are shown in Supplementary Appendix Table
SA3, carbon emission flow is not considered, VPPOs completely act
as the recipient of the price for the electricity-natural gas transaction,
and the flexible loads in VPPs are not considered for the optimal
scheduling.

Case 2: Based on Case 1, and the flexible loads within the VPP
are considered for integrated demand response for
electricity and heat.

Case 3: The LMEP and LMGP obtained after the game equilibrium
of each subject are used for the power distribution network settlement
price and the gas distribution network settlement price, respectively,
without considering the carbon emission flow, and the flexible loads
within the VPP are considered for optimal dispatch; Case 4: the
electricity-carbon integrated price and gas-carbon integrated price
obtained after the game equilibrium of each subject are adopted for
the power distribution network settlement price and gas distribution
network settlement price respectively, carbon emission flow is
considered, and optimal dispatch is considered for the flexible
loads within the VPP, i.e., the model proposed in this paper.

FIGURE 3
Flowchart for solving the multiagent Stackelberg game model based on integrated energy-carbon price.
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5.2 Analysis of VPP simulation results

5.2.1 Comparative analysis of operation under
different scenarios

The simulation results of the above four scenarios are shown
in Table 1.

Table 1 illustrates that operating costs decrease and carbon
emissions are effectively reduced when considering integrated
demand response in Cases 2, 3, and 4 compared to Case 1. The
dependency of VPP on power and gas distribution networks is also
reduced through demand response of flexible loads, leading to
decreased electricity and gas purchases. Case 3, which
incorporates the interaction of VPPO with DSO and GSO
master-slave game, shows a reduction in total energy purchase
cost and carbon emissions by $400.9 and 3.25 t CO2,
respectively, compared to Case 2 with fixed energy settlement
price. This demonstrates that settling energy prices using LMEP
and LMGP can guide VPP energy optimization in a more cost-
effective manner, enhancing both economic and environmental
aspects of VPP.

By comparing Case 3 and Case 4, it is evident that in Case 4,
the integrated energy-carbon price led to a 7.29% decrease in carbon
emissions from the VPP compared to Case 3. However, the energy
purchase costs and total costs of the VPP increased in Case 4 due
to the higher carbon price. Moreover, the inclusion of a carbon
price incentivized VPPs to use more natural gas over purchased
electricity, resulting in increased operating costs for GSOs
and decreased costs for DSOs in Case 4. Overall, the proposed

multi-agent Stackelberg game trading strategy proves beneficial in
enhancing the economic and low-carbon advantages for each agent.

5.2.1.2 Analysis of price response mechanism.
The impact of different pricingmethods on the power purchased

by VPPs is analyzed by examining the power distribution network
settlement tariffs and carbon price change curves for the nodes
where the VPPs are located in Cases 3 and 4, as shown in Figure 5.
Additionally, Figure 6 illustrates the carbon intensity for all nodes of
the power distribution network under Case 4.

As shown in Figure 5, considering the carbon tax on VPP’s
electricity demand from the power distribution network

FIGURE 4
Containing multi-energy VPP E33-G7 test system topology diagram.

TABLE 1 Comparison results of operating costs and carbon emissions of each subject under different scenarios.

Case VPPO operating
costs ($)

DSO operating
costs ($)

GSO operating
costs ($)

Total cost of energy
purchases ($)

VPP carbon
emissions (t)

Case 1 16118.5 8672.1 17926.5 42717.1 47.73

Case 2 12153.6 5338.9 16097.6 33590.1 32.84

Case 3 11539.2 4832.8 16817.2 33189.2 29.59

Case 4 13009.4 4776.7 18079.3 35865.4 27.43

FIGURE 5
Electricity prices in different scenarios.

Frontiers in Energy Research frontiersin.org10

Yan et al. 10.3389/fenrg.2024.1459667

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1459667


increases the purchase price. The integrated energy-carbon price
is consistently higher than the LMEP, with its incremental
increase varying over time. The difference between the
integrated energy-carbon price and the LMEP is more
pronounced at certain times (e.g., from 05:00 to 09:00) when
the nodes have higher carbon emission densities. In contrast,
while the combined gas-carbon price also rises, its change is
minimal because the carbon intensity of each node in the gas
distribution network is relatively uniform. The carbon emissions
for VPPs purchasing gas from the gas distribution network
depend solely on the amount of gas used. Consequently, the
combined gas-carbon price remains essentially unchanged over
time. In this paper, the LMGP of VPP coupled with the gas
distribution network is calculated to be 0.5120 $/m³, and the
integrated gas-carbon price, considering the carbon tax, is
0.6174 $/m³.

An examination of the carbon intensity of individual nodes in
both Figure 6 and the IEEE 33-node system topology diagram
indicates that nodes with wind turbines and their adjacent nodes
have lower carbon intensity, attributed to the low carbon
emissions of wind turbines. On the other hand, nodes

connected to VPPs’ power distribution network are situated
near coal-fired units with high carbon emissions, impacting
their carbon intensity. Nevertheless, the carbon intensity of
these nodes aligns closely with that of thermal units. As a
result, the carbon pricing of nodes linked to the power
distribution network, as depicted in Figure 5, demonstrates
minimal fluctuations over time.

To further investigate the impact of carbon pricing on the
amount of electricity and gas purchased by VPPs, Figure 7
illustrates a comparison between the two scenarios. The
results show that during the 05:00-10:00, Case 4, with carbon
pricing, acquires less electricity but more natural gas compared to
Case 3, without carbon pricing. This is due to the higher carbon
intensity at the node connected to the power distribution
network, as depicted in Figure 5. The node’s carbon intensity
is higher during 05:00-10:00, leading to a greater use of natural
gas over electricity. Therefore, incorporating a carbon price
incentivizes VPPs to utilize more natural gas and decrease
electricity consumption.

In order to better understand the demand for purchased energy
and carbon emissions of a VPP utilizing an integrated energy-
carbon price response mechanism, a comparison and analysis
between Case 3 and Case 4 is conducted. The results of this
comparison are illustrated in Figure 8. The visualization in
Figure 8 demonstrates that, in Case 4 where carbon price is
considered, natural gas becomes a more competitive option
compared to Case 3 where carbon price is not a factor.
Consequently, the VPP tends to procure natural gas with lower
carbon intensity, leading to an increase in total gas volume
purchased and a decrease in the purchase of electricity from the
power distribution network with higher carbon intensity. This
results in a reduction of 1.91 MWh in the total purchased
electricity of the VPP. Furthermore, with the inclusion of carbon
price, the total carbon emissions of the VPP decrease from
29585.8 kg to 27436.6kg, showcasing a significant reduction in
carbon emissions due to the integrated energy-carbon price
response mechanism. These findings suggest that the proposed
multi-agent Stackelberg game energy settlement price effectively
facilitates carbon emission reduction and enhances the low-carbon
benefits of the VPP.

FIGURE 6
Variation of carbon intensity at power distribution network nodes
under Case 4.

FIGURE 7
Power and gas purchases of VPP in different scenarios.
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5.2.2 Analysis of VPP optimal schedule
The results of the optimization of electric power and thermal

power inside the VPP are shown in Figure 9. For the VPP internal
units, new energy consumption has the highest priority to
minimize wind abandonment, and the VPP completes the
internal optimal scheduling according to the combined
energy-carbon price. The gas turbine CHP unit generates
electricity and heat within the output range, and the electric
energy storage is mainly charged when the energy-carbon
integrated price is lower, such as 01:00-04:00 and 07:
00 moments, and discharged at 06:00 and 12:00-14:00 when
the electricity-carbon integrated price is higher, so as to
reduce the purchase of electricity from the power distribution
network and reduce the total operating cost and carbon
emissions, while the electric and heat loads are considered
Comprehensive demand response can realize peak shaving and
valley filling to alleviate the pressure of grid peaking; only when
the internal unit output cannot meet its load demand, it
purchases electricity from the power distribution network and

FIGURE 9
VPP internal optimization results.

FIGURE 8
Comparison of VPP energy purchase demand and Carbon
emissions under different scenarios.

FIGURE 10
Convergence result for interactive iterative of multi-agent Stackelberg game.
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gas from the gas distribution network. Considering that the heat
load demand within the VPP is prioritized to be met by the gas
turbine CHP unit, after considering the heat load demand
response, the vast majority of the moments are heat
production by the gas turbine only, and only when the gas
turbine is not enough to supply heat at the 23:00-24:
00 moments, the gas boiler GB unit will be powered up.

5.3 Algorithm convergence analysis

This section examines the iterative convergence of the proposed
multi-agent Stackelberg game trading strategy. Figure 10A illustrates
the converged iterations of the original and pairwise residuals in
Case 4, while Figure 10B demonstrates the iterative convergence of
the game interactions among DSO, GSO, and VPPO.

Based on the residual convergence analysis presented in
Figure 10A, it is evident that the proposed algorithm achieves
the desired level of accuracy after 45 iterations, converging
within 10–3, with a computation time of 329 s. Figure 10B
visually demonstrates that the cost of purchased energy for
the leading DSO and GSO converges to $4776.7 and
$18,079.3, respectively, while the cost for the follower VPPO
converges to $13009.4. This convergence indicates that the
Stackelberg game between the DSO, GSO, and VPPO has
reached equilibrium, where each agent cannot further reduce
its operational cost by adjusting its trading strategy in isolation.
These results highlight the strong convergence performance and
computational efficiency of the distributed optimization
algorithm proposed in this study.

In order to further validate the effectiveness of the adaptive ADMM
algorithm proposed in this study, a comparative analysis with the fixed-
step ADMM is conducted. The solution performance is documented in
Table 2 for both fixed step size and adaptive step size ADMM. It is
evident from Table 2 that the adaptive step-size ADMM, as opposed to
the traditional ADMM, diminishes the reliance on the initial value
selection through step size correction. This results in fewer iterations,
reduced solving time, and enhanced solving efficiency.

6 Conclusion

This paper introduces a bi-level model and its solution
method for a multi-agent Stackelberg game focused on
synergistic low-carbon trading within Virtual Power Plants

(VPPs) participating in multi-energy systems under an energy-
carbon integrated price response mechanism. The proposed
trading strategy is analyzed and validated through an
arithmetic example, leading to the following conclusions.

(1) The integrated energy-carbon pricing approach, based on the
CEF theory, ismore effective in incentivizingVPPs to adjust their
energy-use and trading strategies with multi-energy systems
compared to LMEP and LMGP pricing approaches. This
encourages VPPs to procure energy from both power
distribution and gas distribution networks during periods of
low carbon intensity, thereby reducing carbon emissions.

(2) The proposed trading framework and multi-participant
Stackelberg game model enhance energy interactions among
participants, improving the economics and low-carbon benefits
for each participant. Compared to traditional energy settlement
methods, the integrated energy-carbon pricing method is shown
to be more effective in this regard.

This study focuses on the trading of electricity and natural
gas within a VPP with a multi-energy system. Future research
will explore trading multiple energy sources and carbon
emissions to achieve synergistic low-carbon trading.
Furthermore, the impacts of renewable energy integration
and load demand uncertainty in VPPs are also important
areas for further investigation.
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