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The growing popularity of battery-powered products, such as electric vehicles
and wearable devices, has increasingly motivated the need to predict the
remaining life of lithium-based batteries. This study proposes a method for
predicting the remaining life of lithium-based batteries based on a hybrid
neural network. First, variational modal decomposition (VMD) was used for
noise reduction to maximize retention of the original information and prevent
capacity degradation. Second, the trend of capacity decline after noise reduction
was modeled and predicted using the combination of bidirectional long short-
term memory (BiLSTM) and Monte Carlo (MC) dropout. Finally, experiments
were conducted to show that the new method based on the VMD-MC-BiLSTM
network achieves good performance for predicting the remaining life of a lithium
battery with sufficient confidence level, thereby providing a new approach for
optimizing the management of lithium batteries.
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1 Introduction

Battery management systems (BMSs) currently used in mainstream electric vehicles
collect data regarding the current, voltage, temperature, and other parameters of the battery
in real time and transmit these data to the car big data center. The cloud server at the center
then trains a deep-learning model based on these data to estimate the state of charge (SOC)
(Takyi-Aninakwa et al., 2023), state of health (SOH) (Zhu et al., 2021), remaining useful life
(RUL) (Wei et al., 2017), state of power (SOP) (Lipu et al., 2023), state of available energy
(SOE) (Bao et al., 2023), and other features. Among these, the SOH and RUL of a lithium
battery are the most important parameters needed to characterize battery health. Only by
ensuring the health status and remaining service life can we provide a theoretical basis for
the safety and health diagnosis of each lithium battery in a vehicle. This also provides a
convenient method for users to take timely measures against unhealthy batteries, which
ultimately improves the driving performance and experience of an electric vehicle while
extending the safe service life of its batteries (Ansari et al., 2022).

At present, the RUL estimation methods mainly fall under two categories, namely
model-based and data-driven methods. Model-based methods are dependent on certain
empirical and physicochemical knowledge, based on which mathematical formulae are
used to clearly express the attenuation of battery capacity and recursively obtain the
battery aging trajectory to derive the RUL. Model-based methods are constructed
by integrating the electrochemical, equivalent circuit, and empirical index models.
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In contrast to model-based approaches, data-driven approaches do
not rely on accurate battery models but rather require specific
learning algorithms to extract key features from massive amounts
of historical data; these methods have been widely used in RUL
predictionof lithium-ionbatteries.Model-basedremainingservice life
predictions of lithium batteries are expected to be commonly used for
estimating the normalworking times of lithiumbatteries in the future.
These models are largely based on the physicochemical processes of
the battery and can provide accurate RUL predictions but require
detailed information regarding the battery parameters and operating
conditions. Ma et al. (2019) proposed a physical-mechanism-based
residual service life predictionmethod for lithium-ionbatteries online
by considering multiple concurrent degradation mechanisms; here,
robust online prediction of the RUL was achieved by adopting a non-
linear least-squares method with dynamic boundaries to track the
evolution of a single degenerate parameter.This approach is unique in
its ability to integrate the results of the physical degradation analysis
into a residual useful life prediction model through a non-linear
approach. Simulations of eight lithium-ion battery cells showed that
in 78 of the 80 cases considered, the mechanistic prediction method
produced more accurate RULs than the traditional volume-based
prediction method. However, as it is difficult to always solve the
required complex-coupled non-linear partial differential equations
using the electrochemicalmodelunder changingoperating conditions
and as the equivalent circuit model depends on impedance data,
the exponential model based on the capacity degradation trajectory
is commonly used for residual service life prediction (Ma et al.,
2019). This approach is often combined with advanced filtering
methods such as particle or Kalman filters and some improved
algorithms for RUL predictions. A battery degradation model with
discharge current, discharge depth, and cumulative ampere-hour of
the battery as the independent variables, including an exponential
modelandapowerfunctionmodel,showedgoodremainingservicelife
predictionfor lithiumironphosphatebatteries (Sarasketa-Zabalaetal.,
2016). The RUL of a battery can also be calculated based on the
battery degradation model, but such an experimental model has a
limited range of applications. To expand the application range of
this model, it is necessary to combine various filtering algorithms
to update the model parameters in real time and improve the
accuracyofRULprediction.Amongthesealgorithms,theparticlefilter,
Bayesianstatistical inferencemethod, andKalmanfilter arecommonly
used. Numerous researchers have used particle filters to update the
parameters of battery degradation models to predict the RULs of
lithium-ion batteries (Chen et al., 2022). He et al. (2011) established
a battery degradation model with a double-exponential function,
initializedthemodelparametersbasedontheDempster–Shafertheory,
updated the model parameters using the Bayes Monte Carlo method,
andpredictedtheRULbasedonavailabledata throughbatterycapacity
monitoring;asmoredataaremadeavailable tothismodel, theaccuracy
of RUL prediction improves. Guha and Patra (2018) combined the
battery capacity and internal resistance to obtain a battery degradation
model and updated the model parameters based on the particle filter
to predict the battery RUL. On the one hand, although particle filters
havebeenappliedtosomeextent, theparticledegradationproblemstill
affects the effective updating of the model parameters in later stages,
thus lowering thepredictionaccuracies; further, the applicabilityof the
Kalman filtermethod is limitedwhen the non-linearity or uncertainty

is large. On the other hand, empirical models such as the double-
exponential ordoubleGaussianmodels areonly approximations to the
degradationprocessof lithiumbatteryhealthandareusuallybuiltusing
specific data observations while ignoring the various complexities of
thedecayprocessesof the lithiumbattery, resulting inpooradaptability
of themodel and hence inaccurate RUL predictions.Therefore, future
research on the prediction of the remaining service life of a lithium
battery couldusedata-drivenandmachine-learningmethods tobetter
adapt to thechallengeswhileprovidingmoreaccurateRULpredictions
and uncertainty estimations.

Data-driven methods often extract only the key information
from massive historical data through specific learning algorithms
(Montaru et al., 2022).The data-driven rule applies various machine-
learning methods to predict the RULs of lithium batteries; it also
has strong non-linear fitting ability and can theoretically utilize any
non-linear battery degradationmodel. In addition, selecting the right
health indicator (HI) is critical, and the relationship between the
appropriate HI and battery RUL is mapped through training. The
commonly used machine-learning technologies for predicting the
RULs of lithium-ion batteries include support vectormachine (SVM),
Gaussianprocessregression(GPR),anddeeplearning.Razavi-Faretal.
(2017) used extreme learningmachine (ELM) and SVM to predict the
RULs of lithium-ion batteries. Since the battery capacity is attenuated
differently at different stages, Patil et al. (2015) applied SVM to
predict the RUL at the later stage of battery capacity decline. Similar
battery decline data have been shown to have guidance value for RUL
predictions, so Richardson et al. (2017) combined multiple battery
decline data with GPR to predict the RUL with improved accuracy.
However, sparsely selecting the data points to represent the entire
degradation process reduces the prediction accuracy as all degraded
data points contribute to the construction of accurate models. To
overcome the limitations of traditional data-driven methods, these
methods utilize high-dimensional non-linear functions directly with
the raw data to obtain better prediction accuracies when solving
complex problems. Zhang et al. (2018) combined long short-term
memory (LSTM) and Monte Carlo (MC) simulations to predict the
long-term learning degradation of lithium-ion batteries and achieve
the RUL with confidence. Accordingly, Li et al. (2020) proposed
adding peephole connections to the LSTM to estimate the SOH
with a many-to-one structure and predict the RUL with a one-to-
one structure. Kim et al. (2021) proposed a method to predict the
states of different types of batteries by combining LSTM and transfer
learning; they used the University of Maryland dataset for training
and the Cavendish Laboratory battery data andNASA data for testing
to predict the uncertainty as well as estimate the RUL using Bayesian
inference. Ding et al. (2021) combined wavelet decomposition, two-
dimensional convolutional networks, and adaptive multiple error
correction methods to verify the effectiveness of their approach
on NASA public datasets.

The above studies have reported good RUL predictions of
lithium-ion batteries but have noted that some problems still exist.
First, the battery capacity data are noisy as the capacity regeneration
or diving phenomenon renders the recurrent neural network
(RNN)-based method ineffective. Second, the hyperparameters of
many models are not adaptive learned but artificially selected.
Finally, most existing models based on the above methods
typically require 40%–70% of the entire degradation data to
produce accurate predictions, which means that predicting the
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battery degradation pattern and RUL at the early stage remain
challenging tasks (Zhu et al., 2023a, 2023b; Jiang et al., 2024;
Liu et al., 2024; Qi et al., 2024).

Considering the difficulty of predicting the life of a lithium
battery at an early stage and the low precision of multistep
prediction, a newRUL predictionmethod based on the bidirectional
LSTM (BiLSTM) model and variational mode decomposition
(VMD) is proposed herein. First, the SOH sequence of the battery
is obtained using variational modes that effectively decompose
the SOH degradation trend into various eigenmode components.
Second, the MC algorithm is used to characterize the model
uncertainty, and the confidence interval of the prediction is given.
Finally, using the predicted SOH values, the predictions are iterated
up to the battery failure threshold. Experiments were performed
to show that the proposed RUL predictive neural network model
achieves the lifetime prediction of lithium-ion batteries with only
12% capacity data. The results based on two lithium battery
datasets from NASA and the University of Maryland show that the
aging data of lithium-ion batteries can truly reflect the capacity
decay process and that the proposed algorithm has high accuracy
and robustness for early prediction of the RULs of lithium-ion
batteries.

The remainder of this paper is structured as follows. Section 2
introduces the relevant algorithms; Section 3 introduces the battery
data and pretreatment methods in detail along with the complete
experimental process of variable lithium-ion battery aging data,
results of the proposed RUL prediction method, and the specific
evaluation criteria used; Section 4 finally presents the conclusions of
this study.

2 Methodology

2.1 VMD

VMD is an adaptive, completely non-recursive modal
transformation and signal processing technique. It improves the
end effects as well as modal component localization of empirical
mode decomposition (EMD) and has a more solid mathematical
basis. Given time series with high complexity and strong non-
linearity, it can reduce the non-stationarity of the signal and
decompose it into relatively stable subsequences containingmultiple
frequency scales, which is suitable for signal extraction from non-
stationary sequenced. The essence of the variational problem is
the maximum value problem of the functional, and its core is to
obtain nmodal components un(t) while minimizing the sum of the
bandwidths of each mode and ensuring that the sum of the modes
is equal to the input signal f. The constrained variational model
is shown in Equation 1:

{{{
{{{
{

min
{un},{wn}
{∑

n
‖∂t[(δ(t) + j/πt) × un(t)]e

−jwnt‖2
2
},

s.t.∑
n
un = f

(1)

where ∂t is the partial derivative of t, and δ(t) is the impulse
function. The VMD algorithm introduces a quadratic penalty term
and Lagrange multiplication operator, where the former ensures
the reconstruction accuracy of the signal and the latter enhances

the effects of the constraint conditions. The augmented Lagrange
function is as shown below.

L({un}, {wn},λ) = α∑
n
‖∂t[(δ(t) + j/πt) × un(t)]e−jwnt‖2

2

+‖ f(t) −∑
n
un(t)‖

2

2
+⟨λ(t), f(t) −∑

n
un(t)⟩.

(2)

The solution of the minimization problem in Equation 2 is the
saddle point in Equation 3. Here, the alternating direction method
of multipliers (ADMM) is used to solve the variational problem
by updating un

k+1, wn
k+1, and λk+1 to find the saddle point of the

augmented Lagrangian function and use the Parseval/Plancherel
Fourier isometric transformation to convert to the frequency
domain to obtain the modal component un.

̂uk+1n (w) =

̂f(w) −∑
i≠n
̂ui(w) +

λ̂(w)
2
.

1+ 2α(w−wn)
2 (3)

Similarly, the update method for the center frequency is given
by Equation 4, and the updated value is according to Equation 5
until convergence to meet Equation 6 before obtaining the nmodal
components.

wk+1
n =
∫
∞

0
w| ̂un(w)|

2dw

∫
∞

0
| ̂un(w)|

2dw
. (4)

λ̂k+1(w) = λ̂k(w) + τ( ̂f k(w) −∑
n
̂uk+1n (w)). (5)

∑
n
‖uk+1n − ukn‖

2
2
/‖ukn‖

2
2
< ε (6)

2.2 BiLSTM

LSTM is no longer an ordinary hidden node but a storage
unit with memory that can effectively avoid gradient distortion or
explosion after a lengthy time sequence to overcome the difficulties
associated with traditional RNN training. The key to LSTM is in
the cell state and various gate structures, including the forget, input,
and output gates. The unit state can store historical information and
update it through continuous transmission.Therefore, the unit state
can be regarded as the “memory” of the network. The illustrative
structure of the LSTM predictor is shown in Figure 1A.

i(t)c = σ(Wi ⋅ [h(t−1),xt] + bi). (7)

f (t)c = σ(W f ⋅ [h(t−1),xt] + b f). (8)

o(t)c = σ(Wo ⋅ [h(t−1),xt] + bo). (9)

̂s(t)c = tanh (WC ⋅ [h(t),xt] + bC. (10)

S(t)c = f
(t)
c × S

(t−1)
c + i

(t)
c × ̂s
(t).
c (11)

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1459027
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Guangxiong et al. 10.3389/fenrg.2024.1459027

FIGURE 1
Structures of the (A) LSTM network and its (B) Bi-LSTM variant.

h(t) = o(t)c · tanh(S
(t)
c ). (12)

In the above expressions, h and x represent the output and
input samples of the network; o, i, and f represent the three
gates mentioned above; matrices W and b indicate the weight
parameters and bias terms, respectively; S represents the cell state;
σ(·) is the ReLU activation function. From Equations 7–12, the error
and weight of each LSTM neuron in the backpropagation process
are calculated to update the network data and the output of the
LSTM model. The number of neurons is directly proportional to
the computing power and complexity of the neural network. In
addition, because the number of network parameters is determined
by the number of neurons in each layer, increasing the number of
hidden layers will geometrically increase the number of parameters
to be trained, and the corresponding complexity would be several
times that of increasing the number of neurons in a single layer.
To solve the above problems, the BiLSTM network model is
considered as it not only avoids manual addition of the time
frames but also captures the information of future states. The
BiLSTM network is composed of forward and backward LSTM
networks; it can not only obtain the past information of the input
data but also use the future information and is very helpful for
sequence data tasks.

As seen from Figure 1B, the BiLSTM network is composed of
an input layer, a forward hidden layer, a backward hidden layer,
and an output layer. The input layer receives a series of input data
that are then applied to the forward and backward hidden layers
to pay attention to both the upper and lower sequence information
at the same time. The forward hidden layer is the forward flow
of the LSTM from start to end, and the backward hidden layer is
the reverse flow of the LSTM from end to start. The inputs to the
output layer nodes are composed of the outputs of the backward
and forward hidden layers to produce the final output sequence.
In the structure, w1 and w3 are the weights from the input layer
to the forward and backward hidden layers, w2 and w5 are the
weights from the hidden layer to itself, and w4 and w6 are the
weights from the forward and backward hidden layers to the output

layer, respectively. The mathematical expressions are shown in
Equations 13–15:

h⃗t = LSTM(xt, h⃗t−1). (13)

h⃖t = LSTM(xt, h⃖t−1). (14)

yt = f(Wh⃗h⃗t +Wh⃖h⃖t−1 + b). (15)

The forward hidden layer reads the data in temporal order,
passes the information forward along the temporal starting point, and
obtains the prior information of the sequence. The backward hidden
layer transmits the information in reverse to obtain the sequence
information. By combining the forward and backward layer states
at a given time as the output state of the hidden layer representing the
contextual information of the sequence, this structure ensures that the
BiLSTM can obtain the past and future information simultaneously.
There is no information flow between the forward and backward
hidden layers. The output of the forward LSTM is transmitted only
to the forward LSTM unit, while the output of the reverse LSTM
is transmitted only to the reverse LSTM unit, thus ensuring that the
expandedmap isnon-cyclic.Although there is no connectionbetween
the two directions of the BiLSTM, the final output state sequence
contains the temporal context information because the hidden layers
jointly synthesize the output.

2.3 MC simulation

MC algorithms are generally divided into three stages as
follows: constructing random probabilities, sampling from the
constructed random probability distribution, and solving the
estimator. Constructing a random probabilistic process for the
problem that itself has a random quality necessitates accurate
description and simulation of the probabilistic process. For
deterministic problems that are not inherently random, such as
the calculation of definite integrals, an artificial probability process
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FIGURE 2
Structure of the model proposed in this work.

FIGURE 3
Prediction results of CS34 from the (A) 100th and (B) 200th cycles.

must be constructed in advance; some of its parameters would
then be the exact solutions to the required problem such that
the problem without random properties can be transformed into
one with random properties. Sampling and generating random
variables from known probability distributions is essential to
the MC approach because different probabilistic models can be
regarded as composites of various probability distributions. In such
examples, the simplest and most basic uniform distribution over
(0,1) is used with random numbers being the key variables for the
MC simulation. Once the estimator is solved through simulation,
random variables are designated as the solutions to the required
problem to ensure unbiased estimates. In this case, establishing an
estimator is equivalent to examining the experimental results to
obtain the problem solution. The advantages of the MC method are

as follows: it is a statistical method that is relatively intuitive as well
as easy to grasp and understand; it is easy to handle the random
change characteristics of the load; it is easy to address various actual
operational control strategies; the number of samples is independent
of the scale of the system and is more advantageous for reliability
evaluations of complex systems; it is easy to handle the operations of
the system in chronological order.

Following the LSTM layer, the MC sampling method was
introduced to generate multiple predictors using multiple samples.
These multiple prediction samples generated by the MC layer are
either averaged or weighted to obtain the final prediction of the RUL
of the battery. TheMC-BiLSTM network has the advantage of being
able to account for the uncertainties in the battery life predictions
to provide more accurate results. By combining the MC sampling
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FIGURE 4
Prediction results of CS36 from the (A) 100th and (B) 200th cycles.

FIGURE 5
Prediction results of CS37 from the (A) 100th and (B) 200th cycles.

and LSTM methods, the MC-BiLSTM network can better capture
the long-term dependencies in time-series data and can weigh the
different prediction samples to improve prediction accuracy.

3 Results and discussion

As more number of decay features are selected, the model
construction becomes more difficult and calculations become
more complicated. Too many decay features also increase the
model complexity, causing overfitting and decreasing the prediction
accuracy. In this work, the number of cycles is used to describe the
decay process of a lithium battery. The values of each of the features
of lithium battery decay are different in the order of magnitude.

Through normalization, the features of different dimensions are
converted into dimensionless isochronous data samples, so that the
data of different dimensions have smaller values in similar ranges,
thereby avoiding large data inputs to the network and resulting in
large gradient updates to the network; this prevents convergence
of the network and slows learning. The formula for normalization
is shown in Equation 16

xt
∗ =

xt − xmin

xmax − xmin,
(16)

where xt are the original data; xmin is the minimum value of the
original data; xmax is the maximum value of the original data. The
optimal fusion feature of a lithium battery can be divided into three
parts as the training, verification, and test sets. The first 70% of the
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TABLE 1 Comparison of the prediction accuracies of different
algorithms for CS34.

Algorithm SP RUL PRUL RE/% Data used

VMD-MC-
BiLSTM

100 502

491 2.2

14.3%EMD-MC-
BiLSTM

539 7.4

MC-BiLSTM 579 15.3

TABLE 2 Comparison of the prediction accuracies of different
algorithms for CS36.

Algorithm SP RUL PRUL RE/% Data used

VMD-MC-
BiLSTM

100 510

462 9.4

12.5%EMD-MC-
BiLSTM

419 17.8

MC-BiLSTM lapse —

TABLE 3 Comparison of the prediction accuracies of different
algorithms for CS37.

Algorithm SP RUL PRUL RE/% Data used

VMD-MC-
BiLSTM

100 650

656 0.9

12.5%EMD-MC-
BiLSTM

689 6.0

MC-BiLSTM lapse —

FIGURE 6
Comparison of the prediction accuracies for different
sequence lengths.

TABLE 4 Accuracies of different prediction starting points for batteries
from the University of Maryland dataset.

Battery ID SP RUL PRUL RE/% MAE

CS34
100 502 491 2.2 0.017

200 402 392 2.5 0.015

CS36
100 510 462 9.4 0.028

200 410 420 2.4 0.016

CS37
100 650 656 0.9 0.029

200 550 572 4.0 0.026

data are defined as the training set, and themodel is trained through
repeated learning and memorization. The next 20% of the data
constitute the verification set, which is used to evaluate the quality
of early training. The last 10% of the dataset is used as the test set
to assess the model. The model structure of the VMD-MC-BiLSTM
network is shown in Figure 2. Twodatasets are employed for training
and testing the VMD-MC-BiLSTM model, which is optimized
using Adam and the adaptive superparameter method.The adaptive
superparameter method is based on Bayesian optimization and
automatically filters the set of candidate superparameters that meet
the learning objective task from the initial set of superparameters.
Therefore, the proposed model is less sensitive to abnormal capacity
values and deeply understands the degradation trends. Note that
the network performance is sensitive to the number of neurons
and dropout values. The ranges of values for the neurons and
dropout are set to 10–200 and 0–0.5, respectively. Thus, the
wide search space allows the BiLSTM to achieve better accuracy
and robustness. Adaptive moment estimation (Adam) is a first-
order optimization algorithm that replaces the traditional random
gradient descent process and updates the neural network weights
iteratively based on the training data. In addition, the attention
mechanism allocates computing resources to more important
tasks when there is limited computing power. Therefore, early
prediction of the degradation pattern for a lithium-ion battery
can be realized using the proposed model. Following feature
selection and feature processing, the characteristics of the lithium
battery are obtained. Next, the data are input to the LSTM
network as a time series, and the capacity ratio is used as the
prediction label. Lastly, these data are input to the written program
simultaneously, and the dataset is divided before obtaining the
predictions and results.

The optimizer updates the weight coefficients and provides the
gradients of the weight updates, namely, the directions and sizes.
Using a reasonable optimizer allows accelerated convergence of
the network to obtain the global optimal solution. The activation
function is used to increase the non-linearity of the entire network
in terms of the expression or abstraction ability so that the network
can learn the deeper contents of the data. The commonly used
activation functions include the sigmoid, ReLU, and tanh functions.
The number of layers in the network as well as the number of
neurons in each layer can affect the model performance. Existing
studies have shown that when a network has three or four layers, the
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FIGURE 7
Prediction results of B5 from the (A) 20th and (B) 30th cycles.

FIGURE 8
Prediction results of B6 from the (A) 20th and (B) 30th cycles.

model loss is small; when the network has more than four layers,
the model loss will increase greatly, and the model performance
will decline with increasing number of neurons. The main utility of
the loss function is to supervise the learning process of the neural
network. Theoretically, when there are more number of iterations
of the neural network during training, the loss function value will
be smaller. However, neural networks have strong learning abilities,
and too many iterations can cause the network to only learn the
relationships between the training set labels and true values, thus
reducing the generalization of the prediction model; this produces
good network predictions for the training set but poor results

with the verification set. Therefore, during actual training of the
model, a large number of iterations can lead to overfitting and poor
prediction results.

The simulations in this study were conducted on a system
with an Intel Core i7-8700 K CPU and NVIDIA GeForce GTX
1660ti independent graphics card using Windows 10 operating
system and the TensorFlow deep-learning framework. The hybrid
model structure used in the experiment consists of an input
layer, a BiLSTM layer incorporating the attention mechanisms,
a two-layer MC dropout random layer, a fully connected
layer, and an output layer. After establishing the model, it is
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FIGURE 9
Comparison of the prediction accuracies for different sequence
lengths of the batteries from the NASA dataset.

TABLE 5 Prediction accuracies for different starting points for
batteries B5 and B6.

Battery ID SP RUL PRUL RE/% MAE

B5
20 103 96 6.8 0.022

30 93 90 3.2 0.024

B6
20 87 80 8.0 0.030

30 77 75 2.6 0.026

necessary to determine the loss function for network training
to obtain the neural network parameters. In our experiments,
the mean absolute error (MAE) was used as the loss function
and Adam was used as the adaptive optimizer to minimize the
objective function. The batch size was set to 16, and the number
of epochs was set to 300.

In this study, the end of life (EOL) point for each battery was
considered the point at which the battery capacity dropped to 70%
of its nominal value in the University of Maryland dataset. The
datasets of five cells at different current rates and cutoff voltages
were used to verify the proposed model. Early identification results
of the battery degradation patterns based on our approach are
shown in Figures 3–5. Here, CS33, CS35, and CS38 were used for
training, while CS34, CS36, and CS37 were used for testing. The
hyperparameter values of the number of BiLSTM units shown in
the random search are 10–200, step size is 10, and dropout values
are [0.1, 0.2, 0.3, 0.4, 0.5]. Based on the results of the KerasTuner
search, the final hyperparameters selected were as follows: number
of BiLSTM cells is 80, random discard rate is 0.4, window size is
[15,1], and result shape is [5,1]. The model was trained once the
hyperparameters were determined. In addition, three comparison
models are defined as Model 1, Model 2, and Model 3. Among
these, Model 1 was trained using raw data, namely, theMC-BiLSTM
model; Model 2 was trained on the EMD data, namely, the EMD-
MC-BiLSTMmodel;Model 3 was trained on the VMDdata, namely,
the VMD-MC-BiLSTMmodel.The experiments assessed the trends
of the RULs predicted from the first 12% start point (SP) of the

TABLE 6 Comparison of the prediction accuracies of different
algorithms for B5.

Algorithm SP RUL PRUL RE/% data used

VMD-MC-
BiLSTM

20 103

96 6.8

12%EMD-MC-
BiLSTM

94 8.7

MC-BiLSTM 81 21.3

TABLE 7 Comparison of the prediction accuracies of different
algorithms for B6.

Algorithm SP RUL PRUL RE/% data used

VMD-MC-
BiLSTM

20 87

80 8

12%EMD-MC-
BiLSTM

79 9.2

MC-BiLSTM 66 24.1

lithium battery lifecycle and from 20%. Tables 1–3 list the prediction
performances of the CS34, CS36, and CS37 batteries with the three
models, respectively. Among these, the predictions after VMD are
observed to better fit the degradation trends of the original data and
achieve the minimum error value. However, some RUL predictions
trained with raw data do not show degradation trends; one possible
reason for this is that the raw data are too noisy and that the training
model does not converge well. For the CS34 batteries, the EOL point
is 602 cycles, and the early SP predicted from 100 results in a true
RUL of 502 and average predicted RUL (PRUL) of 491; both these
values are within the 95% confidence interval (CI) of PRUL, which
is [313, 690]. When forecasting from an early SP of 200, the true
RUL is 402, average PRUL is 392, and 95% CI of PRUL is [360, 444].
For the CS36 batteries, the EOL point is 610 cycles, and the early SP
predicted from 100 results in a true RUL of 510 and average PRUL
of 462, with both values falling within the 95% CI of PRUL of [368,
554]. When predicting from an early SP of 200, the true RUL is 410,
average PRUL is 420, and 95% CI of PRUL is [344, 497]. Similarly,
for the CS37 batteries, the EOL point is 750 cycles, and the early SP
predicted from 100 gives a true RUL of 650, average PRUL of 656,
and 95% CI of PRUL of [604, 707]. When forecasting from an early
SP of 200, the true RUL is 550, average PRUL is 572, and 95% CI of
PRUL is [526, 620]. Figure 6 compares the effects of different sliding
window sizes on the model, particularly those for 10 to 10, 15 to 5,
19 to 1, 12 to 8, 14 to 6, and 16 to 4 sequence lengths. The estimated
errors were low for the three test cells, and the prediction error of
the 15 to 5 sequence was minimal for the CALCE dataset. Table 4
shows the predictions for the CS34, CS36, and CS37 batteries when
the predicted values for SP = 100 (12%) and SP = 200 (20%) are very
close to the actual values.

From the NASA dataset, information on batteries B5 and B6
was used for testing, while B7 and B18 were used for training; in
the NASA dataset, the EOL point for each battery was set at 70%
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of the nominal capacity. Figures 7, 8 show the RUL forecast results
for B5 and B6 from the NASA dataset. The RUL forecast relative
errors (REs) for B5 are 6.8% and 3.2% when forecasting from cycles
20 and 30, respectively; this indicates that the model predictions
are more accurate when there is a greater amount of prior capacity
data. Specifically, the EOL point of B5 is 123, and the true RUL is
103 when the SP is 20; this result is within the 95% CI of PRUL
of [84,107], indicating that the prediction is more accurate and
highly reliable. When the SP is 30, the true RUL is 93, which is
within the 95% CI of PRUL of [80,100], indicating that the initial
EOL diagnosis is relatively accurate with high reliability. Similarly,
when forecasting from the 20th and 30th cycles, the REs of B6
are 8.0% and 2.6%, respectively. The EOL of B6 is 107, and this
service life is slightly lower than that of B5, which is attributable
to inconsistencies caused by the manufacturing, equipment, and
other links. Further analysis of B6 shows that when the prediction
starts from the 20th cycle, the actual RUL is 87, which is within
the 95% CI of PRUL of [70,88]; when the prediction starts from
the 30th cycle, the actual RUL is 77, which is within the 95% CI of
PRUL of [67,84]. For the NASA dataset, we observe from the figures
that the prediction and regression effects of the post-EMD and -
VMD data are similar because the original data itself are not very
noisy. Figure 9 shows a comparison of the predictions for different
sliding window sequence lengths; as noted from the figure, the
optimal sequence length is 7 to 3 for the NASA dataset. For B5,
the MAE values are 0.0122, 0.0120, 0.0126, and 0.0127 when the
sequence lengths are 9 to 1, 8 to 2, 6 to 4, and 5 to 5, respectively.
For B6, the MAE values are 0.0138, 0.0141, 0.0144, and 0.0146
when the sequence lengths are 9 to 1, 8 to 2, 6 to 4, and 5 to 5,
respectively. When the sequence length is too small or too large, the
RUL prediction accuracywill be lower or even invalid. Table 5 shows
the RUL forecast performances for different SPs of batteries B5 and
B6. The predicted values at SP = 20 (12%) and SP = 30 (20%) are
very close to the actual values, indicating that the proposed method
can effectively diagnose the RULs of batteries at the early stages.
Tables 6, 7 show the predictions for batteries B5 and B6 based on
the three algorithms; it can be seen that the predictions with VMD
have the smallest REs.

4 Conclusion

The remaining life of a lithium battery was predicted in
this work based on the VMD-MC-BiLSTM network using early-
stage battery capacity data. The following are the conclusions
of this study. We successfully applied the VMD-MC-BiLSTM
network to predict the remaining life of lithium battery and
achieved satisfactory results. Compared to traditional statistics-
based methods or traditional deep-learning models, the VMD-MC-
BiLSTMnetwork produces better results from processing sequential
data, especially with regard to capturing long-term dependencies
and processing variable-length sequences. Our experimental results
show that the VMD-MC-BiLSTM network not only effectively
captures the dynamic characteristics of lithium batteries during
operation but also provides accurate predictions of their RULs.
In addition, we conducted in-depth analyses and optimization
of the VMD-MC-BiLSTM network with regard to the network
structure design, hyperparameter adjustment, and training strategy.

Through these optimization measures, we further improved the
predictive performance of the model, making it more suitable
for application to actual lithium battery health management
systems. Despite the encouraging results, some challenges remain
and further improvements are possible. For example, the present
study is mainly based on datasets of a specific type of lithium
battery, and further validation and model adjustment may be
required for different types of lithium batteries or different
working conditions. In addition, the performance of our model in
handling abnormal or extreme conditions needs to be improved,
which may require the introduction of more anomaly detection
mechanisms or complex structural design of themodel. In summary,
the RUL prediction of a lithium battery based on the VMD-
MC-BiLSTM network has great significance for improving the
efficiency and accuracy of a lithium battery health management
system. Future research on this subject may need to consider
broader data validations, further optimizations of the model, as
well as validation and iteration in practical applications to drive
further developments.
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