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Line-parameter identification of
medium-voltage distribution
systems based on deep
deterministic policy gradients

Xuebao Jiang*, Liudi Fu, Chenbin Zhou, Kang Chen, Yang Xu
and Bowen Wu

Suzhou Power Supply Company, State Grid Jiangsu Electric Power Co., Ltd., Suzhou, China

Accurate line-parameter identification is an important foundation for
refined the regulation, protection, and control of distribution systems.
Traditional identification models provide accurate modeling, while conventional
identification approaches are hindered by the high complexity and low
observability of power systems. In this article, a parameter identification
method based on the deep deterministic policy gradient is proposed for
medium voltage distribution systems. The proposed method starts with
objective function constructing, followed by power flow analysis and parameter
identification modeling, where the L2 normalization theory is introduced to
improve the computation efficiency. On this basis, the parameter identification
framework is constructed through designing the Markov decision process of a
parameter and using a training mechanism. An adaptive parameter correction
method is proposed to improve the accuracy and efficiency of a deep-
reinforcement-learning-based agent. The performance of the proposed modal
is tested on IEEE 14-node and IEEE 33-node medium-voltage distribution
systems. Case simulation results demonstrate that the proposed modal exhibits
superior computational capability, while achieving fewer errors compared to
traditional methods.

KEYWORDS

deep reinforcement learning, medium-voltage distribution system, line-parameter
identification, deep deterministic policy gradient, markov decision process, adaptive
parameter correction mechanism

1 Introduction

A medium-voltage distribution network serves as a crucial link within a power system,
acting as a pivotal hub that connects the transmission and distribution sides (Gogula and
Edward, 2023). Its significance lies in facilitating the efficient flow of electricity between
these interconnected components, ensuring reliable power delivery to consumers. With
the random access of distributed power sources and flexible loads, the power grid is
established as a vertically integrated system (Kumar et al., 2023b; Kumar, 2024). Ensuring
accurate modeling of a distribution system is paramount for facilitating dispatching
operations and emergency repair commands within a network. This precision is essential
for effective distribution system management, enabling swift responses to operational
requirements and emergent situations. The line parameters of a distribution system
serve as the foundation of computer and modern automation system, including accurate
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system modeling, facilitating power-flow analysis, state
estimation, protection setting and optimized power flow
(Kumar et al., 2013; Sukanya Satapathy and Kumar, 2020). However,
changes in the system (e.g., due to upgrade) and work environment,
among other factors, have led to deviations between the line
parameters recorded in existing ledgers and their actual values.

The key to estimating the line parameters of a distribution
system lies in establishing the appropriate relationship between
measurement data and the line parameters, which are then
deduced accordingly. Methods used in previous studies on
distribution-network line-parameter estimation are generally
categorized into two main types: model-driven methods and
data-driven methods.

Model-driven methods commonly entail developing a
mathematical model in which line impedance is the parameter
to be determined (Pegoraro et al., 2019). The mathematical
model establishes a correlation between measured data and line
parameters based on a power-flow model. The parameters are
then obtained through iterative solutions. In a previous study
(Dutta et al., 2021), a scheme based on effective variance-based
reweighed nonlinear least squares is proposed for estimating
line parameters in distribution networks. To enhance parameter
estimation accuracy, phasor measurements are incorporated into
the model, along with consideration of system measurement
errors (Pegoraro et al., 2019; Srinivas and Wu, 2022). Wu et al.
(2022) proposed a two-stage approach. It involves a fixed-step
aging parameter iteration as an initial step for parameters,
followed by Newton–Raphson iteration for precise correction
of the parameters. A multilayer multi-order generalized discrete
integrator based adaptive control is proposed to better adapt to
extreme dynamic conditions (Kumar et al., 2023a). In addition, two-
stage identification is performed but using a mixed-integer linear
program model to produce more accurate initial values (Ma et al.,
2022). The above methods typically yield accurate estimations
under conditions of low noise and complete measurements.
However, the numerical differentiation method is impeded by
the system’s strong non-linearity, often resulting in a reduced
computational speed and potential challenges such as local
convergence issues.

With the rapid advancement of artificial intelligence, data-
driven methods have been applied for parameter identification
of distribution systems in recent years (Satapathy and Kumar,
2019; Lakshminarayana et al., 2021). Compared with model-
drivenmethods, deep learning autonomously combines and extracts
input features from data, thus avoiding subjectivity resulting from
manual intervention. Model-driven methods related to parameter
identification can be categorized into traditional machine learning
(Sun et al., 2024; Yang et al., 2022; Yu et al., 2018; Zhang et al.,
2020), and physical-information neural networks (Li et al., 2024;
Wang and Yu, 2022). Traditional machine-learning methods
establish the mapping relationship between input measurements
and identification parameters. A supervised algorithm, based
on a neural-network mapping model, is employed to learn the
relationship between the parameters and the measurement data
obtained from two terminals of a feeder (Yang et al., 2022;
Sun et al., 2019). Another approach, without prior parameters,
involves inferring line impedance through the analysis of power-
flow equations and historical measurement data (Zhang et al., 2020;

Wang et al., 2024; Zhang et al., 2021). These approaches can acquire
line parameters more rapidly. However, the resulting identification
outcomes may not adhere to physical constraints (Wang and Yu,
2022). In addition, gaussian harmony search and jumping gene
transposition algorithm is proposed for unit commitment problem
to deal with complicated non-linear optimization (Kumar et al.,
2016). In a previous study (Li et al., 2024), a deep-shallow
neural network is proposed by embedding the relationships
between buses in the power flow as inputs, achieving physical
consistency. While adding structural constraints can enhance
the physical characteristics of the model to some extent, high-
dimensional nonlinear complex models (Kumar et al., 2020) often
exhibit a “one-to-many” mapping relationship between model
features and identification parameters, thereby limiting their
application.

In comparison to existing model-driven methods, which often
struggle with the trade-off between precision and computational
complexity, and data-driven approaches, which can sometimes
lack physical interpretability, this paper bridges the gap by
combining the strengths of both. For instance, model-based
methods such as those using nonlinear least squares (Dutta et al.,
2021; Wu et al., 2022; Ma et al., 2022; ?) provide high
accuracy under low-noise conditions, but they often fail when
faced with incomplete measurements or high non-linearity.
Coincidentally, purely data-driven methods such as traditional
machine learning approaches (Sun et al., 2024; Yang et al., 2022;
Wang et al., 2024; Zhang et al., 2021) can rapidly infer parameters but
may deviate from the physical constraints of the system. Therefore,
it is necessary to propose a hybrid solution that guarantees both
high accuracy and physical consistency, especially in real-time
applications.

By combining the advantages of both models and data,
a method based on deep reinforcement learning (DRL) can
automatically generate decision-making information in complex
scenarios (Hu et al., 2023). A survey paper (Glavic, 2019) and
a vision paper (Li and Du, 2018) comprehensively reviewed and
projected reinforcement learning and DRL-based control on power
systems, respectively. For instance, a double deep Q-learning is
proposed to identify the composition of the western electricity
coordinating council composite load model (Wang et al., 2020).
Furthermore, Q-learning is used for the parameter identification
of the load model (Xie et al., 2021). While methods like deep Q-
learning have been used for parameter identification tasks, they
typically rely on discrete action spaces and may face challenges
with convergence in high-dimensional continuous systems like
distribution networks. In the current application of DRL in power
systems, it is increasingly common to utilize DRL as a replacement
for conventional optimization programming methods (Yan and Xu,
2020; Sun and Qiu, 2021; Zhou et al., 2020; Recht, 2019). Given
that the line parameters of a distribution network change minimally
over short periods, the situation can be treated as a fixed-value
identification problem. Nonetheless, several challenges persist in the
modeling process. On the one hand, relying solely on measured
data as the observation space may result in issues related to local
convergence. On the other hand, the varying lengths of each branch
in the distribution network lead to differences in the parameters
of each line. Directly identifying these parameters can impact the
convergence speed of a model.
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FIGURE 1
Finite MDP for the line-parameter identification.

This article addresses the challenge of establishing accurate
mathematical models for parameter identification in medium-
voltage distribution networks. A method is proposed for
parameter identification of medium-voltage distribution networks
based on the deep deterministic policy gradient (DDPG).
First, an objective function is established to minimize the
squared difference between nodal measurements and the nodal
calculated values from identified parameters after power-flow
calculation. Additionally, recognizing the limited impact of line
parameter changes on power flow calculation results, the L2
normalization method (L2-Norm) is introduced to enhance the
objective function. Subsequently, the parameter identification
process in the distribution network is reformulated as a
Markov decision process (MDP), and a DRL environment for
parameter identification is established. The maximum-minimum
normalization method (Max-Min-Norm) is introduced to address
the challenge of parameter differentiation between different
lines. Thereafter, DDPG is used to estimate the line parameters
of a distribution system. The effectiveness of the proposed
model is simulated and verified on IEEE 14-node and IEEE
33-node systems.

The remainder of this article is organized as follows. Section 2
presents real measurement-based parameter-identification problem
formulation and then proposes the MDP formulation of DRL for
parameter identification. Section 3 presents the DDPG algorithm
used in distribution-system line-parameter identification and
the DDPG model design. Section 4 provides case studies to
verify the effectiveness of the proposed parameter identification

model. Finally, Section 5 presents the conclusions and future
extension of this study.

2 Parameter-identification model of
distribution system

2.1 Distribution system model

A distribution system is an important part of an whole power
system. In the process of power-flow calculation, unknown variables
can be obtained from known variables, so as to obtain power-flow
data for an entire distribution network.The variables mainly include
i-th node active power Pi, reactive power Qi, voltage amplitude Vi
and phase angle θi, and the operating state of the system can be
described by these power flow variables. For a distribution network
with N buses, the operation state of a distribution network can be
determined by power flow equation in polar form using any two of
the four groups of variables Equations 1–3:

Pi =
N

∑
j=1

ViVjGij cosθij +
N

∑
j=1

ViVjBij sinθij (1)

Qi =
N

∑
j=1

ViVjGij sinθij −
N

∑
j=1

ViVjBij cosθij (2)

Zij = Rij + jXij =
Gij

G2
ij +B

2
ij
− j

Bij

G2
ij +B

2
ij

(3)

where θij is the voltage angle difference between the i-th node and the
j-th node; Gij and Bij are the conductance and susceptance between
the i-th node and j-th node, respectively; Zij is the impedance
between node i and node j; Rij and Xij are the resistance and
reactance parameters of line i-j, respectively. The first node is a slack
bus and the other nodes are P-Q buses (Pi andQi are known; Vi and
θi are unknown) in the actual distribution network. Among them,
Pi, Qi and Vi can be obtained from supervisory control and data
acquisition (SCADA), and Gij and Bij are unknown and changing
owing to line upgrading or the working environment at this time
(Wang et al., 2022). According to Equations 1, 2, when Gij and Bij
change, Vi will change accordingly when the measurement data
obtained by SCADA is used for power-flow calculation. Therefore,
distribution-network line-parameter identification can be modeled
as searching for a set of optimal line parameters that minimize
the square deviation between simulated observations and real
measurements. The parameter identification can be formulated as
an optimization problem:

minF(θ̂R, θ̂X) =
T

∑
t=1
[Os

t (θ
s
R,θ

s
X) −O

c
t (θ̂R, θ̂X)]

2 (4)

s.t.Oc
t+1 = fsimul (O

s
t, {θ̂R, θ̂X}) , t = 0,1,…,T (5)

θX,min ≤ θ̂X ≤ θX,max (6)

θX,min ≤ θ̂X ≤ θX,max (7)

where θR and θX represent the set of real resistance and reactance of
the distribution system lines, respectively; θ̂R and θ̂X are the set of
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FIGURE 2
Diagram of the DDPG model structure.

FIGURE 3
Structure of the Actor network and the Critic network based on DDPG.

estimated resistance and reactance of the lines, respectively; Os
t(⋅|⋅)

represents the system measurement under the real line parameters
at t; Oc

t(⋅|⋅) represents the observation calculated by power-flow
simulation under the condition of the estimated line parameters
at t; fsimu(⋅|⋅) represents the model simulation calculation function
used to calculate the observed values; θR,min and θR,max denote the
upper and lower bounds of the resistance parameters, respectively;
θX,min and θX,max are also the respective bounds for the reactance
parameters; T is the number of simulations.

Equations 4–7 can be directly solved based on measurement
data to obtain the optimal parameter set that minimizes the
deviation between the real situation and the simulation. However,
for complex and nonlinear power-flow models, different parameter
sets can correspond to similar simulation observations, leading to

non-convergence when fitting the target parameter (Yu et al., 2020).
Meanwhile, there is a fundamental limitation: the influence of line
parameters on the node voltage amplitude is limited, so that the
deviation between the measured and simulated data is far less than
1. This will lead to an increased computational burden. Therefore,
the L2-Norm (Loshchilov and Hutter, 2019) method is proposed to
modify the definition of the deviation between themeasured and the
simulated data, as Equation 8:

minF(θ̂R, θ̂X) =
1
T

T

∑
t=1
||Os

t (θ
s
R,θ

s
X) −O

c
t (θ̂R, θ̂X) ||2 (8)

where ||Os
t −O

c
t ||

2 represents the L2-Norm deviation between a real
measurement and a calculation.
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FIGURE 4
IEEE14-M medium-voltage distribution system.

2.2 MDP for line-parameter identification

According to Equation 5, the parameter identification
process in the distribution system solution problem can be
transformed into a finite MDP problem. The finite MDP is
a sequential decision mathematical model in which an agent
perceives the current state of the model and takes action
according to the corresponding strategy to change the state
of the environment and obtain the corresponding rewards
(Hu et al., 2023; Liu et al., 2024).

The finite MDP for the line-parameter identification of
a medium-voltage distribution system is not only the key to
combining DRL with parameter identification, but also the
core part of the identification model based on the DDPG
method in this article. The finite MDP for line-parameter
identification is described in Figure 1. There are three sections,
namely DRL agent interaction, action value processing, and
simulation of the computing environment based on decision
policy π.

A complete MDP process involves running K steps. It was
assumed that for the k-th step mainly consists of the following
four sub-parts:

Sub− part1: A DRL-based agent computes Ak action given state
Sk, guided by decision policy π. Furthermore, action Ak is the value
of parameter correction.

Sub− part2: The action An generated by the DRL-based agent
calculation is integrated into parameters θ̂R and θ̂X to determine
the (k+1)-th parameter. Additionally, the new parameters satisfy the
constraint rules.

Sub− part3: State Sk+1 is updated according to the new
parameters obtained from Sub− part2, and the state is input into the
simulation calculation module to calculate the measurement Os

k+1.
Thereafter, state Sk+1 is input to the next step to make a new round
of decisions.

Sub− part4:This component is based on the observed simulated
measurement Oc

k+1 obtained in the simulation calculation module
of state Sk + 1, and the measurement data at the (k+1)-th step.
The (k+1)-th step reward Rn is obtained by comparing the
deviation from Equation 4.

In the above MDP process, the DRL-based agent first takes
decision actions according to the state including the simulation
calculation results. It then inputs the actions into the simulation
calculation module to obtain the reward. In this way, the agent
repeatedly updates the state to ensure the maximum cumulative
reward while minimizing the objective function Equation 4.
However, considering only the line parameters in the state model
will result in decreasing in the efficiency of the model solution.
Therefore, the augmented state space is proposed to add the
observation deviation of the current state and the simulation
calculation results of the current state into the original state
space. Model perception ability improves after using an augmented
state space.

2.3 Design of each module in MDP

In the finite MDP for line-parameter identification shown
in Figure 1, the DRL-based agent interacts with the simulation
calculation module in Equations 1, 2 through a sequence
of state, action, and reward. A reasonable DRL-based agent
design will vastly affect the performance of line-parameter
identification.

State design: According to proposed augmented state space,
the distribution line parameters θ̂R, θ̂X, the simulation calculation
results Oc

k under the line parameters θR, θX at the k-th step, and the
observation deviationOs

k −O
c
k at the k-th step are combined to form

state space Sk. The specific expression of the augmented space state
is shown as Equation 9:

Sk = {θ̂R,k, θ̂X,k,O
c
k,O

s
k −O

c
k} (9)

Action design: The action set Ak made by the DRL-based
agent according to current state Sk, which is the output of
strategy π at the k-th step, is the adjustment of the parameters
of each line in the distribution system. It should be noted
that for a medium-voltage distribution network with N nodes,
there are N− 1 lines. There are N− 1 actions that need to be
given according to the strategy π for the parameter R and
parameter X, respectively. The action set is represented according to
Equations 10, 11:

ΔθR,k = πk (θ̂R,k) (10)

ΔθX,k = πk (θ̂X,k) (11)

Combined with transform and inverse-transform the line
parameters Figure 1, the next state Sk+1 is determined by the
action An made by the agent according to current state Sn,
as follows:

θ̂R,k+1 = θ̂R,k +ΔθR,k (12)

θ̂X,k+1 = θ̂X,k +ΔθX,k (13)

The distribution network line parameters are usually distributed
in a continuous space. However, owing to the range between the
different lines, the parameter range of resistance and reactance in a
line is not consistent. In addition, singular samples are not conducive
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FIGURE 5
Average reward during training in IEEE14-M: red line is DDPG model training; blue line is PPO model training.

FIGURE 6
Observation MAPE results of different correction steps.

to model learning, which leads to an issue whereby the model
is difficult to converge. In order to facilitate the line-parameter
identification, the Max-Min-Norm be applied to transform and
inverse-transform the line parameters θ̂R, θ̂X to [0, 1] (Chang et al.,
2023) as Equations 14–17.

θRi,k =
θ̂Ri,k − θRi, max

θRi, max − θRi,min
,θRi,k ∈ [0,1] (14)

θXi,k =
θXi,k − θXi,max

θXi,max − θXi,min
,θXi,k ∈ [0,1] (15)

θ̂Ri,k = (θRi,max − θRi,min)θRi,k + θRi,min (16)

θ̂Xi,k = (θXi,max − θXi,min)θXi,k + θXi,min (17)

where θRi,k and θXi,k represent the normalized line parameters
using Max-Min-Norm at the k-th state of the i-th line, respectively.

It should be noted that when the DRL-based agent makes
action An according to current state Sn, the range of the
parameter correction value θRi,k+1, θXi,k+1 should be within [0, 1]
(Zhou et al., 2021). During the process of parameter correction
with Equations 12, 13, a parameter may exceed the boundary
[0, 1]. To constrain any out-of-bounds line parameters within [0,
1], an adaptive parameter correction methods have been proposed
as follows:

̄θi,k+1 =

{{{{{{{
{{{{{{{
{

λc
1+ λc
(( ̄θi,k +Δθi,k) + 1) , ( ̄θi,k +Δθi,k) < λc

1−
λc

1+ λc
(2− ( ̄θi,k +Δθi,k)) , ( ̄θi,k +Δθi,k) > 1− λc

̄θi,k +Δθi,k,otherwise
(18)

where λc is the correction factor. The correction factor λc is crucial
for balancing the speed and stability of parameter updates during
the correction process. According to experience, correction factor λc
was set to 0.005 to ensure that corrections are neither too aggressive,
which could lead to instability, nor too conservative, which could
slow down the convergence.

Reward design: The quality of the reward function will directly
affect the agent decision and the outcome. In this study, in order to
superior guide the model learning, the reward function is designed
at k-th step and includes three parts, that is, the observation
deviation reward, ro,k, the parameter state reward, rθ,k, and the action
reward, ra,k:

Rk = −(λoro,k + λθrθ,k + λara,k) (19)

where λo, λθ, and λk are the corresponding reward weights.
The observation deviation reward ro,k is the deviation

between the system measurement and the simulation
calculation result. When the deviation is small, the agent
obtains a positive reward. Otherwise, the agent is penalized.
In this paper, the observation deviation reward ro,k value
at the k-th step is obtained according to Equation 4,
as follows:

ro,k = ||O
s
k (θ

s
R,θ

s
X) −O

c
k (θ̂R, θ̂X) ||2 (20)
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The parameter state reward rθ,k is used to penalize for out-of-
bounds line parameters. When the line parameters are out of [0, 1],
the agent is penalized. It should be noted that rθ,k is calculated before
calculating Equation 18.

riθ,k =

{{{{{{{{{
{{{{{{{{{
{

1−
λc

1+ λc
(( ̄θi,k +Δθi,k) + 1) , ( ̄θi,k +Δθi,k) < λc

1−
λc

1+ λc
(2− ( ̄θi,k +Δθi,k)) , ( ̄θi,k +Δθi,k) > 1− λc

λc
1+ λc
( ̄θi,k +Δθi,k) ,otherwise

(21)

rθ =
1
L

L

∑
i=1

riθ,k (22)

where L is to make the observation species maintain rθ
consistent in different scenarios. The action reward ra,k is used
to penalize with excessive action and unnecessary corrections,
as follows:

ra =
1
2L
∑

θ∈(R,X)

L

∑
i=1
(Δθiθi,k) (23)

3 Deep deterministic policy gradients
for line-parameter identification

3.1 DDPG model design

The DDPG model is an improvement of the deep Q-learning
network and is combined with the idea of the deterministic policy
gradient algorithm, which is a model-free DRL algorithm. The
Actor-Critic (AC) architecture is applied to the DDPG model
as its algorithm basic framework (Gopalakrishnan et al., 2016).
Moreover, neural network is introduced as the approximation of its
policy network and value network. The DDPG algorithm structure
is shown in Figure 2.

Each part of the AC architecture for the DDPG model uses two
neural-network structures to form four neural networks in total,
that is, the Actor network, Target Actor network, Critic network,
and target Critic network. The Actor network is used for executing
the policy, and the Critic network is used to evaluate the executed
policy. Additionally, the DDPG model adopts deterministic policy
gradient to update the model parameters. In the process of training,
the Actor network calculate an action according to current state Sk
based on π(Sk|θμ). The Gaussian noise is added into the generated
action Ak to sufficiently explore the simulation environment.
Subsequently, action Ak is input into the simulation environment
to generate the next state Sk+1 and obtain the corresponding
reward Rk. After a step, current state Sk, action Ak, next state
Sk + 1, and reward Rk are combined to form a quadruple (Sk, Ak,
Sk + 1, Rk) and stored in the empirical buffer for batch training
of the model.

After Nu samples of the Actor network training, the M samples,
that is, the quadruple (Sk, Ak, Sk+1, Rk) are randomly obtained
from the empirical buffer to calculate target yi with discount
rate γ and each Critic network loss function. The calculation is
expressed as Equation 24:

FIGURE 7
Line R and X parameter identification results and relative error in
IEEE14-M system. (A) Identified line R parameter results. (B) Identified
line X parameter results. (C) Identified line R and X parameter
relative error.

{{{{{{{{{
{{{{{{{{{
{

yi = Ri + γminQ(S′i,A′i |θQ′ )

A′i = πc (S′i |θπ′ )

LQ (θQ) =
1
M

M

∑
i=1
(yi −Q(Si,Ai |θQ ))

2

i = 1,2,…,M

(24)

The parameter θπ in the policy network is updated through
the policy gradient based on the M samples. The update goal is to
maximize the Q network critic value as follows:

∇θπJ(θπ) =
1
M

M

∑
i=1
∇AQ(Si,A |θQ ) |A=πc(Si|θπ )

∇θππc (Si |θπ )
(25)

where πc(S
′
i |θπ′) represents the Target Actor network; Q(Si,A|θQ)

represents the Target Critic network. The Target Actor network
has the same network structure as the Actor network, and the
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FIGURE 8
Line R and X parameter identification MAPE during a period of time.

FIGURE 9
Results of line aging assessment of IEEE14-M.

Target Critic network has the same network structure as the Critic
network. The Actor network and the Critic network structures
are shown in Figure 3.

The model parameters are updated using the soft update
strategy as follows:

θQ′ ← τθQ + (1− τ)θQ′ (26)

θπ′ ← τθπ + (1− τ)θπ′ (27)

where τ represents the momentum of the model parameter update,
τ ∈ [0,1], which is set to 0.005 in this study.The training of the DRL-
based agent based on DDPG is depicted as Algorithm 1.

3.2 Line-aging assessment based on the
line-parameter identification

Actual line parameters are identified using the proposed
DDPG model. However, line aging seriously affects the
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TABLE 1 Summary of identification with different methods.

WLS PPO SAC DDPG (ours)

Average error of R 5.80% 4.20% 6.12% 2.24%

Average error of X 7.12% 5.44% 6.54% 2.37%

Max error of R 8.16% 7.34% 8.86% 3.82%

Max error of X 9.54% 7.87% 9.05% 4.37%

Min error of R 2.85% 1.56% 1.88% 0.20%

Min error of X 3.66% 1.98% 2.45% 0.19%

Online Single time 1.34min 18.61s 15.42s 9.34s

FIGURE 10
Line R and X parameter identification results and relative error in
IEEE33 system. (A) Identified line R parameter results. (B) Identified line
X parameter results. (C) Identified line R and X parameter relative error.

transmission quality of power systems. Therefore, line
aging should be roughly estimated based on line-parameter
identification results. The line-aging indexes, namely ωi

R and
ωi
X, are expressed by calculating the degree of deviation of

identified line parameters from theoretical line parameters
according to Equation 28:

{
{
{

ωi
R = |θ̂

i
R − θ

true,i
R | /θ

true,i
R

ωi
X = |θ̂

i
X − θ

true,i
X | /θ

true,i
X

(28)

where θtrue,iR and θtrue,iX represent the standard resistance and
reactance parameters of the i-th line, respectively. These
parameters are set according to the factory specifications
of the line.

The line-aging risk level of each line is calculated as the sum of
ωi
R and ωi

X over a period of time, as follows:

Ai =
1
T

T

∑
t=1
(ωi

R,t +ω
i
X,t) (29)

4 Case studies

4.1 Case description and experimental
setup

In this section, the proposed DDPG-based model performance
is validated on IEEE 14-node and IEEE 33-node test systems. Details
regarding the two test systems are as follows:

Case 1: The modified IEEE 14-node medium-voltage
distribution system is used as the basic case, named IEEE14-
M. IEEE14-M (shown in Figure 4) is a 23 kV medium-voltage
distribution system, with 14 nodes and 13 transmission lines.
The datas of each node, that is, the nodal active power, reactive
power, and voltage magnitude, is simulated using the pandapower
Python package (Thurner et al., 2018) to simulate the measurement
data collected by SCADA. The numerical nodal injected active
powers are generated using the Monte Carlo method in the range
of [0.8Ps, 1.2Ps], where Ps represents the standard active power of
each node, and the reactive power Qs is calculated using the power
factor. In practice, the power factor is between 0.8 and 0.95. The
corresponding nodal voltage is obtained by executing power-flow
function of the pandapower.

Case 2: The IEEE 33-node medium-voltage distribution system
is defined as IEEE33. The IEEE33 is a 12.66 kV distribution
system, with 32 transmission lines (Zhao et al., 2020). The
simulated measurement data are generated in the same manner
as IEEE14-M.

All experiments are performed on a computer with i1-9700
@3.00 GHz CPU, 64 RAM, and GeForce GTX 1080Ti GPU. In
addition, the software environment configuration is Python v3.10,
Pytorch v2.1.0-cuda, and pandapower v2.11.0. A total of 10,000
episodes is carried out.

To demonstrate the performance of the proposed DDPG
model, the DDPG model is compared with the proximal policy
optimization (PPO) algorithm, soft actor-critic (SAC) algorithm
and the weighted least square (WLS) algorithm, a classical method
of parameter identification. In the DDPG model, the agent makes
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FIGURE 11
Line R and X parameter identification MAPE of IEEE33 system during a period of time.

FIGURE 12
Result of line aging assessment of IEEE33 system.

decision with Gaussian noise, which has a standard deviation
0.01. The learning rates of the Actor network and the Critic
network are 0.002 and 0.001, respectively (Gopalakrishnan et al.,
2016). The discount rate γ is set to 0.9. The batch size is 32.
The observation deviation reflects the gap between the model
output and the real observation, which directly affects the
accuracy of parameter identification. The observation deviation
reward weights λo is set to 0.6 to highlight that the model needs
to reduce the observation deviation as the main optimization

direction and ensure that the identified parameters can accurately
reflect the actual system state. In addition, the parameter state
reward and action reward are to encourage the model to
gradually adjust and optimize toward the correct parameter state,
avoiding frequent and unreasonable adjustments. Therefore, the
corresponding reward weights, λθ and λa, are set to 0.2 to balance
the exploration of suitable sitting and the maintenance of stable
output. In the PPO model, the training process is set as previously
described (Schulman et al., 2017).
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TABLE 2 Summary of identification with different methods.

WLS PPO SAC DDPG (ours)

Average error of R 6.77% 6.35% 7.42% 4.56%

Average error of X 8.61% 7.42% 8.21% 5.14%

Max error of R 14.11% 10.47% 13.15% 7.88%

Max error of X 13.81% 10.88% 12.92% 7.84%

Min error of R 4.88% 4.67% 3.67% 1.57%

Min error of X 5.73% 4.49% 3.96% 2.51%

Online Single time 2.05min 25.12s 23.75s 12.97s

s

Algorithm 1. Training process of DDPG for line-parameter identification.

4.2 Training performance

Reward values can provide a rough estimate of the line-
parameter fitting accuracy. According to Equation 19, it can be seen
that the calculation results identified using line parameters is closer
to the measurement data, and the reward value is smaller. This
means that, when the reward value is close to 0, the line-parameter
identification accuracy is better. Figure 5 (red line) presents the
average reward curve for the DDPG model in training. It can
be seen that the DDPG can exhibit fast convergence, and the
reward value is −0.31 at the end-step, showing that the correction
strategy can reduce the simulated observation error corresponding
to the correction parameter to the parameter observation error
level. Additionally, the reward curve of the DDPG model is
stable during training process owing to the AC strategy and
the state design. Figure 5 (blue line) shows the average reward
curve during the PPO training. As can be seen from Figure 5,
the convergence and stability of the PPO algorithm are inferior
to those of the DDPG model, and the final reward is −0.92.
This is primarily due to the lower sampling efficiency of the
PPO algorithm during policy training, leading to less accurate
parameter identification than the DDPG model. Figure 5 (green
line) shows the average reward curve during the SAC trining.
It can be seen that the convergence of SAC is more stable,
but the convergence speed is slow, and the final identification
reward is −0.98. In general, compared with the SAC model,
the PPO model converges faster in line-parameter identification,

but the effect is unstable. However, the DDPG model not only
shows higher stability in the training process, but also achieves
significantly better final reward value. The results show that the
DDPG model can more accurately realize the parameter adjustment
and optimization strategy of distribution network line-parameter
identification.

4.3 Test performance

After the training is completed (the proposed DDPG model
in Algorithm 1), the medium-voltage distribution network line-
parameter identification strategy are loaded into the online strategy
to realize the online line-parameter identification, and the test is
carried out in 100 test scenarios. Subsequently, for all 100 test
scenarios, the MAPE of the observed values are calculated at each
step corresponding to the typical parameters, as shown in Figure 6.
After the first correction, the average MAPE decreases by 59.16%
for IEEE14-M and 39.59% for IEEE33. In addition, For the
IEEE14-M system, the MAPE of parameters R and X decreases
to 2.08% and 2.36% after averaging three steps of correction,
respectively. For the IEEE33 system, the MAPE of parameters R
and X decreases to 4.65% and 5.31% after averaging five steps of
correction, respectively. It indicates that the corrective action of
the line parameter identification strategy is basically completed.
It can be seen that in the online implementation, appropriate
identification parameters can be obtained by averaging 3 correction
steps for the IEEE14-M system and 5 correction steps for the
IEEE33 system.

4.4 Case 1 line-parameter identification
and line-aging assessment

The proposed DDPG model can effectively identify the
parameters of IEEE14-M lines, shown in Figure 7 When nodal
voltage magnitude Vi contains 1% Gaussian noise during the
simulation of measurement data, the deviation of the 7-th line (from
the 2-nd bus to 7-th bus) in the R identification results is largest
shown as Figure 5, and the deviation is 3.82%. The first line (from 0-
th bus to 1-st bus) has the largest deviation from the actual value of
line reactance, and the deviation is 4.37%. Combined with Figure 5,
it can be seen that the voltage magnitude deviation of 2-nd bus is
the largest, which is caused by the deviation of the X parameter
identification result of the first line. However, the measurement of
voltage magnitude has 1% Gaussian noise. Moreover, part of the
action design adds Gaussian noise with s = 0.02, so that there is a
certain deviation when fitting the objective function. The deviation
of the voltage magnitude is 0.39%, which is within the acceptable
range. Additionally, Figure 5 shows the identification deviation of
the line parameters, that is, R, and X, which showed values of
2.244% and 2.372% compared with actual line parameters at single
time slice. This demonstrates that the proposed DDPG model is
effective in the case of a large difference degree of line parameters.
Moreover, the parameter adaptive correction and Max-Min-Norm
can effectively suppress the influence of the difference degree.

Since the nodal injected power of each node changes with
time, single identification results are not sufficient to reflect the

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1457237
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Jiang et al. 10.3389/fenrg.2024.1457237

identification accuracy. Therefore, multi-temporal cross-section
experiments are conducted using the proposed DDPG model
from 01:00 to 00:00. In this study, pandapower is used for
simulating the measurement data collected by SCADA within
1 day, and the sampling frequency is 15min/time. A period of
measurement data are input into the proposed model for sequence
verification, and the errors of the R and X over a period of
time are shown in Figure 8. The line parameters R and X’s mean
absolute percentage error (MAPE) are 2.45% and 2.52% respectively,
for all lines records. This low error rate highlights the model’s
robustness in handling dynamic conditions, where injected power
fluctuates throughout the day. A key advantage of the DDPG
model is its capacity for real-time adaptation, providing consistent
accuracy across various time slices. The model’s ability to capture
these temporal variations ensures a high level of precision in
parameter identification, even under changing system dynamics.
This makes it particularly suitable for practical distribution network
applications, where operational conditions are in constant flux.
Furthermore, the high identification accuracy allows distribution
network operators to rely on the model for continuous system
monitoring and aging assessment, ensuring system stability and
reliability. This demonstrates the model’s advantage in providing
accurate, real-time parameter estimation with low computational
complexity.

The result of the line-aging assessment is shown in Figure 9.
Usually, according to the actual situation, a distribution-
network operator can set the aging warning coefficient Aerr.
According to Wu et al. (2022), the Verr is set to 0.18, and
as presented in Figure 8, all lines in the IEEE14-M are in
the normal state. It should be noted that the line-aging
risk level of each line is calculated over a period of time,
according to Equation 29.

In order to verify the performance of the proposed method,
the proposed DDPG model is compared with WLS, SAC and
PPO model. Table 1 summarizes the results for different algorithms.
The average identification deviation of line parameters R and
X under the WLS, SAC and PPO method are 5.8% (WLS-R),
7.12% (WLS-X), 6.12% (SAC-R), 6.54% (SAC-X), 4.2% (PPO-
R) and 5.44% (PPO-X). The identification accuracy of the
proposed DDPG method is better than that of the other methods.
This underlines the superior performance and accuracy of the
proposed DDPG model in line-parameter identification and aging
assessment tasks. The superior performance of the DDPG model
stems from its actor-critic structure, which enables efficient and
stable policy updates, and its ability to handle continuous action
spaces, providing precise control over line parameters in medium-
voltage systems. Compared to PPO and SAC model, DDPG
model offers better sample efficiency and focused optimization,
reducing parameter deviation. Its deterministic policy gradient
minimizes errors between observed and predicted parameters,
while noise injection ensures stable exploration. Additionally, the
DDPG model demonstrates a lower computational time complexity,
requiring less time to converge compared to SAC, making it more
suitable for real-time applications. These factors make DDPG more
accurate and stable for real-time line-parameter identification and
aging assessments, with lower computational overhead, ideal for
distribution networks.

4.5 Case 2 line-parameter identification
and line-aging assessment

In the test case, the line parameters of the IEEE33 medium-
voltage distribution system are identified using the proposed DDPG
model. The test is based on the same sampling frequency, that is, 15-
min. Similarly, a 1% Gaussian noise is added to the measurement
data (Vi). The identification results are shown in Figure 10. It can
be seen that the proposed DDPG method can exactly identify the
line parameters of each branch, namely R (shown as Figure 5)
and X (shown as Figure 5). Moreover, the corresponding average
relative errors are 4.56% and 5.15%, respectively. It is reflected in
both cases that the deviation of the line resistance identification
results is smaller compared with that of the line reactance. If the
possible measurement error is taken into account, the identification
results meet the requirement. The minimum identification error
of line parameters, R and X, as shown in Figure 5 are 1.56% and
2.51% respectively, and the corresponding maximum identification
errors are 7.88% and 7.83%, respectively. The results indicate that
the identification of line resistance tends to be more accurate
than that of line reactance, and all identification errors fall
within acceptable ranges, demonstrating the model’s robustness to
measurement errors.

In order to sufficiently reflect the identification accuracy, multi-
temporal cross-section experiments are conducted within 1 day
from 01:00 to 00:00. Similar to Case 1, pandapower is used
to simulating the SCADA measurement data and the sampling
frequency is also 15-min/time. The errors of R and X over a period
of time are shown in Figure 11. The MAPEs of line parameters R
and X are 4.72% and 5.45%, respectively, for all lines records. And
the stability and reliability of the proposed DDPG model over time
in a dynamic operating environment. This demonstrates that the
identification result accuracy is independent of the nodal injection
power fluctuation over a period of time (from 01:00 to 00:00 of
a day). This consistency in accuracy, regardless of nodal injection
power fluctuations, highlights the DDPG model’s resilience and
stability in a real-world operating environment. Unlike traditional
methods, the DDPG algorithm excels in environments with
temporal variability, maintaining its precision across different time
slices and system conditions. The model’s robustness ensures it is
well-suited for dynamic distribution networks, where power flow
and operational conditions continuously change. This high level
of adaptability makes it a reliable tool for real-time monitoring
and line-parameter identification in practical applications, offering
operators confidence in its stability over time. The relatively low
computational complexity also makes it feasible for deployment in
large-scale systems, where speed and accuracy are critical.

The result of line-aging assessment of IEEE33 system
is shown in Figure 12. The line parameters in the IEEE33 system
are maintained at normal level, but they are very close to the aging
warning coefficient Aeer (set to 0.18 in 4.3). Regarding the lines
parameter identification results of the IEEE33 system, the lines close
to the aging warning coefficient are the 16-th, 20-th, 24-th, and 25-
th line, and the Ai of the above lines exceeds 0.12. The average aging
risk level of all lines in the IEEE33 system is 0.097, and all lines are
in the normal state at present.

The proposed DDPG model is compared with WLS, SAC and
PPO algorithms to verify the effectiveness of DDPG, and the
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comparison results are shown in Table 2. The average identification
deviation of line parameters R and X under the different methods
are 6.77% (WLS-R), 8.61% (WLS-X), 6.35% (PPO-R), 7.42% (PPO-
X), 7.42% (SAC-R), 8.21% (SAC-X), 4.56% (DDPG-R ours), and
5.14% (DDPG-X ours), respectively. This superior performance is
due to DDPG’s efficient policy optimization and ability to operate
in continuous action spaces, ensuring better accuracy in parameter
identification, even in noisy conditions. In terms of computational
complexity, although computationally more intensive than WLS
or PPO model, ensures better convergence and stability. On
average, DDPG completes parameter identification for the IEEE33
system within 12.97 s, faster than SAC (23.75 s) due to DDPG’s
deterministic policy updates and more focused exploration. This
makes DDPG well-suited for real-time applications in large-scale
modern smart grid application.

5 Conclusion

Accurate identification of line parameters in distribution
systems is crucial for improving their security and reliability,
given their direct connection to end-users. This study proposes a
DDPG-based method for line-parameter identification in medium-
voltage distribution systems, validated on IEEE14-M and IEEE33
systems. By transforming the problem into a MDP and constructing
an agent with a fitting objective function, the proposed method
provides a novel approach compared to traditional methods. The
results show that the DDPG method achieves lower identification
deviations—2.24% and 2.37% in IEEE14-M, and 4.56% and 5.14%
in IEEE33 compared to the WLS and PPO methods. Additionally,
the DDPG approach only requires nodal measurements of injected
active power, reactive power, and voltage magnitude, simplifying
the process without sacrificing accuracy. With advancements in
smart grids, data-driven deep learning methods will further
enhance parameter identification for distribution systems. Future
research will focus on extending this method to broader line
parameters, addressing challenges like limited sample data and
adaptive topology.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

XJ: Formal Analysis, Methodology, Resources, Writing–original
draft. LF: Conceptualization, Resources, Visualization,
Writing–original draft. CZ: Software, Validation, Writing–original
draft. KC: Data curation, Investigation, Writing–review and editing.
YX: Project administration, Writing–review and editing. BW:
Supervision, Writing–review and editing.

Funding

The author(s) declare financial support was received for the
research, authorship, and/or publication of this article. • Science and
Technology Project of State Grid Corporation (No. J2023018).

Conflict of interest

Authors XJ, LF, CZ, KC, YX and BW were employed by State
Grid Jiangsu Electric Power Co., Ltd.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

References

Chang, C., Tao, C.,Wang, S., Zhang, R., Tian, A., and Jiang, J. (2023). A fault diagnosis
method for lithium batteries based on optimal variational modal decomposition and
dimensionless feature parameters. J. Electrochem. Energy Convers. Storage 20, 031004.
doi:10.1115/1.4055536

Dutta, R., Patel, V. S., Chakrabarti, S., Sharma, A., Das, R. K., and Mondal, S. (2021).
Parameter estimation of distribution lines using scada measurements. IEEE Trans.
Instrum. Meas. 70, 1–11. doi:10.1109/TIM.2020.3026116

Glavic, M. (2019). (deep) reinforcement learning for electric power system control
and related problems: a short review and perspectives. Annu. Rev. Control 48, 22–35.
doi:10.1016/j.arcontrol.2019.09.008

Gogula, V., and Edward, B. (2023). Fault detection in a distribution network using
a combination of a discrete wavelet transform and a neural network’s radial basis
function algorithm to detect high-impedance faults. Front. Energy Res. 11, 1101049.
doi:10.3389/fenrg.2023.1101049

Gopalakrishnan, R., Goutam, S., Miguel Oliveira, L., Timmermans, J.-M., Omar, N.,
Messagie, M., et al. (2016). A comprehensive study on rechargeable energy storage
technologies. J. Electrochem. Energy Convers. Storage 13, 040801. doi:10.1115/1.4036000

Hu, J., Wang, Q., Ye, Y., and Tang, Y. (2023). Toward online power system model
identification: a deep reinforcement learning approach. IEEE Trans. Power Syst. 38,
2580–2593. doi:10.1109/TPWRS.2022.3180415

Kumar, N. (2024). Ev charging adapter to operate with isolated pillar top
solar panels in remote locations. IEEE Trans. Energy Convers. 39, 29–36.
doi:10.1109/tec.2023.3298817

Kumar, N., Mulo, T., and Verma, V. P. (2013). “Application of computer
and modern automation system for protection and optimum use of high
voltage power transformer,” in 2013 international conference on computer
communication and informatics, Coimbatore, India, 04-06 January 2013 (IEEE)
1–5.

Kumar, N., Panigrahi, B. K., and Singh, B. (2016). A solution to the ramp
rate and prohibited operating zone constrained unit commitment by ghs-
jgt evolutionary algorithm. Int. J. Electr. Power and Energy Syst. 81, 193–203.
doi:10.1016/j.ijepes.2016.02.024

Kumar, N., Saxena, V., Singh, B., and Panigrahi, B. K. (2020). Intuitive
control technique for grid connected partially shaded solar pv-based distributed
generating system. IET Renew. Power Gener. 14, 600–607. doi:10.1049/iet-rpg.
2018.6034

Kumar, N., Saxena, V., Singh, B., and Panigrahi, B. K. (2023a). Power quality
improved grid-interfaced pv-assisted onboard ev charging infrastructure for
smart households consumers. IEEE Trans. Consumer Electron. 69, 1091–1100.
doi:10.1109/tce.2023.3296480

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1457237
https://doi.org/10.1115/1.4055536
https://doi.org/10.1109/TIM.2020.3026116
https://doi.org/10.1016/j.arcontrol.2019.09.008
https://doi.org/10.3389/fenrg.2023.1101049
https://doi.org/10.1115/1.4036000
https://doi.org/10.1109/TPWRS.2022.3180415
https://doi.org/10.1109/tec.2023.3298817
https://doi.org/10.1016/j.ijepes.2016.02.024
https://doi.org/10.1049/iet-rpg.2018.6034
https://doi.org/10.1049/iet-rpg.2018.6034
https://doi.org/10.1109/tce.2023.3296480
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Jiang et al. 10.3389/fenrg.2024.1457237

Kumar, N., Singh, H. K., and Niwareeba, R. (2023b). Adaptive control technique for
portable solar powered ev charging adapter to operate in remote location. IEEE Open J.
Circuits Syst. 4, 115–125. doi:10.1109/ojcas.2023.3247573

Lakshminarayana, S., Sthapit, S., and Maple, C. (2021). A comparison of data-driven
techniques for power grid parameter estimation. arXiv. doi:10.48550/arXiv.2107.03762

Li, F., and Du, Y. (2018). From alphago to power system ai: what engineers can
learn from solving the most complex board game. IEEE Power Energy Mag. 16, 76–84.
doi:10.1109/MPE.2017.2779554

Li, H., Weng, Y., Vittal, V., and Blasch, E. (2024). Distribution grid topology and
parameter estimation using deep-shallow neural network with physical consistency.
IEEE Trans. Smart Grid 15, 655–666. doi:10.1109/TSG.2023.3278702

Liu, W., Gao, S., and Yan, W. (2024). Comparison-transfer learning based state-of-
health estimation for lithium-ion battery. J. Electrochem. Energy Convers. Storage 21,
1–34. doi:10.1115/1.4064656

Loshchilov, I., and Hutter, F. (2019). Decoupled weight decay regularization. arXiv.
https://arxiv.org/abs/1711.05101.

Ma, L., Wu, L., Liu, N., and Pei, W. (2022). A two-step approach for multi-topology
identification and parameter estimation of power distribution networks. CSEE J. Power
Energy Syst., 1–10doi. doi:10.17775/CSEEJPES.2021.08180

Pegoraro, P. A., Brady, K., Castello, P., Muscas, C., and von Meier, A. (2019). Line
impedance estimation based on synchrophasor measurements for power distribution
systems. IEEE Trans. Instrum. Meas. 68, 1002–1013. doi:10.1109/TIM.2018.2861058

Recht, B. (2019). A tour of reinforcement learning: the view from continuous control.
Annu. Rev. Control, Robotics, Aut. Syst. 2, 253–279. doi:10.1146/annurev-control-
053018-023825

Satapathy, S. S., and Kumar, N. (2019). “Modulated perturb and observe maximum
power point tracking algorithm for solar pv energy conversion system,” in 2019
3rd international conference on recent developments in control, automation power
engineering (RDCAPE), Noida, India, 10-11 October 2019, (IEEE) 345–350.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv. https://arxiv.org/abs/1707.06347

Srinivas, V. L., and Wu, J. (2022). Topology and parameter identification of
distribution network using smart meter and µPMU measurements. IEEE Trans.
Instrum. Meas. 71, 1–14. doi:10.1109/TIM.2022.3175043

Sukanya Satapathy, S., and Kumar, N. (2020). Framework of maximum power
point tracking for solar pv panel using wsps technique. IET Renew. Power Gener. 14,
1668–1676. doi:10.1049/iet-rpg.2019.1132

Sun, J., Chen, Q., and Xia, M. (2024). Data-driven detection and identification of line
parameters with pmu and unsynchronized scada measurements in distribution grids.
CSEE J. Power Energy Syst. 10, 261–271. doi:10.17775/CSEEJPES.2020.06860

Sun, J., Xia, M., and Chen, Q. (2019). A classification identification method
based on phasor measurement for distribution line parameter identification
under insufficient measurements conditions. IEEE Access 7, 158732–158743.
doi:10.1109/ACCESS.2019.2950461

Sun, X., and Qiu, J. (2021). Two-stage volt/var control in active distribution networks
with multi-agent deep reinforcement learning method. IEEE Trans. Smart Grid 12,
2903–2912. doi:10.1109/TSG.2021.3052998

Thurner, L., Scheidler, A., Schäfer, F., Menke, J.-H., Dollichon, J., Meier, F., et al.
(2018). Pandapower—an open-source python tool for convenient modeling, analysis,

and optimization of electric power systems. IEEE Trans. Power Syst. 33, 6510–6521.
doi:10.1109/TPWRS.2018.2829021

Wang, W., and Yu, N. (2022). Estimate three-phase distribution line parameters with
physics-informed graphical learning method. IEEE Trans. Power Syst. 37, 3577–3591.
doi:10.1109/TPWRS.2021.3134952

Wang, X.,Wang, Y., Shi, D.,Wang, J., andWang, Z. (2020). Two-stage wecc composite
load modeling: a double deep q-learning networks approach. IEEE Trans. Smart Grid
11, 4331–4344. doi:10.1109/TSG.2020.2988171

Wang, X., Zhao, Y., and Zhou, Y. (2024). A data-driven topology and parameter
joint estimation method in non-pmu distribution networks. IEEE Trans. Power Syst.
39, 1681–1692. doi:10.1109/TPWRS.2023.3242458

Wang, Y., Xia, M., Yang, Q., Song, Y., Chen, Q., and Chen, Y. (2022).
Augmented state estimation of line parameters in active power distribution
systems with phasor measurement units. IEEE Trans. Power Deliv. 37, 3835–3845.
doi:10.1109/TPWRD.2021.3138165

Wu, Z., Long, H., and Chen, C. (2022). Line aging assessment in distribution network
based on topology verification and parameter estimation. J. Mod. Power Syst. Clean
Energy 10, 1658–1668. doi:10.35833/MPCE.2021.000165

Xie, J., Ma, Z., Dehghanpour, K., Wang, Z., Wang, Y., Diao, R., et al. (2021). Imitation
and transfer q-learning-based parameter identification for composite load modeling.
IEEE Trans. Smart Grid 12, 1674–1684. doi:10.1109/TSG.2020.3025509

Yan, Z., and Xu, Y. (2020). Real-time optimal power flow: a Lagrangian based
deep reinforcement learning approach. IEEE Trans. Power Syst. 35, 3270–3273.
doi:10.1109/TPWRS.2020.2987292

Yang, N.-C., Huang, R., and Guo, M.-F. (2022). Distribution feeder parameter
estimation without synchronized phasor measurement by using radial basis function
neural networks and multi-run optimization method. IEEE Access 10, 2869–2879.
doi:10.1109/ACCESS.2021.3140123

Yu, J., Weng, Y., and Rajagopal, R. (2018). Patopa: a data-driven parameter and
topology joint estimation framework in distribution grids. IEEE Trans. Power Syst. 33,
4335–4347. doi:10.1109/TPWRS.2017.2778194

Yu, X., Fernando, B., Hartley, R., and Porikli, F. (2020). Semantic face hallucination:
super-resolving very low-resolution face images with supplementary attributes. IEEE
Trans. Pattern Analysis Mach. Intell. 42, 2926–2943. doi:10.1109/TPAMI.2019.2916881

Zhang, J., Wang, P., and Zhang, N. (2021). Distribution network admittance
matrix estimation with linear regression. IEEE Trans. Power Syst. 36, 4896–4899.
doi:10.1109/TPWRS.2021.3090250

Zhang, J., Wang, Y., Weng, Y., and Zhang, N. (2020). Topology identification and line
parameter estimation for non-pmu distribution network: a numerical method. IEEE
Trans. Smart Grid 11, 4440–4453. doi:10.1109/TSG.2020.2979368

Zhao, J., Li, L., Xu, Z.,Wang, X.,Wang,H., and Shao, X. (2020). Full-scale distribution
system topology identification using markov random field. IEEE Trans. Smart Grid 11,
4714–4726. doi:10.1109/tsg.2020.2995164

Zhou, Q., Wang, C., Sun, Z., Li, J., Williams, H., and Xu, H. (2021). Human-
knowledge-augmented Gaussian process regression for state-of-health prediction of
lithium-ion batteries with charging curves. J. Electrochem. Energy Convers. Storage 18,
030907. doi:10.1115/1.4050798

Zhou, X., Wang, S., Diao, R., Bian, D., Duan, J., and Shi, D. (2020). Rethink ai-based
power grid control: diving into algorithm design. arXiv.

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1457237
https://doi.org/10.1109/ojcas.2023.3247573
https://doi.org/10.48550/arXiv.2107.03762
https://doi.org/10.1109/MPE.2017.2779554
https://doi.org/10.1109/TSG.2023.3278702
https://doi.org/10.1115/1.4064656
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://doi.org/10.17775/CSEEJPES.2021.08180
https://doi.org/10.1109/TIM.2018.2861058
https://doi.org/10.1146/annurev-control-053018-023825
https://doi.org/10.1146/annurev-control-053018-023825
https://arxiv.org/abs/1707.06347
https://doi.org/10.1109/TIM.2022.3175043
https://doi.org/10.1049/iet-rpg.2019.1132
https://doi.org/10.17775/CSEEJPES.2020.06860
https://doi.org/10.1109/ACCESS.2019.2950461
https://doi.org/10.1109/TSG.2021.3052998
https://doi.org/10.1109/TPWRS.2018.2829021
https://doi.org/10.1109/TPWRS.2021.3134952
https://doi.org/10.1109/TSG.2020.2988171
https://doi.org/10.1109/TPWRS.2023.3242458
https://doi.org/10.1109/TPWRD.2021.3138165
https://doi.org/10.35833/MPCE.2021.000165
https://doi.org/10.1109/TSG.2020.3025509
https://doi.org/10.1109/TPWRS.2020.2987292
https://doi.org/10.1109/ACCESS.2021.3140123
https://doi.org/10.1109/TPWRS.2017.2778194
https://doi.org/10.1109/TPAMI.2019.2916881
https://doi.org/10.1109/TPWRS.2021.3090250
https://doi.org/10.1109/TSG.2020.2979368
https://doi.org/10.1109/tsg.2020.2995164
https://doi.org/10.1115/1.4050798
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

	1 Introduction
	2 Parameter-identification model of distribution system
	2.1 Distribution system model
	2.2 MDP for line-parameter identification
	2.3 Design of each module in MDP

	3 Deep deterministic policy gradients for line-parameter identification
	3.1 DDPG model design
	3.2 Line-aging assessment based on the line-parameter identification

	4 Case studies
	4.1 Case description and experimental setup
	4.2 Training performance
	4.3 Test performance
	4.4 Case 1 line-parameter identification and line-aging assessment
	4.5 Case 2 line-parameter identification and line-aging assessment

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References

