Skip to main content

ORIGINAL RESEARCH article

Front. Energy Res.
Sec. Process and Energy Systems Engineering
Volume 12 - 2024 | doi: 10.3389/fenrg.2024.1456688

Energetic, exergetic, and exergoeconomic analyses of beer wort production processes

Provisionally accepted
  • 1 Fiji National University, Fiji, Fiji
  • 2 University of Alaska Fairbanks, Fairbanks, Alaska, United States
  • 3 University of Ibadan, Ibadan, Oyo, Nigeria

The final, formatted version of the article will be published soon.

    Energy efficiency strategies in industrial breweries examine the inefficiency of thermal systems from a thermodynamic perspective. However, understanding the costs of inefficiencies in systems, including non-thermodynamic costs, requires exergoeconomics. This study examined wort production in a standard Tier-1 brewery from the tripod of energy, exergy, and exergoeconomics analyses to assess the performance of brewing sections and to pinpoint components that contributed the most to exergy destruction and product cost rate. The energy analyses for the production system showed that the total specific energy for processing 10.05 tons of brew grains to 346.98 hl high-gravity wort was (86 ± 1) MJ/hl at an operational energy efficiency of 30.35%. The exergetic analyses showed that the cumulative exergetic destruction was 3.2737 MW, with the brewhouse section contributing 89.25% of the system’s inefficiencies. Also, the analyses showed that the wort kettle (42.7911%), mash tun (10.8086%), preheater (10.0683%), whirlpool (8.3522%), and adjunct kettle (6.2705) are the top five components with the highest rates of cumulative exergy destruction. The exergoeconomic analyses revealed that the cost rate of processing chilled wort was estimated to be 0.0681 USD/s per overall exergetic efficiency of 6.61%. The five most significant components are the wort kettle (53.70%), whirlpool (16.42%), mash filter (10.44%), mash tun (6.875%), and adjunct kettle (3.31%) based on the relative total cost increases for the production processes. Additionally, wet steam throttling resulted in a 2.51% increase in exergetic efficiency, a 1.60% drop in exergetic destruction rate, and a decrease in cost rates to 0.0675 USD/s.

    Keywords: Exergoeconomics, exergy, Energy, Industrial brewing, MASH, Wort

    Received: 29 Jun 2024; Accepted: 23 Sep 2024.

    Copyright: © 2024 OYEWOLA, Jemigbeyi and Salau. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

    * Correspondence: OLANREWAJU M. OYEWOLA, Fiji National University, Fiji, Fiji

    Disclaimer: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.