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With the increase in the number of microgrids in the same distribution area
usually belong to different subjects of interest, forming a multi-subject game
pattern. Considering the interests of distribution networks and microgrids, a
distribution network-multi-microgridmaster–slave gamemodel is established by
selecting distribution networks as gamemasters andmicrogrids as game slaves. A
master–slave game equilibrium algorithm based on a Kriging metamodel is
proposed. The method replaces the microgrid energy internal management
model with a proposed Kriging metamodel. In the iterative optimization
process, the particle swarm optimization algorithm is used to generate new
sampling points and modify the model in a targeted way so as to quickly and
accurately obtain the transaction price and output plan of each microgrid. The
algorithm does not need all the parameters of themicrogrid, which both achieves
the purpose of protecting the privacy of the microgrid and avoids a large number
of calls to the lower optimization model, effectively reducing the amount of
computation and improving the efficiency of the solution. The results show that
the overall operating costs of the three microgrids used in the case study are
reduced by 1.4%, 4.6%, and 1.6%, respectively, which effectively balances the
interests of multiple parties in the microgrid system; the revenue of the
distribution network is increased by 50.6%.
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1 Introduction

Microgrids covering wind turbines, photovoltaics, and fuel cells face multiple
complexities due to the massive increase in renewable energy sources (Chen et al.,
2021). The current power grid dispatch system faces numerous challenges, including
intermittent supply from conventional sources, increasing demand for reliable and
sustainable energy, and the need for flexible grid operations. Incorporating renewable
energy into microgrids presents a compelling solution. It mitigates the reliance on fossil
fuels, reducing greenhouse gas emissions, and enhances grid resilience by enabling localized
energy generation and distribution. Microgrids, powered by renewable sources like solar
and wind, can island themselves during grid failures, ensuring critical services remain
uninterrupted, thereby addressing the issues of reliability and sustainability in modern
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power systems. Microgrids should fulfill all the constraints in order
to operate in the grid-connected mode, a mode in which they also
interact with the electricity market (Zare et al., 2016; Uddin
et al., 2021).

Most existing studies address the participation of microgrids in
the electricity market while meeting operational and reliability
constraints, thus minimizing the total cost. Khalid et al. (2018)
planned for wind turbines and energy storage and predicted
electricity prices to maximize the total profit. Xiao et al. (2017)
investigated the impact of renewable energy sources on the
electricity market through the concept of a microgrid. Wang
et al. (2023a) and Wei et al. (2023) investigated the feasibility of
renewable energy-based consumer participation in the electricity
market. Mehrabadi et al. (2020) modeled electricity production from
renewable sources in the electricity market and studied China as an
example. Similar studies have assessed the impact of renewable
energy participation in electricity markets on reducing CO2

emissions (Piao et al., 2021).
Various algorithms for day-ahead scheduling problems have

been proposed, considering multiple environmental, economic, and
reliability constraints. Bakhtiari and Naghizadeh (2018) proposed a
multi-objective-based optimal capacity management algorithm for
wind turbines, photovoltaics, fuel cells, hydrogen storage tanks, and
electrolyzers to reduce the annual cost and optimize the integration
of renewable resources into microgrids based on pollution,
economic, and reliability constraints. Jafari et al. (2020) proposed
a management algorithm to address the bidding strategy of demand
response aggregators in the electricity market. A similar study
explored dynamic demand response and its impact on the
electricity market (Abapour et al., 2020). Ren et al. (2021)
proposed a multi-objective optimization algorithm to find the
optimal operation of combined cooling, heating, and power
(CCHP) systems as well as photovoltaic (PV) units and
geothermal resources. Karimi and Jadid (2020) proposed an
optimal stochastic energy management algorithm for multi-
microgrid structures, which takes into account resource and
demand uncertainties to optimize total cost and carbon emissions.

However, the studies mentioned above examine microgrid
scheduling under the premise of a given tariff; if more renewable
energy subjects participate in the electricity market, each microgrid
will belong to different subjects with different interests, and each
subject will pursue the maximization of interests. Applying the
optimal scheduling method based on the given tariff will take
more work. The game theory provides a new idea for analyzing
the relationship between the interests of different subjects (Li et al.,
2018; Li et al., 2021). In this article, we introduce a one-master-
many-slave game optimization model between distribution network
operators and multi-microgrids to realize the energy management of
multiple microgrids.

The master–slave game model is a class of equilibrium
constrained equilibrium optimization problems in which the
lower game problem is a constraint of the upper optimization
problem. Hence, the model is complex, non-linear, and non-
convex (Mei and Wei, 2014). Currently, numerical optimization
methods based on Karush–Kuhn–Tucker (KKT) conditions (Yu and
Hong, 2016; Liu et al., 2017; Qin et al., 2019) and heuristic intelligent
algorithms (HIAR) (Guo et al., 2020; Liu et al., 2021) can simplify
the model. The lower-level model is a convex programming
problem, and the upper level needs all the parameter information
of the lower level, which involves privacy issues. The heuristic
intelligent algorithm only needs to exchange a small amount of
information between the upper and lower layers, which can protect
the privacy of the lower layer. However, this approach requires many
calls to the lower-layer game model, which could be more
computationally complicated and efficient.

In order to deal with the above problems, this article proposes a
metamodel-based optimization algorithm that introduces the
Kriging metamodel into the equilibrium solution of the
master–slave game for the first time to improve the
computational efficiency while protecting the privacy of
microgrids. The metamodel-based optimization algorithm is a
kind of optimization mechanism based on historical data to drive
the addition of sample points to approximate the local or global
optimal solution, which can improve the defects of traditional

FIGURE 1
Relationship of exchange energy.
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heuristic intelligence algorithms that require complicated numerical
simulation. The algorithm is most widely used in aerospace fields
such as aircraft design (Gu et al., 2019). There are also preliminary
applications in power systems. Paudel et al. (2019) used a Kriging
metamodel to fit the stochastic wind speed and the stochastic
response of power system transient simulation. Tang et al. (2018)
and Xiao et al. (2018) used a Kriging metamodel instead of the
current calculation to study the optimal economic operation and
reactive power optimization of active distribution networks,
respectively.

Therefore, considering that the distribution network and each
microgrid have different interests, this article proposes a particle
swarm-based game equilibrium algorithm that establishes a multi-
microgrid optimal scheduling model based on the master–slave
game during the solution process. The model searches for excellent
sampling points using the particle swarm optimization algorithm to
update and correct the model, avoiding the tedious computation of the
lower game model and improving the efficiency of finding the optimal.

As a result, this article considers that the distribution network and
each microgrid have different interests. The novelty of this study is as
follows: 1) establish a dynamic pricing and energymanagementmodel for
multiple microgrids based on master–slave games, 2) propose a particle
swarm-based game equilibrium algorithm that establishes a multi-
microgrid optimal scheduling model based on the master–slave game
during the solution process, and 3) search for excellent sampling points
using the particle swarmoptimization algorithm to update and correct the
model, avoiding the tedious computation of the lower game model.

The rest of this article is organized as follows: Section 2
introduces the multi-microgrid pricing mechanism based on a
master–slave game. The multi-microgrid optimized scheduling
model is introduced in Section 3. In Section 4, the metamodel-
based solution method is presented. Section 5 studies simulated
cases to investigate the effectiveness of the proposed strategy.
Finally, Section 6 concludes.

2 Multi-microgrid pricing mechanism
based on master–slave game

2.1 Master–slave game theory

The decisions of the participants in the master–slave game are
sequential. The second decision maker may formulate its strategy
based on the strategy developed by the first decision maker. At
the same time, the strategy developed by the second decision
maker may also impact the strategy formulated by the first
decision maker. The master-slave game model can be
expressed as Equation 1:

Y � N;Pt; Pi{ };Ft; Fi{ }{ }, (1)
where N denotes the set of participants, Pt denotes the set of feasible
solutions to the game master’s strategy, Pi denotes the set of feasible
solutions to the ith game slave’s strategy, Ft denotes the payment of
the game master, and Fi denotes the payment of the ith game slave.
The game reaches a Stackelberg equilibrium when all game slaves
respond optimally according to the game master’s strategy, and the
game master accepts that response.

If (P*
t , P1

*, P2
*,. . ., P*

n) is an equilibrium solution to the
master–slave response, it needs to satisfy:

Ft P*
t , P1

*, P2
*, ...P*

n( )≤Ft Pt, P1
*, P2

*, ...P*
n( )

F1 P*
t , P1

*, P2
*, ...P*

n( )≤F1 P*
t , P1, P2

*, ...P*
n( )

F2 P*
t , P1

*, P2
*, ...P*

n( )≤F2 P*
t , P1

*, P2
*, ...P*

n( )
..
.

Fn P*
t , P1

*, P2
*, ...P*

n( )≤Fn P*
t , P1

*, P2
*, ...Pn( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
. (2)

Equation 2 shows that in the Stackelberg equilibrium solution, it
is impossible for any participant to obtain a smaller cost by
unilaterally changing its strategy.

2.2 Multi-microgrid pricing mechanisms in
an electricity market environment

This article proposes a trading mechanism for solving the power
trading problem between the distribution grid and multiple
microgrids. Specifically, the distribution grid sets the purchase
and sale prices, and the excess electricity is sold to the
distribution grid at the sales price by the multiple microgrids,
while the shortfall is purchased by the few microgrids at the
purchase price from the distribution grid. Depending on the
microgrid power interactions, the distribution grid trades with
the electricity market and utilizes the difference in price between
the two to generate revenue. The relationship between the
exchanged energy is shown in Figure 1.

3 Multi-microgrid optimized
scheduling model

The microgrid, renewable energy (wind and photovoltaic),
energy storage, and load are selected as game participants. To
ensure safe, stable, and economic operation of the system, the
whole microgrid system is selected as the game master, and
renewable energy, energy storage, and loads are selected as game
slaves. The dispatching model is shown in Figure 2.

3.1 Upper layer model

The microgrid gaming parties want to minimize the
operating costs while ensuring the safe and stable operation
of the microgrid system. Therefore, the optimization objective
of the game is to maximize the total profit of the
distribution network:

maxCDSO � ∑T
t�1

λW,s
ι PDSO,s

ι − λW,b
ι PDSO,b

ι + λDA,bι ∑N
j�1
PMG,b
j,ι − λDA,sι ∑N

j�1
PMG,s
j,ι

⎛⎝ ⎞⎠,

(3)

where λW,s
t and λW,b

t are the feed-in tariff and the grid tariff in the
electricity market at time t, respectively; λDA,bt and λDA,st are the
purchase tariff and the sale tariff assigned to the microgrid by the
distribution network operator (DSO) at time t, respectively; PMG,s

j,t

and PMG,b
j,t denote the amount of electricity sold and purchased by

microgrid (MG) j to the distribution network, respectively; PDSO,s
t
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and PDSO,b
t are the amount of electricity sold and purchased by the

operator to the electricity market, respectively; and N is the total
number of microgrids.

To ensure that each microgrid conducts normal transactions
with the distribution network, the tariffs specified by the distribution
network shall be met in Equation 4:

λt
W,s ≤ λt

DA,s ≤ λtDA,b ≤ λtW,b. (4)
To ensure the balance of supply and demand between the

microgrids, the expressions for PDSO,s
t and c PDSO,b

t are as follows:

PDSO
t � ∑N

j�1
PMG,b
j,t − PMG,s

j,t( )
PDSO,b
t � PDSO

t , PDSO
t ≥ 0

0 , PDSO
t < 0

{
PDSO,s
t � −PDSO

t , PDSO
t < 0

0 , PDSO
t ≥ 0{

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (5)

where PDSO
t is the total electricity traded with the electricity market

after the operator has aggregated the electricity purchased and sold
by each microgrid. PDSO

t > 0 indicates that electricity is purchased
from the electricity market, and PDSO

t < 0 indicates that electricity is
sold to the electricity market.

3.2 Lower-layer model

Each microgrid aims to minimize the operating cost CMG
j , which

includes the cost of purchased power, the cost of operating the
microfueling unit CMT

t , and the cost of energy storage CES
t . This is

shown below in Equations 6–8:

minCMG
j � ∑T

t�1
λDA,bt PMG,b

j,t − λDA,st PMG,s
j,t( ) + CMT

t + CES
t[ ], (6)

CMT
t � ai PMT

t( )2 + biP
MT
t + ci, (7)

FIGURE 2
Distribution network-multi-microgrid scheduling model.
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CES
t � λESi PES

t( )2, (8)
where PMG,b

j,t and PMG,s
j,t are the power purchased by the microgrid

from the distribution grid and the power sold to the distribution
grid, respectively; PMT

t is the output power of the micro gas turbine
unit; PES

t is the charging and discharging power of the energy
storage, which is greater than o to indicate discharging and less
than 0 to indicate charging; ai, bi, and ci are the cost coefficients of
the micro gas turbine unit; and λESi is the cost coefficient of the
scheduling of the energy storage.

PMG
j,t � PMG,b

j,t − PMG,s
j,t . (9)

PMG
j,t + PMT

t + PES
t � PLD

t . (10)
0≤PMG,s

j,t ≤ θj,tP
MG
j,max. (11)

0≤PMG,b
j,t ≤ 1 − θj,t( )PMG

j,max . (12)
0≤PMT

t ≤PMT
max . (13)

PMT
down ≤P

MT
t − PMT

t−1 ≤PMT
up . (14)

P ES
min ≤P

ES
t ≤P ES

max . (15)
SESt � SESt−1 −

Δt
Emax

PES
t (16)

S ES
min ≤ S

ES
t ≤ SESmax . (17)

SES0 � SEST , (18)
where PLD

t is the predicted value of the load at time t; θj,t is a Boolean
variable that takes the value of 1 to indicate thatmicrogrid j sells power to
the operator at time t and takes the value of 0 to indicate that microgrid j
purchases power from the operator; PMG

j,max denotes the maximum
amount of power traded between microgrid j and the operator; PMT

max

denotes themaximumoutput power of themicro gas turbine unit;PMT
down

and PMT
up denote the upward and downward climbing power of the

micro gas turbine unit, respectively; SESt is the charging state of the energy
storage; SESmin and S ES

max denote the upper and lower limit values of the
charging state; PES

min and PES
max denote the upper and lower limits of

charging and discharging power of the energy storage, respectively; and
Emax denotes the maximum capacity value of the energy storage.
Equations 9–18 constitute the strategy space of MG, denoted as ΩMG

j .

3.3 Master-slave game modeling for
distribution networks and multi-microgrids

Based on Sections 3.1, 3.2, the master–slave game for distribution
networks and multiple microgrids is modeled as follows:

max
λDA.s ,λDA.b ,p

CDSO λDA,s, λDA,b, p( )
s.t.

λDA,s, λDA,b( ) ∈ ΩDSO

pj � argmin
p̂j

CMG
j λDA,s, λDA,b, p̂( )

p̂j ∈ ΩMG
j

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦∀j,

(19)

where p � (p1, p2, ..., pN)T.
In Equation 19, the distribution system operator (DSO) and the

microgrid (MG) formulate their strategies with the objectives of
maximizing the revenue and minimizing the operating costs,
respectively. The revenue of the DSO is related to the set tariff
for the purchase and sale of electricity as well as the amount of

electricity traded by the MG: the larger the difference between the
purchase and sale tariffs, the larger the amount of electricity shared
by the MG, and the larger the revenue of the DSO is. However, the
MG’s behavior in response to the tariff also affects the DSO’s
returns: the larger the purchase tariff, the smaller the amount of
power purchased by the MG, and the smaller the sale tariff, the
smaller the amount of power sold by the MG, leading to a reduction
in the amount of power shared between the MG and the DSO. An
interesting game between the DSO and theMG can be seen. In order
to maximize their own benefits, the DSO needs to consider the MG’s
response behavior to the price as the best tariff strategy by finding
the Nash equilibrium solution.

4 Metamodel-based solution method

In the master–slave game model established in Section 3, the
lower energy management game model contains 0–1 variables. It is
impossible to derive the equivalent KKT condition. At the same
time, the intelligent algorithm faces the problem of tedious
computation. For this reason, this article proposes a solution
algorithm based on the Kriging metamodel, which adopts the
Kriging metamodel with small computation to fit and replace the
internal management model of the energy of the microgrid and
effectively avoids the above problems.

4.1 Kriging metamodel

A metamodel is a simplified mathematical model that can be used
as an approximate substitute for a complex simulation model. The
Kriging model is one of the many metamodels. Because of its good
approximation ability and unique error estimation function for non-
linear models, the Kriging model is chosen to simulate the lower-level
energy management model, which displays the implicit mapping
relationship between the traded tariff and traded electricity.

The Kriging model is constructed using the sale tariff λDA,st and
the purchase tariff λDA,bt for 24 time periods as inputs and the
transaction power PMG

j,t of each microgrid for 24 time periods as
outputs, as follows:

PMG
j � Fj λDA,s, λDA,b( ), (20)

where PMG
j � (PMG

j,1 , P
MG
j,2 , ..., PMG

j,T )T.
Then, the master–slave game model of Equation 19 can be

transformed into

max
λDA,s ,λDA,b

CDSO λDA,s, λDA,b, PMG
1 , . . . , PMG

N( )
s.t.

λDA,s, λDA,b( ) ∈ ΩDSO

PMG
j � Fj λDA,s, λDA,b( ), j � 1, . . . , N

⎧⎨⎩ . (21)

4.2 Master–slave game equilibrium
algorithm based on the Kriging metamodel

Suppose the Kriging model is not updated and corrected. In that
case, the optimization results are largely dependent on the fitting
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accuracy of the original Krigingmodel: when the known sample data set
is small, the fitting accuracy is low, and the real optimal solution cannot
be obtained; when the known sample data is large, the fitting accuracy is
high, but the calculation is extremely time-consuming.

Therefore, this article proposes a dynamic Kriging metamodel
equilibrium solution-solving algorithm. The algorithm first
establishes an initial Kriging model based on a suitable amount
of sample data and then splits the strategy space into multiple key

FIGURE 3
Flow chart of the complete methodology.
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regions according to the upper objective function value of each
sample point. In each region, the particle swarm algorithm and
the fitted Kriging model are used to find the optimization of the
upper model quickly, and only the optimization result in the
lower model is called to compute the true power and the value of
the upper objective function, add it to the original sample point
set, and update the modified Kriging metamodel to solve the
equilibrium solution. The original sample point set is updated to
correct the Kriging model and iterated until the optimal solution
is obtained.

4.2.1 Kriging model construction
A Kriging model is constructed for each MG using the

transaction tariff as input and the transaction electricity of the
MG as output.

To ensure the uniformity and reasonableness of sampling,
this article adopts Latin hypercube sampling (LHS) to generate
n initial sample points. The coordinates of each sample point
represent a set of transaction tariffs, including the selling price
and the purchasing price of electricity, which is recorded as
λDA
i � (λDA,s

i1 , λDA,s
i2 , ..., λDA,s

iT , λDA,b
i1 , λDA,b

i2 , ..., λDA,b
iT ), where λDA

i in
the policy space of the DSO satisfies the constraint of
Equation 4. The initial sampling points are generally taken
as 9–10 times the number of variables.

Each group of tariffs is brought into the lower-layer model in
Section 3.2, and the transaction power PMG

j,i for each MG
corresponding to each group of transaction tariffs can be
obtained by calculation. The Kriging model of each MG can be
constructed by taking the initial sample data sets of transaction
tariffs λDAi and the transaction power PMG

j,i .

4.2.2 Modified Kriging model
Due to the poor fitting accuracy of the initial Kriging model, an

effective correction mechanism is needed to generate a superior set of
sampling points, and new sampling points are added in the iterative
process to continually correct the model to improve the accuracy.

4.2.2.1 Critical region segmentation
The current sample data set is brought into Equation 3, and the

upper-level objective function value corresponding to each set of
traded tariffs CDSO is calculated. According to CDSO, the operator’s
strategy space is divided into multiple key regions so as to eliminate
regions containing a low probability of the optimal solution, narrow
the sampling range of the excellent sampling points, and improve
the efficiency of the optimization search.

4.2.2.2 Generate superior sampling points
On each key region, the particle swarm algorithm is used to find

the optimization of Equation 21, and the Kriging model is used to

quickly lock in the locally optimal transaction tariff and transaction
power. However, at this time, the transaction power is not the real
value, so it is necessary to carry out optimization calculations on the
original lower model to get the real transaction power under the
transaction tariff and add it to the original sample data set to correct
the Kriging model.

The specific steps are as follows:

Step 1. Initialize system parameters. This includes the feed-in tariffs
and grid tariffs in the power market, microgrid-related parameters,
Kriging model-related parameters, and particle swarm algorithm-
related parameters.

Step 2. Generate the initial sample point λDAi based on LHS.

Step 3. For the sample points generated in Step 2, the lower-level
game model is invoked to calculate the transaction power PMG

j,i for
each MG, constituting the sample data set B.

Step 4. Construct a Kriging metamodel for each MG based on the
current sample data set, that is, Equation 20.

Step 5. Calculate the objective function value CDSO
i corresponding to

each group of sample points and determine the key regions according to
CDSO
i . There are Nl in total, and the optimal value of each region isCDSO

l,best.

Step 6. A particle swarm algorithm is used on each key region to
solve the local optimal tariff λDAl,opt.

Step 7. The lower-layer game model is invoked to compute the true
transaction power PMG

j,l,opt, which is added to the original set of
sampling points as a superior sampling point. The true value
CDSO
l,opt of the objective function of the upper layer model is

calculated and compared with CDSO
l,opt . If C

DSO
i,best <CDSO

i,opt , then make
CDSO
i,best � CDSO

i,opt .

Step 8. The global optimal solution for the current iteration step
is obtained by comparing all regional optimal solutions as follows
in Equation 22:

CDSO
best � max CDSO

i,best

∣∣∣∣l � 1, 2, ..., Nl{ }. (22)

Step 9.Determine whether the convergence condition is satisfied; if
so, stop the iteration and output the equilibrium solution; otherwise,
return to Step 4.

4.2.3 Solution process
The solution flow is shown in Figure 3. In the lower level of each

microgrid optimization sub-flow, the scheduling model of each

TABLE 1 The parameters of a micro gas turbine.

MG ai bi ci PMT
max PMT

down PMT
up

1 0.08 0.9 1.2 6 −3.5 3.5

2 0.1 0.6 1 5 −3 3

3 0.15 0.5 0.8 4 −2 2

TABLE 2 Energy storage parameters.

MG PES
min PES

max Emax SESmin SESmax

1 −0.6 0.6 1 0.2 0.9

2 −0.6 0.6 1 0.2 0.9

3 −1.2 1.2 2 0.2 0.9
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microgrid is optimally solved using YALMIP + Gurobi in the
MATLAB environment.

5 Case analysis

A distribution network with three typical microgrids is
analyzed as an example (Liu et al., 2017; Qin et al., 2019),
where each microgrid includes one wind turbine, one
microfuel unit, and one energy storage. Demand response is
also considered, and the model is referenced from the literature
(Wang et al., 2023b; Yang et al., 2024). The parameters of the
micro gas turbine unit and energy storage are shown in
Tables 1, 2.

The following two operation schemes are set up to verify the
effectiveness of the proposed master–slave game-based distribution-
multi-microgrid two-layer optimization strategy:

(1) The distribution network does not set the purchase
and sale tariffs; the feed-in tariffs and grid tariffs of
the big grid are used as the purchase and sale tariffs of
each microgrid, and each microgrid operates
independently and optimizes with the goal of
minimizing its own cost;

(2) The distribution network sets the purchase and sale tariffs and
establishes a two-layer optimization scheduling model based
on the master–slave game for the distribution network-multi-
microgrids.

The tariffs specified by the operator for the purchase and sale
are shown in Figure 4, which shows that the tariffs set by the
distribution network operator are between the large grids,
ensuring that the microgrids are willing to trade with the
distribution network.

The benefits of the distribution network operator and each
microgrid under different strategies are shown in Table 3. Under
operation scheme 2, the distribution grid effectively improves the
benefits by optimizing the tariff, and the cost of the
microgrid decreases.

The second operation scheme is used for analysis:
The result of the total power transaction between the multi-

microgrid and the distribution grid is shown in Figure 5: if the power
transaction volume is greater than 0, it means that the microgrid
purchases power from the distribution grid operator. If the power
transaction volume is less than 0, it means that the microgrid sells
power to the distribution grid operator. If the traded power volume
is equal to 0, the supply and demand within the microgrid
are balanced.

Figure 6 shows the results of the scheduling of microgrid 1 and
the distribution grid. It can be seen that the turbines are always out
of power. In periods 1–7, 15–16, and 18–24, microgrid 1 is in short
supply and purchases power from the distribution grid to meet the
loads. In periods 9–14, and 17, microgrid 1 is in greater supply than
the loads, and sells power to the distribution grid. In periods
12–14 and 19–21, the micro gas turbine units are out to meet the
load, and demand response plays the role of load “peak shaving and
valley filling.”

FIGURE 4
Transaction tariffs set by the distribution network operator.
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Figure 7 represents the results of scheduling microgrid 2 with
the distribution grid. It can be seen that the wind turbines are
always out of power, and in periods 17–18 and 22–24, microgrid
1 is in short supply and purchases power from the distribution
grid to satisfy the loads. In periods 2–4, 6, 8–10, 12–16, 19, and 21,
microgrid 2 has more supply than demand and sells power to the
distribution grid.

Figure 8 represents the results of the microgrid 3 and
distribution grid scheduling. It can be seen that the wind
turbines are always out of power, and in periods 11, 15–23,
the microgrid 3 is in short supply and buys power from the
distribution grid to satisfy the loads. In periods 1–10, 14, and 24,
microgrid 3 has more supply than demand and sells power to the
distribution grid.

In order to verify the effectiveness of the proposed Kriging
metamodel-based solution algorithm, it is compared with the
genetic algorithm (GA) and particle swarm algorithm (PSO).
Each algorithm is calculated 10 times independently, and the

statistical results of each algorithm are shown in Table 4. The
statistical results of each algorithm are shown in Table 4.

The above simulation results show that when using the proposed
algorithm to solve the equilibrium solution of the master–slave
game, the operator’s gain is greater, the convergence speed is faster,
and it can achieve good solving accuracy and computational
efficiency. The proposed algorithm generates a Kriging model for
trading tariffs and trading electricity by fitting a computationally
complex lower optimization model with reasonable sampling. In
each iteration, the PSO and Kriging models are used for each region
to quickly lock in the local solutions, and the lower-level
optimization is invoked only for the local solutions. Therefore,
the number of calls to the lower optimization program is
significantly reduced, which effectively improves the computation
speed. In addition, dividing the region according to the region
division based on the sample point set can realize parallel
operation, which further improves the computation speed
and accuracy.

TABLE 3 The costs of the distribution network and microgrid under different operation schemes.

Agent Cost of operation scheme 1/RMB Cost of operation scheme 2/RMB

MG 1 8665.9 8542.4

MG 2 2122.9 2024.2

MG 3 4291.8 4219.1

DSO −859.4 −1294.5

FIGURE 5
Electricity trading results between the multi-microgrid and the distribution network.
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FIGURE 6
The scheduling results of MG 1.

FIGURE 7
The scheduling results of MG 2.
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6 Conclusion

Considering that the distribution network and each microgrid
have different interest demands, this article proposes a Kriging
metamodel-based solution algorithm, in which a multi-microgrid
optimal scheduling model based on a master–slave game is
established in the solution process.

(1) After using the proposed master–slave game method,
the operating cost of the microgrid system under the
model of each game participant is reduced, and the
Stackelberg equilibrium between the master of
the distribution network game and the slave of the
microgrid game is realized. After reaching the
Stackelberg equilibrium, the overall operating cost of
each of the three microgrids used in the case study
decreases by 1.4%, 4.6%, and 1.6%, respectively, which
effectively balances the interests of multiple parties in the
microgrid system; the revenue of the distribution
network increases by 50.6%.

(2) The Kriging metamodel is used to fit the price response
behavior of the microgrids to replace the lower energy
management model to obtain the equilibrium solution,
which eliminates the need for repeated and significant calls
to the lower optimization model compared with the
traditional intelligent optimization algorithm. It
dramatically improves the search efficiency of the
equilibrium solution while protecting the privacy of
each microgrid.

(3) The microgrid operation scheme under the multi-master
coexistence mode optimized based on the proposed
master–slave game method can ensure the safe and stable
operation of the system. It can provide a feasible optimization
technology route for potential microgrids/power systems in
future multi-master mode.

The structure of the multi-microgrid composition considered in
this article is fixed. However, in the future, with the further opening
of the electricity market, each distribution network will have the
power to choose microgrids according to its own interests, and the

FIGURE 8
The scheduling results of MG 3.

TABLE 4 Performance comparison of various algorithms.

Optimization algorithms DSO average earnings/RMB Average number of iterations

GA 14384.6 397

PSO 12454.3 1,786

Kriging 14793.2 58
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structure of multi-microgrids will change dynamically. Therefore,
how to combine distribution grids and microgrids according to their
needs to be further studied.
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Nomenclature

N The set of participants

Pt The set of feasible solutions to the game master’s strategy

Pi The set of feasible solutions to the ith game slave’s strategy

Ft The payment of the game master

Fi The payment of the ith game slave

(P*
t , P1

*,
P2
*,. . ., P*

n)
The equilibrium solution to the master–slave response

CDSO The total profit of the distribution network

λW,s
t

The feed-in tariff in the electricity market at time t

λW,b
t

The grid tariff in the electricity market at time t

λDA,b
t

The purchase tariff assigned to the microgrid by the distribution
network operator at time t

λDA,s
t

The sale tariff assigned to the microgrid by the distribution
network operator at time t

PMG,s
j,t

The amount of electricity sold by microgrid j to the distribution
network

PMG,b
j,t

The amount of electricity purchased by microgrid j to the
distribution network

PDSO,s
t The amount of electricity sold by the operator to the electricity

market

PDSO,b
t

The amount of electricity purchased by the operator to the
electricity market

PDSO
t The total electricity traded with the electricity market after the

operator has aggregated the electricity purchased and sold by
each microgrid

CMG
j The operating cost of microgrid j

CMT
t The cost of operating the microfueling unit

CES
t The cost of energy storage

PMT
t The output power of the micro gas turbine unit

PES
t The charging and discharging power of the energy storage

ai, bi, ci The cost coefficients of the micro gas turbine unit

λESi The cost coefficient of the scheduling of the energy storage

PLD
t The predicted value of the load at time t

θj,t A Boolean variable that takes the value of 1 to indicate that
microgrid j sells power to the operator at time t and takes the
value of 0 to indicate that microgrid j purchases power from the
operator

PMG
j,max The maximum amount of power traded between microgrid j and

the operator

P MT
max The maximum output power of the micro gas turbine unit

PMT
down/P

MT
down The upward and downward climbing power of the micro gas

turbine unit, respectively

SESt The charging state of the energy storage

S ES
min /S

ES
max The upper and lower limit values of the charging state

P ES
min /P

ES
max The upper and lower limits of charging and discharging power of

the energy storage, respectively

Emax The maximum capacity value of the energy storage

EES,i(t) The capacity of energy storage equipment i during the period t

DSO Distribution system operator

MG Microgrid
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