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In the era of society’s ongoing digitization and the exponential growth in data
volume, alongside a growing energy demand, energy management plays an
integral role in data centers (DCs) and is a key factor in the quest for
decarbonization. In light of the complex nature of DCs, traditional energy
management strategies are inadequate. This research introduces a data-driven
decision-making framework for DCs, grounded in the OODA (Observation,
Orientation, Decision, and Action) loop and based on insights from an
Ericsson-operated DC in Linköping, Sweden. The developed framework
enables DCs to enhance energy efficiency effectively. Rooted in the OODA
loop and leveraging extensive datasets from DCs’ building management
systems, this framework aids in decreasing cooling energy usage through
strategic, data-driven decision-making. By adopting AI methods, specifically
K-means clustering in this research, for continuous monitoring and fine-
tuning (Proportional, Integral, Derivative) PID parameters, the framework aids
in improving operational efficiency.
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• Data-driven DC energy management.
• The framework is grounded in the OODA loop.
• Insights from an Ericsson-operated DC in Linköping, Sweden.
• The framework provides decision support for cooling operations.
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1 Introduction

1.1 Background

The rapid evolution of data centers (DCs) necessitates the
development of novel energy management strategies in the
pursuit of carbon neutrality (Shao et al., 2022). In 2022, the
global DC market was $195 billion and is forecasted to grow at
an annual growth rate of 11% from 2023 to 2030 (Grand View
Research, 2030). The approximated electricity use of DCs globally in
2022 was between 240 and 340 TWh1, corresponding to 1%–1.3% of
the total worldwide electricity demand (International Energy
Agency, 2023). In fact, with the escalating growth in data
volume, it is expected that the electricity usage attributed to DCs
will substantially increase in the future (Andrae, 2017). In the
context of continuous digitization in society, coupled with rapid
growth in data volume, and increased electricity demand, the
importance of energy efficiency in this sector becomes integral to
achieving sustainable development.

Existing research highlights a substantial potential for
improving energy efficiency in the industrial sector by adopting
energy management strategies (Thollander and Ottosson, 2010).
Proper management and operation of a company’s energy system
are essential to establish market leadership in their industry,
particularly for energy-intensive sectors (Schulze et al., 2016),
such as DCs. Nonetheless, it is important to be aware that
effective energy management necessitates a comprehensive
understanding of the dynamic energy use patterns within the
organization (ISO 50006, 2023). As these facilities continue to
grow in size and complexity, traditional approaches to energy
management are proving to be inadequate (Panwar et al., 2022;
Clean Energy Institute, 2024). As a result, there is an urgent need for
innovative strategies, including cooling approaches, to tackle the
evolving challenges of energy management in DCs (Panwar et al.,
2022; Manganelli et al., 2021).

An increasingly more common approach to improve energy
efficiency and decrease environmental impact from the energy
sector involves Artificial Intelligence (AI) (IEA, 2017; Rolnick
and al, 2019). Beyond the energy industry, AI has already
become a fundamental component in other industries, such as
manufacturing and healthcare (Kim et al., 2021; Alowais et al.,
2023). An essential feature of AI is its ability to analyze patterns
within extensive datasets, a task that is challenging for humans to
perform due to the intricate nature and vast size of the datasets. In
the realm of DCs, this capability is particularly crucial, given the
substantial volume of data generated by measurements and
operations of servers and cooling equipment.

Energy management strategies have previously effectively
decreased energy usage of DC components (Guitart, 2017). For
example, numerous scientific investigations have applied
computational fluid dynamics (CFD) procedures to enhance DC
energy efficiency, such as (Gupta et al., 2020; Gupta et al., 2021; Lee
et al., 2023; Liu et al., 2023; Manaserh et al., 2021; Lim and Chang,

2021). Gupta et al. (2020) developed a trade-off energy management
strategy to decrease the Power Usage Effectiveness (PUE) while
maximizing exergy efficiency through multi-objective optimization
and CFD in an air-cooled DC. In another study, Gupta et al. (2021)
introduced an approach for optimizing cooling in a multi-rack DC
with a two-dimensional workload distribution. Similarly, the
authors used multi-objective optimization and CFD procedures.
The results showed that regulating chilled water flow temperature
and airflow setpoints holds significant potential for improving
energy efficiency. Lee et al. (2023) used CFD and evaporative
cooling to enhance DC energy management. The findings
indicated that evaporative cooling can assist in adding cooling
capacity to the supplied air and decrease the cooling load. Based
on CFD and statistical analysis in combination with historical and
real-time datasets, Liu et al. (2023) decreased the maximum server
temperature by 30% in air-cooled servers. Moreover, Manaserh et al.
(2021) studied the effects on cooling capacity and PUE resulting
from the integration of liquid cooling-based technologies. Their
approach involved utilizing an experimentally validated CFD
modeling strategy, revealing a PUE of 1.06 along with effective
cooling performance. Lim and Chang, (2021) applied CFD to
investigate airflow characteristics associated with hot spots. CFD
simulations and experimental investigations demonstrated that a
vertical angle of 60˚ enhances temperature distribution and reduces
the risk of hot spots. While CFD procedures offer benefits in DC
energy management, it is important to be aware that simulations of
this nature are often time-consuming and computationally complex
(Jóczik et al., 2022). Other energy management methods, including
the implementation of AI, have been used in DCs (Senthilkumar
et al., 2023; Manaserh et al., 2022; Milić et al., 2023). However, as
stated by Guitart (Guitart, 2017), while certain energy management
methods have managed to successfully decrease DC energy use,
sustainable energy management requires a holistic and
interconnected approach. Current research has largely overlooked
the integration of a continuous and adaptive framework, which is
important for responding to the dynamic and evolving requirements
of DC operations. In this quest, the Observation, Orientation,
Decision, and Action (OODA) loop (Osinga, 2005; Richards,
2011) facilitates a responsive and adaptive approach. This is
achieved by the ongoing assessment and adjustments to enhance
DC energy efficiency. Moreover, integrating phronesis (practical
experience), episteme (theoretical and scientific knowledge), and
techne (professional knowledge) is important in decision-making
related to energy management aspects (Thollander and Palm, 2023).
This integration ensures practical application and increases
knowledge within the organization.

1.2 Research contribution

The modern digital landscape relies on DCs. The extensive
energy use associated with server operations and cooling
processes is a defining characteristic of this sector. As a result,
increasing energy efficiency in DCs stands as a pivotal focus to
achieve sustainability objectives. Energy management approaches,
which have shown success in various other sectors, are instrumental
in reducing energy use. Despite the comprehensive research carried
out on energy management across different industries, the scientific

1 The figures provided do not include energy use related to cryptocurrency

mining, which was approximately 110 TWh in 2022.
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community has not given detailed attention to the aspects of process
cooling within the context of DCs, particularly in relation to AI
applications. To shed light on this overlooked research field, the
objective of this research is to develop an AI-powered decision-
making framework for energy management in DCs. By including
both practical and theoretical knowledge within an OODA loop
designed for the framework, this approach provides a holistic
method for effectively addressing real-world challenges in the
pursuit of increasing energy efficiency in the DC sector. Another
key feature of the framework is the inclusion of data-driven analysis,
which facilitates time-effective exploration of opportunities for
enhancing energy efficiency, such as detecting deviating cooling
patterns through AI-driven visualization of cooling parameters. This
analysis is enhanced by the inclusion of an interdisciplinary team,
which incorporates phronesis, episteme, and techne, enabling a
holistic energy management approach. This integration is a key
contribution of the research, particularly in the context of DCs. The
research object is a DC situated in the city of Linköping, Sweden, and
is operated and managed by Ericsson AB, a multinational
networking and telecommunications company.

The novelty of the proposed research is the design of data-driven
energy management approach within the realm of DCs, which can
contribute to rapid decision-making and adaptation to changing
circumstances related to the DC operation, such as dynamically
adjusting cooling loads as a response to equipment failure and
reconfiguration of (Proportional, Integral, Derivative) PID
parameters in cooling units based on AI-powered insights. This
is achieved through continuous monitoring and measurement of
cooling, utilizing AI to visualize and detect deviations in cooling
patterns, and establishing an interdisciplinary team. Additionally,
the use of an actual case study in real- world setting further enhances
the study’s applicability and significance, providing valuable insights
for DC operators and decision-makers to address energy
management challenges effectively.

2 Theoretical framework

2.1 Data centers and cooling

The foundation of DCs lies in the time-sharing technology of the
1960s (Saunavaara et al., 2022). During this era, the expense of a
computer was distributed among users by allocating its time, leading
to prompt responses from the computer to the commands of each
user. Today, DCs play a pivotal role in coordinating various aspects
of our lives, including transportation, healthcare, cloud computing,
and information sharing (Geng, 2015). Servers, digital storage
equipment, and network infrastructure are all housed within DCs
to enable data processing, data storage and communications (Siddik
et al., 2021). The rising need for data creation, data processing and
storage, driven by both existing and established technologies, e.g.,
online platforms, interconnected infrastructure systems, AI, and
autonomous transportation, has resulted in significant increase in
computational demands and DC workloads (Masanet et al., 2020).

A typical DC infrastructure comprises various rooms, each
designed for specific functions. Each DC room is equipped with
racks that house hardware server units. These racks are capable to
store IT equipment, such as servers or storage equipment, which can

vary in size from single to multiple units based on the DCs particular
function. Apart from IT equipment, the DC room’s infrastructure
consists of cooling supply systems, as well as other equipment.
Nearly all electrical power utilized by a DC is converter into heat,
requiring the integration of a cooling system to effectively dissipate
this thermal load (Capozzoli and Primicier, 2015). The predominant
cooling method in DCs is air cooling using Computer Room Air
Handlers (CRAHs), mainly for their applicational and operational
ease (Moazamigoodarzi et al., 2019). However, the increase in DCs
has given rise to issues related to inadequate cooling supply in the
context of air cooling (Ebrahimi et al., 2014). In light of these
challenges, cooling techniques using liquids, characterized by their
better capability to transfer heat compared to air, have emerged
(Greenberg et al., 2006; Wei et al., 2020). The heat transfer process
from IT equipment within these cooling systems involves the use of
dielectric liquid or water (American Society of Heating, 2006).
Interestingly, Nadjahi et al. (2018) underscores liquid-based
cooling systems as a strategy to enhance energy efficiency.

2.2 Energy management

As outlined in ISO 50006:2023 (Energy management
systems—Evaluating energy performance using energy
performance indicators and energy baselines), the assessment of
energy performance serves as a valuable tool for analyzing the
outcomes of energy management (ISO 50006, 2023). This is
accomplished through the evaluation of analyzing energy
baselines (EnBs) and Energy Performance Indicators (EnPIs),
providing a comprehensive understanding of energy consumption
across the organization, encompassing, e.g., equipment and various
processes. Moreover, energy performance improvements within an
organization have the potential to enhance competitiveness and
contribute to decarbonization (ISO 50006, 2023). Even if there is no
planned improvement in energy performance, the determination of
EnBs and EnPIs has other benefits, such as managing operational
control, identifying maintenance needs, and pinpointing deviations
in energy performance. Another important aspect in enhancing
energy performance and energy management involves gaining
insights into the dynamic energy usage of various components

FIGURE 1
Schematic of the OODA loop.
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within organizations, such as systems and processes, as well as
factors that impact energy performance (ISO 50006, 2023). This is
made possible through quantitative values or measures of cooling
characteristics, such as chilled water flow rate and LCP return air
temperature, in the context of DCs. However, it is important to be
aware that challenges exist with determining quantitative values of
these characteristics. This encompasses a lack of data on relevant
variables, poor data quality, and the lack of ongoing monitoring and
collection of data.

Adaptable energy management is important within the context
of DC due to the operational differences between each facility
(Guitart, 2017). In this pursuit, the OODA loop, see Figure 1,
can serve as a structured framework for quickly observing
changes, orienting to the new situation, make decisions on a
course of action, and ultimately, act. Hence, this allows for
energy management strategies that are continuously adapted
based on real-time data. Colonel John Boyd designed the OODA
loop in the 1970s, creating it as a decision tool for in-combat use by
the U.S. Air Force (Osinga, 2005; Richards, 2011). The acronym
OODA represents Observation, Orientation, Decision, and Action.
Observation involves sensing oneself and the surrounding
environment. Orientation encompasses contextualization of the
observations. During the decision step, alternative courses of
action are reviewed, and the preferred course is then selected.
Lastly, the selected decision is tested through implementation. A
key feature of the OODA loop is its potential to stimulate creativity
and innovation across organizational domains, strategically aligned
with the fulfillment of objectives (Richards, 2011), such as energy
management. As stated by Richards (Richards, 2011), successful
implementation of the OODA loop necessitates adapting to
organizational practices and their unique landscape.

2.3 AI for improving energy efficiency

In the scientific community, the 2020s witnessed a notable
increase in research papers on AI (Fox and Griffy-Brown, 2022).
Today, AI has a substantial impact on various aspects of society and
is expected to fundamentally transform organizations and society
(Kaplan and Haenlein, 2019). Considering the intricate nature of
DCs, there is an interest in exploring how AI may contribute to
improving energy efficiency (Liu et al., 2022). However, Liu et al.
(2022) emphasizes that research on AI-driven improvements in
cooling performance in DCs is at an early stage. This demonstrates
the value of this research, alongside the inclusion of an
interdisciplinary team utilizing phronesis, episteme, and techne to
develop a holistic framework for energy management in DCs.

The main objective of the data mining process is to derive
valuable and concrete knowledge and information from gathered
data (Abualigah, 2019). Clustering is an unsupervised AI technique
used to divide a set of data into categories of similar characteristics
(Kogan et al., 2006; Han et al., 2012). Essentially, clustering
facilitates concise summaries of large datasets with numerous
attributes (Kogan et al., 2006). Within the realm of AI,
unsupervised learning algorithms like clustering have the
capability to detect patterns in data without the need for labeled
data, in contrast to supervised learning methods, which require
labeled data for training. Clustering algorithms have previously been

employed across different fields, including energy efficiency within
the building sector (Sun and Yu, 2021; Okereke et al., 2023),
assessing energy efficiency in various industries (Liu et al., 2018;
Howard et al., 2023), and classification of medical data within the
healthcare sector (Yang et al., 2024; Awad et al., 2023).

Within DCs, clustering can be employed to identify and analyze
diverse cooling operational patterns (Milić et al., 2023), offering valuable
insights into energy management aspects. The primary data clustering
techniques can be categorized into partitioning techniques, hierarchical
techniques, density-based techniques, and grid-based techniques (Han
et al., 2012). In the landscape of data clustering techniques, partitioning
techniques are acknowledged as themost fundamental methods. One of
the most widely utilized and established partitioning methods is
K-means (Ikotun et al., 2023), and was proposed in the 1950s and
1960s by various scholars (Pérez-Ortega et al., 2019). The algorithm
functions with the selection of K random objects as initial cluster
centers. It then proceeds to allocate each remaining object to the nearest
center, using Euclidean distance to enable comparison of similarities
between data points. Following this, the algorithm iteratively enhances
the within-cluster variation by repeatedly calculating the clusters’mean
and reallocating the data points until reaching convergence, at which
point no data points are allocated to another cluster. An overview of the
K-means clustering approach can be seen in Figure 2.

In K-means, the objective is to minimize the within-cluster sum
of squares (WCSS), as can be seen in Equation 1. Here, k denotes the
predetermined number of clusters, p refers to a data point which is
assigned to cluster i, ci corresponds to the cluster center of cluster Ci,
which is the estimated mean vector, and the squared Euclidean
distance between p and ci is referred to as dist (p, ci). Moreover, the
optimal number of clusters in K-means can be determined using the
elbow method in which the “elbow point” is identified, i.e., adding
more clusters does significantly decrease the WCSS. This method is
based on a visualization of the relationship between WCSS and
different values of K, as visualized in Figure 3. The elbow point
indicates an optimal number of clusters, achieving a balance
between enhancing data fit, i.e., the similarity between data
points within each cluster, and maintaining model simplicity.
Disadvantages of the elbow method include the subjective
identification of the elbow point, as well as the possible lack of a
well-defined one.

WCSS � ∑
k

i�1
∑
p∈Ci

dist p, ci( )2 (1)

3 Description of framework

3.1 Framework architecture

The framework’s architecture is designed to integrate AI
techniques, enabling both real-time and predictive analyses to
enhance energy efficiency, all based on the foundation of the
OODA loop. It leverages extensive datasets collected from the
DC’s building management system across two distinct time
periods, allowing for a comprehensive understanding of cooling
energy usage patterns, and deviating cooling characteristics where
attention from operators is needed. The architecture outlines the
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flow of data through the four phases of the OODA loop, detailing the
methods employed at each phase to ensure effective, data-driven
decision making for energy management. The developed
framework, which resembles an extended OODA loop, includes
three sub-loops, namely: (i) Continuous monitoring and
measurement, (ii) Determination of cooling characteristics to
analyze, and (iii) and Selection and adoption of a suitable AI
method, as visualized in Figure 4. The blue-colored shapes
represent sub-loop (i), the yellow-colored shapes represent sub-
loop (ii), and the green-colored shapes represent sub-loop (iii).

3.2 Observation

Digital technologies are important tools for efficiently collecting
and analyzing data (International Energy Agency, 2020). Using
sensors for measurements and subsequently collecting digital data
provides support for the Observation phase of the OODA loop. It is
important to note that this method of data collection necessitates
appropriate metering tools and may involve a time-intensive
process. The data collection process constitutes the Observation
phase for sub-loops (i) and (ii). The Observation phase of the third
sub-loop, (iii), involves screening available AI methods and
evaluating their respective strengths and downsides.

3.3 Orientation

Utilizing the data generated from the Observation phase, both the
information gathered from data collection and the screening of AI
methods are analyzed. Ideally, the Orientation phase involves
interdisciplinary teams, enabling the practical application of
knowledge creation in real-world settings, as highlighted in Industry

FIGURE 2
The K-means clustering approach: (A) visualizing the initial clustering, (B) the iteration process, and (C) the final clustering. Visualization inspired by
(Han et al., 2012).

FIGURE 3
Elbow curve visualizing the relationship between WCSS and the
number of clusters.

FIGURE 4
Proposed framework for next-generation DC energy
management, consisting of three sub-loops. Blue-colored shapes =
continuous monitoring and measurement, yellow-marked shapes =
determination of cooling characteristics, and green-marked
shapes = selection and adoption of suitable AI method.
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5.0 by the European Commission (European Commission, 2022).
Hence, individuals possessing knowledge in both practical and
theoretical domains are necessary to appropriately align with the
goals of the diverse sub-loops. In sub-loops (i) and (ii), potential
areas for energy efficiency, such as the reconfiguration of PID
parameters, and key areas for determining cooling patterns are
evaluated, respectively. Sub-loop (iii) involves evaluating how the
studied AI methods align with the analysis objective.

3.4 Decision

In the Decide phase, decisions are made regarding the specific
actions to be taken for the sub-loops. During this phase, it’s essential to
engage experts from various disciplines to mitigate potential challenges
when implementing the new concept (Thollander and Palm, 2023). In
sub-loop (i), actions such as changes in PID parameters are
implemented, and their effects on cooling characteristics are
monitored. Sub-loop (ii) involves deciding what specific cooling
characteristics are to be monitored and measured, e.g., DC power
density. In sub-loop (iii), the most suitable AI method, based on
effectiveness and feasibility, is selected for adoption.

3.5 Action

Within the Action phase of the OODA loop for DC energy
management, actions for (i) Continuous monitoring and
measurement, (ii) Determination of cooling characteristics, and (iii)
Selection and adoption of a suitable AI method are implemented based
on decisions made in the previous phase. For example, this involves
continual assessment of various parameters related to cooling patterns
(sub-loops (i) and (ii)), which allows for internal benchmarking of EnPIs.

3.6 Extended analysis

The final phase of the proposed framework includes an extensive
analysis of the insights and learnings obtained from each of the three sub-
loops. Consequently, insights from one sub-loop may lead to changes or
developments in another sub-loop. For instance, the synergy between
sub-loops (i) Continuous monitoring and measurement and (ii)
Determination of cooling characteristics can result in the installation
of additional sensors to enable the quantification of other DC cooling
characteristics. An important benefit of the extended OODA loop
involves the ongoing analysis of the attributes of the DC system, with
potential actions taken in response to modifications in operational
characteristics and gathering of new information.

4 Research object

In this research, a DC room located in Linköping, Sweden, and
operated by the multinational networking and telecommunications
company Ericsson AB is investigated. The designed decision-making
framework is the outcome of an interdisciplinary research collaboration
involving academia, Ericsson, facility management company COOR,
and municipally owned company Tekniska Verken AB.

With the support of facility management consultants, digital data
describing energy flows in the Ericsson DC room has been gathered
from building management systems during two different time periods.
The first data collection was conducted from 2021–01–01 to
2021–11–10, and the second data collection spanned from
2021–12–31 to 2022–12–31, with a time interval of 5 minutes. In
total, the first data collection consisted of more than 90,000 data points,
while the second encompassed over 105,000 data points. For both
investigated time periods, data on energy flows for 21 Liquid cooling
package (LCP) units were gathered. The 21 LCP units are distributed
among three server rows, with each row comprising seven units, as
visualized in Figure 5. In total, the server area measures 34 m2.
Moreover, a summary of the collected parameters within the dataset
can be seen in Table 1. It is important to mention that data and
information irrelevant to the cooling characteristics of the LCP units are
removed from the collected dataset. This process also involves removing
outliers, identified through visualization. Consequently, any
information that does not align with the research objectives is
excluded from the analysis, enabling the effective use of the chosen
AI-powered algorithm.

It is important to note that continuously gathering data on
energy flows for two different time periods enables the monitoring of
changes in energy characteristics within an organization. Hence,
valuable information for diagnosing potential inefficiencies in the
LCP units can be provided. Another benefit of monitoring and
measuring energy characteristics includes the possibility to perform
internal benchmarking. In fact, the significance of quantifying
metrics to improve energy performance has been underscored in
previous scientific investigations, e.g., (Bunse et al., 2011; May
et al., 2013).

5 Results and discussion

5.1 Sub-loop (i): Continuous monitoring and
measurement

As stated in section 4, data were collected for two time periods:
from 1 January 2021, to 10 November 2021, and from 31 December
2021, to 31 December 2022. Figure 6 shows the power used for
cooling, servers, and auxiliary systems2 per square meter (at the top),

FIGURE 5
Visualization of the studied DC room, which includes three rows
of servers and 21 LCPs in total.

2 Auxiliary systems refer to processes that are not connected to cooling or

the electricity supply to servers, such as lighting.

Frontiers in Energy Research frontiersin.org06

Milić 10.3389/fenrg.2024.1449358

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1449358


along with a comparison of the absolute differences between the first
and second data collections (at the bottom). The average cooling
power density for the first data collection is 7.23 kW/m2, the average
electricity supply for servers is 7.14 kW/m2, and the average
electricity supply for auxiliary systems is 0.59 kW/m2. The
corresponding figures for the second data collection are 9.09 kW/
m2, 8.93 kW/m2, and 0.37 kW/m2, respectively. As displayed in

Figure 6, the first data collection shows increasing power densities
from the beginning to the end of the analyzed time period. In-depth
analysis of the data set reveals that several LCP units were non-
operational during the initial part of the first time period.
Consequently, this results in substantial differences in the power
densities measured between the two time periods. Moreover, the
large variation in power densities between the two data sets is also
evident when investigating the interquartile range. For example, the
interquartile range for cooling power density is more than seven
times larger in the first time period (2.68 kW/m2) compared to the
second time period (0.37 kW/m2). However, as shown at the bottom
of Figure 6, the absolute differences in power densities between the
two time periods decrease significantly when comparing the end of
2021 and 2022.

5.2 Sub-loop (ii): Determination of cooling
characteristics

The determination of cooling characteristics to analyze directly
depends on the parameters collected for the LCP units. As presented
in Table 1, the cooling parameters collected in this research include
LCP return air temperature (˚C), chilled water flow rate (L/min),
LCP cooling power (kW), and the temperatures of the chilled water
supply and return (˚C).

Building on the data collected the cooling characteristics selected
for analysis within the OODA loop, specifically in the Decide phase,
are based on these measurements. Specifically, the ΔTchilled water,
which is the temperature difference between the chilled water supply
and return, is analyzed as a cooling characteristic, alongside the LCP
return air temperature, chilled water flow rate, and LCP cooling
power. This comprehensive approach allows for a detailed
assessment of the LCP systems’ cooling characteristics.
Additionally, the data facilitate the exploration of potential
reconfigurations of PID parameters, which could further improve
the cooling of server units. Identifying key areas for determining
cooling patterns not only enhances system performance but can also
be used as decision support in predicting maintenance strategies. By
analyzing the collected data, responsible personnel can detect
suboptimal performance trends. This analysis aids in identifying
potential issues before they become severe, allowing for timely
interventions before server units are affected by issues such as
insufficient cooling supply. This strategic approach not only
improves system reliability and efficiency but also supports
maintenance decisions, ensuring stable server operations.

5.3 Sub-loop (iii): Selection and adoption of
suitable AI method

The selected and adopted AI method within the OODA loop in
this research is the K-means algorithm. The choice of K-means is
based on its time-efficient implementation, ability to handle large
datasets, and visualization capabilities that facilitate interpretative
analysis of the clustering results. Data normalization was performed
before applying the K-means algorithm to avoid problems arising
from variations in magnitudes of the cooling parameters. It is
important to note that while it is possible to use other AI

TABLE 1 Collected parameters for the LCP units.

Variable Unit

LCP return air temperature (˚C)

Chilled water flow rate (L/min)

Cooling power (kW)

Chilled water supply and return temperaturea (˚C)

aThe difference in temperature between the supply and return of chilled water is referred to

as △Tchilled water.

FIGURE 6
Displayed at the top are power densities for cooling LCP units,
power for servers, and power for auxiliary systems, with the bottom
presenting a comparison between the first and second data collection
in terms of absolute differences in kW/m2. The blue line
represents the cooling, the red line indicates the server power, and the
green line shows the auxiliary systems.
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methods within the framework, analyzing AI methods against each
other is outside the scope of this research. Instead, the focus is on
developing a comprehensive framework that incorporates AI as a
key component.

The Decide phase of the OODA loop in this framework centers
on the selection of a suitable AI method, in this case, K-means. As
mentioned above, this decision was driven by its effectiveness in
clustering and identifying LCP operational patterns, which are
crucial for identifying deviating cooling characteristics where
action is needed to reconfigure PID parameters. By integrating
K-means into the OODA loop, the framework ensures that data-
driven decisions can support actionable improvements in DC
operations.

5.3.1 Identifying optimal number of clusters with
elbow curves

Figure 7 depicts elbow curves for the two investigated time
periods: 2021–01–01 to 2021–11–10 and 2021–12–31 to
2022–12–31. Interestingly, the optimal number of clusters are
four in the first data collection time period and three in the

second data collection time period. This clearly demonstrates
how different time periods influence the optimal number of
clusters in a dataset, which is attributed to the varying cooling
characteristics between the two time periods, as shown in section 5.1.
Moreover, emphasizing that the identification of the elbow point
relies on subjective assessment of the elbow curve is important, as
interpreting the results may be challenging without a distinct elbow
point. In this research, the analysis related to the determination of
the number of clusters was considered satisfactory as both time
periods investigated displayed relatively clear break points, thus
facilitating a detailed characterization of LCP cooling parameters
across both datasets. Additionally, an increase in the number of
clusters from four to five in the initial data collection corresponds to
only a 27% decrease in WCSS, compared to a 60% decrease when
comparing four clusters to three clusters. The corresponding figures
for the second data collection are 21% and 48%, respectively. Hence,
the marginal improvements in WCSS support the selection of four
clusters for the first data collection period and three for the second.
This analysis justifies the use of K-means in the proposed research as
it effectively identifies optimal cluster numbers, ensuring
meaningful data segmentation.

5.3.2 Quantification of cooling characteristics
using AI-powered clustering

As previously stated, the optimal number of clusters was four in
the first data collection and three in the second data collection.
Figure 8 shows the clustering results for the investigated cooling
parameters for both data collection time periods.

The data from the first data collection, featuring four clusters,
reveals median values for each cluster. In Cluster 1, the median LCP
return air temperature is 31.4°C, with a chilled water flow rate of
0.31 L/min, a ΔTchilled water of 15.4°C, and a cooling power of
0.32 kW. In Cluster 2, the median values are 34.8°C for LCP
return air temperature, 32.53 L/min for chilled water flow rate,
9.3°C for ΔTchilled water and 21.0 kW for cooling power. Cluster three
shows median values of 33.3°C for LCP return air temperature,
16.50 L/min for chilled water flow rate, 11.7 ΔTchilled water, and
13.4 for cooling power. Lastly, Cluster four displays median values of
27.4°C for LCP return air temperature, 0.22 L/min for chilled water
flow rate, 15.5 (˚C) for ΔTchilled water, and 0.26 kW for cooling power.

In contrast, the second time period reveals three clusters with
their respective median values. For Cluster 1, the median LCP return
air temperature is 31.6°C, the chilled water flow rate is 0.25 L/min,
the ΔTchilled water is 15.53°C, and the cooling power is 0.25 kW.
Cluster two demonstrates a median LCP return air temperature of
34.8°C, a chilled water flow rate of 32.53 L/min, a ΔTchilled water of
9.32°C, and a cooling power of 21.0 kW. Cluster three represents
another distinct operational status in the LCP units, possibly
necessitating different considerations for energy-efficient cooling
operation, with median values of 33.3°C for LCP return air
temperature, 16.50 L/min for chilled water flow rate, 11.7°C for
ΔTchilled water, and 13.4 kW for cooling power.

The clustering results are important related to analysis of the
energy efficiency of LCP units and to provide insights concerning
fine-tuning PID parameters to improve cooling performance of LCP
units. For example, from an energy efficiency perspective, it is
important to have a high ΔTchilled water. Additionally, elevated
LCP return air temperatures may suggest insufficient cooling

FIGURE 7
Elbow curves for the first data collection time period,
2021–01–01 to 2021–11–10, and the second data collection time
period, 2021–12–31, to 2022–12–31.
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supply to the servers. These findings are important as decision
support for the Decide phase in the OODA loop, ultimately
providing data that can be used to reconfigure PID parameters.
Consequently, actions on PID reconfiguration can be taken to help
reduce the risk of system downtime and increase equipment
lifespan. In the context of DC energy management, the results
connected to cooling attributes, such as ΔTchilled water, provide a
comprehensive overview of the cooling system’s efficacy. By
integrating these attributes into broader metrics like PUE and
cooling power density, operators and owners of DCs gain
insights to enhance cooling strategies and adjust PID parameters
through digital monitoring and data analysis. This allows for
informed follow-up procedures to improve overall cooling
performance. Moreover, the use of clustering techniques has been

used in other scientific investigations. Interestingly, (Grishina et al.,
2020) applied clustering techniques to detect individual servers that
often occur in overheated locations within a DC room. The authors
also emphasize that the developed approach can be applied to
analyze thermal characteristics in any air-cooled DC with a
thermal monitoring system. In this context, it is important to
mention that the framework developed in this research also
depends on continuous monitoring and data collection from
building management systems. Another example of using
clustering techniques to analyze DCs includes the work by
(Daradkeh et al., 2020) who presented a method for clustering
workloads and configurations in DCs. A key result involved
investigating workload types based on related jobs performed,
server type, and other factors. Although research on utilizing

FIGURE 8
Clustering results of LCP return air temperature with chilled water flow rate, ΔTchilled water, and cooling power, from top to bottom. Data collections
are from 2021–01–01 to 2021–11–10 (left), and 2021–12–3, to 2022–12–31 (right). For data collection no. 1, Cluster one is represented by yellow shapes,
Cluster two by blue shapes, Cluster three by orange shapes, and Cluster four by purple shapes; for data collection no. 2, Cluster one is represented by dark
blue shapes, Cluster two by green shapes, and Cluster three by maroon shapes.
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clustering techniques exists, as presented above, there are
insufficient scientific investigations on AI methods for enhancing
cooling performance in DCs, as stated by (Liu et al., 2022). To the
best of the author’s knowledge, this is particularly the case for
clustering techniques such as K-means.

5.4 ExtendedOODA loop and consequences
for policy frameworks

The developed framework uses advanced AI techniques to
enhance energy efficiency within DCs. Rooted in the OODA
(Observe, Orient, Decide, Act) loop, originally developed for
military strategy, this architecture leverages extensive datasets
from Ericsson DCs’ building management systems collected over
distinct time periods. These datasets provide crucial insights into
cooling energy usage patterns, highlighting deviations necessitating
operator attention.

Aligned with policy frameworks, this framework addresses
key policy objectives related to energy efficiency and
environmental sustainability. By continuously monitoring and
measuring real-time data, the framework supports compliance
with regulatory standards and benchmarks for energy use in DCs.
This not only ensures adherence to environmental policies but
also facilitates reporting requirements, supporting transparency
and accountability. Moreover, the adoption of AI methods
underscores a proactive approach to enhance cooling
efficiency and achieve energy management goals. This includes
fine-tuning PID parameters based on AI-powered insights,
ensuring continuous improvement in cooling system
performance. In the Decide phase of the OODA loop, key
decisions can be made, such as installing additional sensors to
gain a more comprehensive understanding of cooling
characteristics. Additionally, the interactive nature of the
OODA loop may lead to the adoption of new AI algorithms as
they become available, allowing the framework to evolve and
incorporate more advanced techniques for even greater efficiency
in DC operations. Such actions not only bolster operational
efficiency but also position DCs as leaders in sustainable
practices, fostering a conducive environment for policy
innovation and adaptation.

The framework’s scalability across different DC environments
hinges on consistent data monitoring and collection practices. This
scalability is pivotal for its integration into diverse policy contexts
and regulatory frameworks. By standardizing cooling data metrics
and analytical methodologies, the framework facilitates
comparability and benchmarking across facilities, supporting
broader policy initiatives aimed at sector-wide energy efficiency
improvements. In conclusion, the extended OODA loop framework
represents a structured approach to data-driven decision-making in
DC energy management. Its alignment with policy frameworks not
only supports regulatory compliance and environmental
stewardship but also catalyzes innovation and adaptation within
the sector. By leveraging AI techniques and comprehensive data
analysis, DC operators can proactively address evolving policy
requirements, contributing to sustainable development goals and
enhancing resilience in the face of future regulatory changes.

6 Conclusion and future research

This research seeks to extend the current understanding of data-
driven energy management in DCs, providing a foundation for
advancements in practices that foster a more sustainable and energy-
efficient digital infrastructure. By analyzing collected cooling data
over two distinct time periods (1 January 2021, to 10 November
2021, and 31 December 2021, to 31 December 2022), insights into
energy usage trends have been uncovered. The observed increase in
power densities from the beginning to the end of the first time period
underscores the importance of continuous monitoring and adaptive
management strategies. Additionally, the application of AI
techniques, such as K-means clustering in this research, has
proven instrumental in identifying optimal clusters and providing
insights into fine-tuning PID parameters to enhance cooling system
efficiency. Moreover, the clustering offers a detailed analysis of LCP
return air temperature, chilled water flow rate, ΔTchilled water, and
cooling power across both time periods. This quantitative approach
not only enhances understanding of cooling system performance but
also supports informed decision-making aimed at improving overall
operational efficiency.

Aligned with the extended OODA loop framework, the research
emphasizes the integration of extensive datasets from Ericsson DCs’
building management systems. These datasets provide crucial
insights into cooling energy usage patterns, guiding policy
frameworks towards enhanced energy efficiency within DC
environments. By leveraging AI-powered insights, DC operators
can effectively navigate regulatory landscapes and contribute to
sustainable development goals.

In conclusion, this study demonstrates that a data-driven
approach rooted in the OODA loop framework is important for
advancing energy management practices in DCs. By harnessing
technological innovations and comprehensive data analysis, DCs
can not only enhance operational performance but also lead the way
in environmental stewardship and policy adaptation within the
digital infrastructure.

In future work, it is of interest to expand the scope of this
study to include a broader range of DC environments. This
includes investigating the application of AI techniques, such
as K-means clustering, in other DCs with varying
infrastructure and cooling technologies. Since this study
analyzed a DC room cooled by LCPs, it would be of interest
to apply the developed framework to DCs utilizing CRAH units.
By comparing the performance of the developed framework
across different cooling systems, valuable insights can be
gained into its adaptability. Such a comparison will help
identify specific challenges, such as gaps in data monitoring,
and opportunities unique to each DC infrastructure. This process
will refine the framework to accommodate diverse operational
conditions and enhance its applicability across various DC
environments. Additionally, future development of the
framework will include analysis of the impact of cooling
technology on overall primary energy use and CO2 emissions,
including improvements in cooling performance such as fine-
tuning PID parameters. By evaluating the effects of enhanced
cooling strategies, future studies can provide comprehensive
guidance on achieving sustainability targets in the DC sector.
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