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Introduction: This study addresses the challenge of active power (AP) balance
control in wind-photovoltaic-storage (WPS) power systems, particularly in
regions with a high proportion of renewable energy (RE) units. The goal is to
effectively manage the AP balance to reduce the output of thermal power
generators, thereby improving the overall efficiency and sustainability of
WPS systems.

Methods: To achieve this objective, we propose the transfer learning double deep
Q-network (TLDDQN) method for controlling the energy storage device within
WPS power systems. The TLDDQN method leverages the benefits of transfer
learning to quickly adapt to new environments, thereby enhancing the training
speed of the double deep Q-network (DDQN) algorithm. Additionally, we
introduce an adaptive entropy mechanism integrated with the DDQN
algorithm, which is further improved to enhance the training capability of agents.

Results: The proposed TLDDQN algorithm was applied to a regional WPS power
system for experimental simulation of AP balance control. The results indicate
that the TLDDQN algorithm trains agents more rapidly compared to the standard
DDQN algorithm. Furthermore, the AP balance control method based on
TLDDQN can more accurately manage the storage device, thereby reducing
the output of thermal power generators more effectively than the particle swarm
optimization-based method.

Discussion: Overall, the TLDDQN algorithm proposed in this study can provide
some insights and theoretical references for research in related fields, especially
those requiring decision making.
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1 Introduction

Conventional power generation technologies produce large amounts of greenhouse
gases (Russo et al., 2023). To reduce greenhouse gas emissions, various countries have
formulated carbon reduction programs. Renewable energy (RE) power generation
technology has been widely favored by countries for the advantages of environmental
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protection and sustainability (Han et al., 2023). However, the
stochastic and fluctuating characteristics of RE generation
systems can threaten the reliability of power systems (Guerra
et al., 2022). Energy storage (ES) devices can release power to
relieve power tension or absorb power to avoid power waste
(Dong et al., 2022). Consequently, the stability of the RE power
generating system can be enhanced by the RE power plant built by
leveraging the complementarity of RE.

When the proportion of RE units in power generation systems is
small, the traditional active power (AP) regulation strategy of the RE
power generation system can prioritize the consumption of power
generated by RE units. The thermal power units cooperate with the
RE units to regulate the AP balance of the RE power generation
system (Grover et al., 2022). However, when the proportion of RE
units in the RE power generation system is large, the RE units need
to cooperate with the traditional thermal power units to control the
AP balance of the power system (Ye et al., 2023). In this study, the
AP balance control problem is considered for a high percentage of
RE generation systems.

The AP balance control methods of RE generation systems
mainly have two categories: swarm intelligence algorithms and
reinforcement learning algorithms. The adaptability of the
swarm intelligence algorithm-based AP balance control
method is considerable. However, the swarm intelligence
algorithm-based AP balance control method has the
disadvantages of poor real-time performance and easily falling
into local optimization (Moosavian et al., 2024). On the contrary,
the AP balance control method based on reinforcement learning
has the advantage of high real-time performance (Yin and
Wu, 2022).

The swarm intelligence algorithm-based AP balance control
method has the advantage of adaptability (Jiang et al., 2022). The
AP balance control methods, which are based on hybrid swarm
intelligence algorithms comprising Mexican axolotl optimization
and the honey badger algorithm, have the potential to reduce carbon
emissions, power costs, and peak power consumption in power
systems (Revathi et al., 2024). An integrated load scheduling method
for RE generation systems based on the Firefly algorithm can reduce
the fuel cost of the generation system (Mehmood et al., 2023).
Optimal AP scheduling methods for power systems based on hybrid
particle swarm optimization and hippocampus optimization
algorithms can reduce AP losses in power systems (Hasanien
et al., 2024). However, the AP balance control method of wind-
photovoltaic-storage (WPS) power system based on swarm
intelligence algorithms has the shortcomings of low real-time
performance and insufficient regulation accuracy.

The reinforcement learning-based AP balance control method is
suitable for AP balance control of power systems in complex
environments (Cheng and Yu, 2019). In addition, the AP balance
control method for WPS power systems based on reinforcement
learning has the advantage of high real-time performance. A
decomposed predictive fractional-order proportional-integral-
derivative control reinforcement learning algorithm can reduce
frequency deviation and improve power quality in integrated
energy systems (Yin and Zheng, 2024). The short-term optimal
dispatch model framework of the water-wind-photovoltaic multi-
energy power system constructed based on the deep Q-network
(DQN) algorithm can improve the generation efficiency of multi-

energy systems (Jiang et al., 2023). The control strategy of ES devices
for energy systems based on improved deep deterministic policy
gradient algorithms can integrate the frequency fluctuation of
energy systems (Yakout et al., 2023). The energy system
optimization control strategy based on the twin delayed deep
deterministic policy gradient algorithm can flexibly adjust the
components’ operation and the ES device’s charging strategy
according to the output of RE sources and the electricity price
(Zhang et al., 2022). The approach of employing electric vehicles as
energy storage devices and regulating charging strategies with DQN
algorithms is an effective solution to address the security of energy
supply issues associated with the future power grid (Hao et al., 2023).
A multi-agent game operation strategy consisting of energy retailers,
suppliers, and users with integrated demand response is an effective
way to alleviate the tension of multi-energy coupling and multi-
agent difficulties (Li et al., 2023). N Population multi-strategy
evolutionary game theory reveals the long-term equilibrium
properties of the long-term bidding problem on the generation
side of the power market and provides a theoretical reference to the
complex dynamic interactive decision-making problems in related
fields (Cheng et al., 2020). However, previous AP balance control
methods based on reinforcement learning often need to be relearned
when faced with new environments.

This study proposes the transfer learning double deep
Q-network (TLDDQN)-based AP balance control method for
controlling storage devices in WPS power systems. The proposed
TLDDQN combines the advantage of transfer learning that can
rapidly adapt to new environments and the advantage of the double
deep Q-network (DDQN) algorithm that deals with complex
environments. In addition, this study proposes a method to
combine the adaptive entropy mechanism to the DDQN
algorithm and improve the corresponding adaptive entropy
mechanism. Therefore, the TLDDQN method can be effective in
training TLDDQN agents and controlling the AP of the WPS power
system. The characteristics of the AP balance control method for
WPS power systems based on the proposed TLDDQN can be
summarized as follows.

(1) This study combines the transfer learning approach and the
DDQN to form the TLDDQN algorithm. The proposed
TLDDQN algorithm combines the adaptive entropy
mechanism to enhance the exploration ability during
training and utilizes the transfer learning approach to
transfer the generic parameters in the neural network
(NN) of the TLDDQN algorithm.

(2) The active probabilistic balance control method for WPS
power systems based on the proposed TLDDQN can be
applied to control ES devices in WPS power systems.

(3) The active probabilistic balancing control method of the WPS
power system based on the TLDDQN algorithm can balance
the AP of the WPS power system.

2 Mathematical modeling of renewable
energy generators

The devices of the WPS power system are mainly composed of
wind power (WP) generation devices, photovoltaic power (PP)
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generation devices, and ES devices (Abdelghany et al., 2024). This
study analyzes the output characteristics of WP generation devices,
PP generation devices, and ES devices to obtain the corresponding
mathematical model.

2.1 Mathematical modeling of wind power
generation devices

The WP generation devices convert the kinetic energy of the
wind into electrical energy (Liu and Wang, 2022). The power
generation efficiency of a WP generation device is related to the
ambient wind speed (Jung and Schindler, 2023). The output of WP
generation devices is expressed as follows (Equation 1).

Pwt �
0, v< vci′
a′v3 + b′v2 + c′v + d′, vci′ ≤ v≤ v′r
P′
r, v′r < v< vco′

0, v≤ vco′

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (1)

where, Pwt is the output of WP generation devices; P′
r is the rated

power of WP generation devices; v is the actual wind speed;
vci′ is the tangential wind speed of WP generation devices; v′r is
the rated wind speed; vco′ is the cut-out wind speed; a′, b′, c′ and d′
are the wind speed parameters of WP generation devices.

2.2 Mathematical modeling of photovoltaic
power generation devices

The PP generation devices convert solar energy into electrical
energy (Bawazir et al., 2023). The power generation efficiency of PP
generation devices is related to the light intensity and temperature
(Li et al., 2024). The output of power generation devices is expressed
as follows (Equation 2).

PPV � PSTC
GING

GSTC
1 + k TC − Tr( )[ ] (2)

where, PPV is the output of PP generation devices; PSTC is the
maximum output of the PP generation devices; GING is the intensity
of light; GSTC is the standard light intensity; k is the temperature
coefficient; TC is the ambient temperature; Tr is the reference
temperature.

2.3 Mathematical modeling of energy
storage devices

The ES devices can absorb or release AP. When WP generation
devices and PP generation devices generate more power than the
load demand, ES devices can absorb power to avoid wasting
electricity (Rostamnezhad et al., 2022). When the output power
of WP devices and PP devices is less than the load demand, ES
devices can release power to relieve the power tension (Song et al.,
2023). Batteries are common ES devices. The most widely applied
equivalent model for ES plants is the Davignan equivalent model. An
ES device can be represented mathematically as follows
(Equation 3).

SOC t( ) �
SOC t − 1( ) + ηchIt

CN
Charge

SOC t( ) − It
CNηdis

Discharge

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

where, SOC(t) is the state of charge at time t; SOC(t − 1) is the state
of charge of the ES device at time t − 1; ηch is the charge efficiency;
ηdis is the discharge efficiency;CN is the rated power; It is the current
flows through ES devices.

3 Active power balance control method
based on transfer learning double deep
Q-network approach

This study proposes a TLDDQN-based AP balance control
strategy. This AP balance control strategy based on TLDDQN is
applied to cooperate with the traditional thermal generating units
for AP balance control of the RE generation system by controlling
storage devices in the WPS power system. The transfer learning
method is employed to enhance the DDQN, thereby facilitating the
formation of the TLDDQN. In addition, this study proposes an
improved adaptive entropy mechanism to improve the exploratory
ability of agents during the training process. The TLDDQN has the
advantage of being able to adapt to different environments and can
provide a strategy to maximize the cooperation of the WP and PP
systems with the conventional units for the AP balance control of the
renewable power system.

3.1 Transfer learning method

Transfer learning achieves the purpose of learning new
knowledge quickly through the transfer of similarities (Wang
et al., 2023). In contrast to traditional machine learning, transfer
learning permits a relaxation of the fundamental assumption that
the training data must independently satisfy the same distributional
conditions as the test data. When training and test data have
different distributions, transfer learning methods allow for fast
model building.

The transfer learning approach defines a source domain Ds and
a target domain Dt. The source and target domains have different
data distributions P(Xs) and P(Xt). The focus of the transfer
learning approach is finding the similarities between the source
domains and target domains and utilize appropriately.

3.2 Double deep Q-network approach

The DQN employs a combination of deep learning
methodologies and Q-learning to address the issue of
dimensionality explosion that is inherent to the latter (Yi et al.,
2022). The DQN algorithm applies NNs as function approximators
to approximate the state-action value. The expression of the
objective function of the DQN algorithm is expressed as follows
(Equation 4).

YDQN
i � r + γmax

a′
Q s′, a′; θ′( ) (4)
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where, r is the reward of actions; γ is the discount factor; (s′, a′) is
the state-action value at the next moment; θ′ is the weight of the
target network; max is taking the maximum value.

The DQN algorithm is susceptible to overestimation of the Q
value. The DDQN algorithm represents an improvement from the
original DQN algorithm. The DDQN algorithm separates the action
selection and action valuation processes of the DQN algorithm, thus
addressing the issue of the DQN algorithm being prone to
overestimating the Q value. The optimization function YDDQN

i of
the NN of the DDQN algorithm is expressed as follows (Equation 5).

YDDQN
i � r + γQ s′, argmax

a′
Q s′, a′; θ−( ); θ′( ) (5)

where, the Q-function with weights θ′ is applied to select the action
behavior; the Q-function with weights θ− is applied to evaluate
the action.

Figure 1 illustrates the relationship between the DDQN agent
and environments. The DDQN agent outputs actions to act on
environments. The DDQN agent receives the reward value and state
of the output actions from environments to update the parameters
of agents.

3.3 Improvement of adaptive
entropy mechanism

Ordinary reinforcement learning algorithms tend to converge to
a local optimum solution in the late stage of training. To solve this
problem, some reinforcement learning algorithms combine the
entropy maximization method with the reinforcement learning
algorithm to obtain stronger algorithmic performance.
Reinforcement learning methods that combine the entropy of a
policy to maximize the reward also maximize the entropy of the
distribution of the actions of policy in each state, rather than just
considering maximizing the reward of actions. As a result, compared
with ordinary reinforcement learning methods, the reinforcement
learning method with the entropy of policies obtains stronger
exploration ability and effectively solves the problem of
convergence to locally optimal solutions. Accordingly, this study

combines the adaptive entropy mechanism into the DDQN
algorithm and improves the adaptive entropy mechanism.

The entropy of a strategy is a measure of the uncertainty of a
probability distribution. As the distribution becomes more random,
the entropy value increases. Reinforcement learning algorithms
combining the method of maximizing entropy for the
augmentation and generalization of the rewards of agents can be
expressed as follows (Equation 6).

r st, at( ) � r st, at( ) + δH p( ) (6)
where, r(st, at) is the reward of the intelligent; δ is the adaptive
entropy temperature coefficient;H(p) is the entropy of the strategy.

According to the knowledge of information theory, the entropy
of the strategy can be expressed as follows (Equation 7).

H p( ) � −∑
i

pi log pi( ) (7)

where, pi is the state transfer distribution.
In the above process, the value of the adaptive entropy

temperature coefficient is very important. Too small an adaptive
entropy temperature coefficient will result in the agent easily
converging to the local optimal solution; too large an adaptive
entropy temperature coefficient will result in the agent generating
too much unnecessary exploration. However, previous deep
reinforcement learning algorithms do not provide reasonable
values for the adaptive entropy temperature coefficient.
Therefore, this study proposes improved adaptive entropy
temperature coefficients to enhance the rationality of entropy
utilization.

This study proposes a method to dynamically adjust the entropy
temperature coefficient based on the average reward. If the average
reward of an agent is stagnant or decreasing, the entropy value
should increase to encourage the exploration of new strategies; on

FIGURE 1
Relationship between DDQN agents and environments.

FIGURE 2
Transfer learning methods transfer NNs.

Frontiers in Energy Research frontiersin.org04

Xiao et al. 10.3389/fenrg.2024.1448046

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1448046


the contrary, if the average reward continues to increase, the entropy
value should decrease to stabilize the currently effective strategies.
Therefore, the entropy temperature coefficient proposed in this
study can be expressed as follows (Equation 8).

δ′ � δ ′
max exp −ite/50( )δ, if Rt >Rt−1( )

δ ′
min δ, else

{ (8)

where, δ′ is the entropy temperature coefficient proposed in this
study; Rt is the average reward of the intelligences; ite is the number
of iterations in the training process; δ ′

max is the maximum entropy
temperature coefficient; δ ′

min is the minimum entropy temperature
coefficient; exp is the exponential operator.

3.4 Transfer learning double deep
Q-network approach

This study proposes TLDDQN that is formed by the transfer
learning approach combined into the DDQN approach. As shown in
Figure 2, the NN of the DDQN approach can be split into two parts.
One part of the NN is responsible for learning generic features. The
other part of the double NN is responsible for learning task-specific
features. First, when the deep reinforcement learning agents are
under a new environment, the NN in the source domain that is
responsible for learning generalized features is directly copied to the
target domain. Besides, the corresponding NN parameters are
frozen. Then, the transfer learning method randomly initializes
the unfrozen NN parameters in the target domain and retrains
NN parameters with the data in the target domain.

3.5 Transfer learning double deep
Q-network-based active power balance
control method for wind-photovoltaic-
storage power systems

This study applies the proposed TLDDQN to control ES devices
to fully consider the cost factor at the same time as the traditional
unit to carry out AP balance control of WPS power systems.
Considering the environmentally friendly and renewable
advantages of wind and PP generation systems, the AP balance
control strategy based on the proposed TLDDQN prioritizes the
consumption of power generated byWP and PP generation systems.
However, because of the stochastic and fluctuating characteristics of
WP and PP generation systems, the power output of the WP-PP
systems alone is challenged to match the load consumption.
Therefore, the AP balance control strategy in this study applies
the proposed TLDDQN method to control ES devices, which are
combined with the traditional thermal power generation system for
the AP balance control of the WPS power system.

The TLDDQNmethod is a deep reinforcement learning method
that necessitates the definition of the state, action, and
reward settings.

The state of an agent is the mathematical representation of the
environment in which the agent is located. Therefore, in this study,
the state of the agent includes the load power, the power generated
by the wind power generator, the power generated by the
photovoltaic power generator, and the charge state of the energy

storage device at the same moment. Therefore, the state St of the
agent can be represented as follows (Equation 9).

St � Pload, Pwt, Ppv , soc{ } (9)

where, Pload is the load power; soc is the battery status.
The action of the TLDDQN consists of a series of discrete

variables. The action at is represented as follows (Equation 10).

at � l, l + h − l

M
, ..., h{ } (10)

where, l is the lower limit of the action value; h is the upper limit of
the action value; M is the dimension of the action space.

The reward setting of the TLDDQN agent mainly takes into
account the operational cost of the WPS power system and the
discharge power of the ES device. The reward setting rew is
expressed as follows (Equations 11–17).

rew � αr1 t( ) + βr2 t( ) (11)
r1 t( ) � Cf t( ) + COM t( ) + CDEP t( ) + CL (12)

r2 t( ) � Pdis t( ) (13)

Cf t( ) � ∑N
i�1
Cfuel

1
LHV

∑T
t�1

Pi t( )
ηi t( ) (14)

COM t( ) � ∑N
i�1
KOM,iPi t( ) (15)

CDEP t( ) � ∑N
i�1

CACC,i

8760Prifcf,i
Pi t( ) (16)

CL � Cbuload (17)
where, r1(t) is the WPS power system’s operational cost reward;
r2(t) is the ES unit’s discharge power reward; α is the operating
cost coefficient; β is the discharge power coefficient; N is the
times that the AP balance control method is dispatched within a
day; Pdis(t) is ES unit’s discharge power; Cf(t) is the fuel cost
consumed; COM(t) is the maintenance cost; CDEP(t) is the
depreciation cost; CL is the compensation cost for the outage
when the load is removed; Cfuel is the price of fuel; LHV is the
low calorific value; Pi(t) is the AP output of the generating unit;
ηi(t) is the fuel combustion efficiency of the thermal generating
unit; KOM,i is the maintenance factor of the generating unit;
CACC,i is the installation cost of the generating unit; Pri is the
rated power of the generating unit; fcf,i is the capacity factor; Cbu

is the compensatory price per unit of electricity; load is the
excised amount of electricity.

Figure 3 shows the structure of the AP balance control method
based on the proposed TLDDQN. The RE unit relies on wind and
solar energy to generate electricity. The ES control center receives
the power generation information of RE units, the load information,
and the charge state information of ES devices. The control method
of the ES control center is the AP balance control method based on
the TLDDQN. The thermal power unit formulates the thermal
power generation strategy based on the power generation
situation of the ES device, the power generation situation of RE
units, and the load power situation. Figure 4 shows the flowchart of
the AP regulation of this study. When the power generated by a RE
generator is greater than the load demand, ES device absorb as much
of the excess power as possible. When the power generated by the RE
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FIGURE 3
Structure of AP balance control method for WPS power system.

FIGURE 4
AP regulation flowchart.
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generator is less than the load demand, the ES device generates active
power to reduce the power generated by the thermal generator.

4 Case studies

In this study, experiments are carried out to verify the
effectiveness of the AP balance control method based on the
TLDDQN proposed in this study based on load power, wind
turbine power, and PP data at a site. This study compares the
number of iterations required to accomplish convergence between
the proposed TLDDQN and DDQN and the output of thermal
power generation units by applying the proposed TLDDQN
algorithm and particle swarm optimization for AP balance
control of WPS power systems.

TABLE 1 Parameters of algorithms.

Algorithm Paraments Value

particle swarm optimization Number of individuals in the population 30

particle swarm optimization Number of iterations 500

TLDDQN Greed rate 0.2

TLDDQN Learning rate 0.05

TLDDQN Power at the initial moment of the ES device 10

TLDDQN Maximum capacity of the ES device 20

TLDDQN Self-discharge rate of ES devices 0.001

TLDDQN Maintenance costs of ES devices 0.0012

TLDDQN Maximum output of gas turbines 65

TABLE 2 Load power, wind turbine power, and PP at a site for 24 h.

Time(h) Pload (kW) Pwt (kW) Ppv (kW)

1 62.99 32.76 0

2 57.95 37.8 0

3 55.43 34.57 0

4 51.65 39.06 0

5 50.39 33.28 0

6 62.99 15.12 0

7 81.89 17.64 2.52

8 97.01 21.42 10.08

9 117.17 25.2 16.38

10 127.24 13.12 25.2

11 123.47 7.56 28.98

12 108.35 15.34 30.24

13 99.53 6.3 28.98

14 93.23 7.43 26.46

15 97.01 17.64 21.42

16 109.61 19.42 16.38

17 118.4 31.43 11.34

18 122.21 34.02 2.52

19 129.76 22.68 0

20 136.06 18.9 0

21 125.98 20.16 0

22 105.83 18.57 0

23 89.45 30.24 0

24 66.77 39.06 0

FIGURE 5
Curves of load power, turbine power, and PP at a site.
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4.1 Experimental environment

The simulation software applied in this study is MATLAB
R2023a. The simulations in this study were run on a personal
computer with the operating system Windows 10, running
memory of 16 GB, CPU model AMD R5 3600 (3.6 GHZ), and
graphic processing unit model NVIDIA RTX 2070.

Table 1 shows the parameters of the algorithms involved in this
study. Table 2 shows the load power, wind turbine power, and PP
data updated hourly during a day at a site. Figure 5 shows the graphs
of load power, turbine power, and PP obtained from the data in
Table 1. Where, Pload is load power; Pwt is turbine power; Ppv is PP.
The load power is low at night and high during the day. The wind
turbine’s power generation shows a large fluctuation during the day.
The PP generation unit can only obtain power during the daytime
resulting in a pronounced peak in the generation power curve.

4.2 Comparison of training processes

To verify the effectiveness of the TLDDQN algorithm proposed
in this study in improving the convergence speed of agents. In this
study, TLDDQN algorithm and DDQN algorithm are applied to
train agents respectively.

Figure 6 shows the average reward curves of the TLDDQN
algorithm and DDQN algorithm. Compared with the traditional
DDQN algorithm, the TLDDQN algorithm proposed in this study
introduces the adaptive entropy mechanism and makes
improvements to the adaptive entropy mechanism. The
introduction of the improved adaptive entropy mechanism can
improve the exploratory ability of the agents during the training
process. In addition, the TLDDQN algorithm proposed in this study
introduces the TL method to improve the adaptability of agents.
Therefore, compared with the traditional DDQN algorithm, the
TLDDQN algorithm proposed in this study has stronger algorithmic
performance. In the same environment, the number of iterations
required for the TLDDQN agents proposed in this study to reach

convergence is about 685. The number of iterations required for the
DDQN agents to reach convergence is about 852. Compared to the
traditional DDQN algorithm, the TLDDQN method reduces the
training time by 19.60%.

In summary, the TLDDQN proposed in this study can converge
faster than the traditional DDQN.

4.3 Comparison of adjustment effect

In this study, the AP balance control methods based on the
proposed TLDDQN and the particle swarm optimization are
applied to control ES devices in the experimental environment
shown in Section 4.1, respectively.

The advantageous attributes of our proposed method,
characterized by the TLDDQN, are encapsulated in its
enhanced capability to modulate energy storage device outputs
with precision, effectively addressing the intermittency of
renewable energy sources and consequently leading to a
substantial reduction in the operational burden on thermal
power generation units. Figure 7 shows the thermal power
generation power curves of the AP balance control method
based on TLDDQN and the thermal power generation power
curves of the particle swarm algorithm based on the particle
swarm optimization. The AP balance control method based on
TLDDQN reduces fossil energy consumption by 12.01% as
compared to the particle swarm optimization-based AP balance
control method.

In summary, the AP balance controlmethod based on the proposed
TLDDQN can solve the cooperation problem between the RE
generation system and the traditional thermal generating units.

5 Conclusion

Aiming at the problem that thermal power generation
units need to cooperate with RE generation units for the AP

FIGURE 6
Average reward curve during training.

FIGURE 7
Output power of thermal power generators.
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balance control of the WPS power system when the proportion
of RE generation devices is high, this study proposes the
TLDDQN algorithm-based AP balance control method for the
WPS power system. The proposed TLDDQN algorithm-based
AP balance control method of the WPS power system can
control the ES device of the WPS power system to balance
the AP of the regional WPS power system. The features of
the proposed AP balance control method for WPS power
systems based on the TLDDQN algorithm are summarized
as follows.

(1) The AP balance control method for WPS power systems
based on the proposed TLDDQN algorithm can reduce the
output of thermal power generators compared with the
particle swarm optimization.

(2) The AP balance control method of the WPS system based on
the proposed TLDDQN combines the advantages of fast
learning possessed by transfer learning and the advantages
of dealing with complex environments possessed by the
DDQN algorithm. In addition, the improved adaptive
entropy mechanism can improve the exploratory ability of
agents during the training process. Therefore, the AP balance
control method of the WPS system based on the proposed
TLDDQN can precisely control the AP balance of the
WPS system.

In future works, i) more types of RE generation units will be
considered; ii) the proposed TLDDQN algorithm will be improved
to increase the accuracy of power control.
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