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Introduction: Amidst escalating global temperatures, increasing climate change,
and rapid urbanization, addressing urban heat islands and improving outdoor
thermal comfort is paramount for sustainable urban development. Green walls
offer a promising strategy by effectively lowering ambient air temperatures in
urban environments. While previous studies have explored their impact in various
climates, their effectiveness in humid climates remains underexplored.

Methods: This research investigates the cooling effect of a green wall during
summer in a humid climate, employing two approaches: Field Measurement-
Based Analysis (SC 1: FMA) and Deep Learning Model (SC 2: DLM). In SC 1: FMA,
experiments utilized data loggers at varying distances from the green wall to
capture real-time conditions. SC 2: DLM utilized a deep learningmodel to predict
the green wall’s performance over time.

Results: Results indicate a significant reduction in air temperature, with a 1.5°C
(6%) decrease compared to real-time conditions. Long-term analysis identified
specific distances (A, B, C, and D) contributing to temperature reductions ranging
from 1.5°C to 2.5°C, highlighting optimal distances for green wall efficacy.

Discussion: This study contributes novel insights by determining effective
distances for green wall systems to mitigate ambient temperatures, addressing
a critical gap in current literature. The integration of a deep learning model
enhances analytical precision and forecasts future outcomes. Despite limitations
related to a single case study and limited timeframe, this research offers practical
benefits in urban heat island mitigation, enhancing outdoor comfort, and
fostering sustainable and climate-resilient urban environments.

KEYWORDS

green walls, experimental measurement, humid climate, cooling performance, ambient
air temperature, urban heat island, deep learning model, artificial neural network

OPEN ACCESS

EDITED BY

Qibin Li,
Chongqing University, China

REVIEWED BY

Jiacheng He,
Guangdong University of Technology, China
Shijie Zhang,
Guizhou University, China

*CORRESPONDENCE

Abdollah Baghaei Daemei,
abaghaei@massey.ac.nz

RECEIVED 11 June 2024
ACCEPTED 19 July 2024
PUBLISHED 05 August 2024

CITATION

Daemei AB, Bradecki T, Pancewicz A,
Razzaghipour A, Jamali A, Abbaszadegan SM,
Askarizad R, Kazemi M and Sharifi A (2024), An
experimental analysis and deep learning model
to assess the cooling performance of green
walls in humid climates.
Front. Energy Res. 12:1447655.
doi: 10.3389/fenrg.2024.1447655

COPYRIGHT

© 2024 Daemei, Bradecki, Pancewicz,
Razzaghipour, Jamali, Abbaszadegan,
Askarizad, Kazemi and Sharifi. This is an open-
access article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 05 August 2024
DOI 10.3389/fenrg.2024.1447655

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1447655/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1447655/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1447655/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1447655/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1447655&domain=pdf&date_stamp=2024-08-05
mailto:abaghaei@massey.ac.nz
mailto:abaghaei@massey.ac.nz
https://doi.org/10.3389/fenrg.2024.1447655
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1447655


1 Introduction

In recent decades, overpopulation and economic growth have
significantly accelerated global warming, resulting in numerous
serious issues for urban areas and their residents (Buhaug &
Urdal, 2013; Chowdhury et al., 2021). The release of greenhouse
gases and chemical pollutants into the atmosphere (Hashim et al.,
2020) intensifies climate change (Filho et al., 2023; Perera et al.,
2020), exacerbates the urban heat island (UHI) effect, and increases
heat stress (Chew et al., 2021; Mahdavi Estalkhsari et al., 2023;
Mohammad Harmay & Choi, 2022), leading to higher energy
demands (Khotbehsara et al., 2018; Mutschler et al., 2021). The
construction industry, which addresses essential human needs such
as housing, is a significant energy consumer, with building and
construction sectors accounting for nearly 40% of total energy usage.
This energy is primarily consumed by heating and cooling systems
throughout the year (Ghahramani et al., 2018; Rafsanjani et
al., 2020)

Various scientific reports have concluded that multiple urban
elements, including exterior walls (building envelopes), roofs,
terrain, pavement and roads, and building materials, can play an
essential role in urban design. This design aims to create thermally
pleasant outdoor spaces where these elements can influence the
environment by controlling heat transfer (Convertino et al., 2019),
solar radiation (Vox et al., 2018), albedo (Salata et al., 2015), and
airflow (Perini et al., 2011). Materials have notably different heat
capacities, thermal conductivity (thermal bulk properties), and
surface radiative attributes such as albedo and emissivity
(Mohajerani et al., 2017; Mohammad et al., 2021).

Using dark surfaces and materials, such as asphalt, cement,
concrete, composite, and metal, can lead to higher air temperatures
and manifest UHI effects (Stempihar et al., 2012; Zhou et al., 2021).
The UHI phenomenon emerges as cities replace natural landscapes
with dense arrangements of heat-absorbing surfaces, such as
pavement, buildings, and others, resulting in elevated air
temperatures (Kardinal Jusuf et al., 2007). Moreover, as noted
earlier, the escalating impact of global warming exacerbates the
frequency of hot days and nights, heightening the risk of heat stress
and associated health concerns. While everyone can be negatively
affected by heat waves and extreme heat events, some people, like the
elderly, those with chronic illnesses, children, and pregnant women,
are at risk of suffering harm during such hot spells (McElroy et al.,
2020; Folkerts et al., 2022).

There has been extensive research on various aspects of
environmental design in different contexts. A broad overlap and
cooperation for expected outcomes emerge by carefully studying
these strategies. The use of green walls supports processes such as air
purification (Abdo and Huynh, 2021), rainwater collection (Prenner
et al., 2021), reduction of ambient noise levels (Cardinali et al.,
2023), increase in biodiversity (Chen et al., 2020), and enhancement
of a building’s fire resistance (Kotzen et al., 2023). Green walls are
also highly recommended due to their significant impact on ambient
air temperature (Susorova et al., 2013; Olivieri et al., 2014; Afshari,
2017; Shafiee et al., 2020).

For instance, Alexandri and Jones (2008) found that implementing
green wall systems decreased outdoor air temperature by 8°C.
Additionally, east-west oriented vegetated walls were shown to lower
the average daytime temperature by approximately 2°C. Furthermore,

Wong et al. (2010) noted that 0.15m from the plant surface resulted in a
temperature reduction of roughly 3°C. In a broader context, Kontoleon
and Eumorfopoulou (2010) reported that the cooling potential of a green
wall on a north-oriented facade is insignificant and negligible.
Additionally, they concluded that the reduction is more significant
for west-oriented facades at about 3.50°C, while for east- and south-
oriented facades, the temperature drop reaches about 2°C and 1°C,
respectively. Chen et al. (2013) concluded that the cooling merits of the
VGS are more pronounced on the exterior surface than in the indoor
environment, which is relatively weaker. This reduction was recorded at
about 1.5°C.

This study has examined the impact of green walls during warm
conditions in Rasht, the largest city along Iran’s Caspian Sea. Rasht is
classified under Köppen’s subtropical humid climate (Cfa) and is a
representative sample of similar Cfa climate zones globally. This
unique climate makes Rasht particularly susceptible to the UHI
effect compared to other large cities. While studies on green walls
have been explored in various research articles over the decades,
only a limited number have investigated the thermal performance of
green walls (specifically, the reduction of outdoor temperature and
mitigation of UHI) in humid conditions across the globe (e.g., Ref
(Alexandri and Jones, 2008; Karimi Zarchi and Shahhoseini, 2019)).

In line with that, several research investigations have addressed UHI
concerns in the humid climate of Rasht. These studies have elucidated
temperature differentials ranging from 5°C to 6.4°C during the cold
season and 3°C–5.6°C during the warm season, differentiating between
the central part of the city and its surrounding areas (Karimi Zarchi and
Shahhoseini, 2019). In research conducted by Bahman and Dokhat
Mohammad (2010), UHI in Rasht underwent evaluation by deploying
nine environmental sensors for field measurements. The findings
indicated 5–6.4°C temperature variances at Sabzeh Meydan Square
and Shahrdari stations. The fact that green walls can reduce ambient
temperature in humid climates is now evident. However, the extent to
which distance matters and how effectively these systems can reduce
ambient temperature are still underexplored.

This research seeks to assess the influence of SCP on temperature
reduction across distinct cardinal directions. By delving into the intricate
dynamics of SCP placement, our study aims to provide in-depth insights
into the optimal distances that yield the most effective temperature
reduction in a humid climate. We used different analysis techniques,
such as field measurements and advanced modeling approaches, to
quantify the impact of varying SCP distances on temperaturemitigation.

To achieve the research objectives, the research team has established
two scenarios for the study’s orientation, including Scenario 1) Field
measurement-based analysis (SC 1: FMA), and Scenario 2) Deep
Learning Model (SC 2: DLM). As previously described in the
literature, this study investigates the impact of SCP in a humid
climate, evaluating the thermal performance of SCP and the
surrounding conditions when green walls are in use. The present
study also offers a novel approach by utilizing a deep learning model
to enhance the accuracy of the analysis, utilizing data generated from the
experimental scenario.

This study provides new knowledge on the impact of green walls in
humid climates, a relatively unexplored area with only a few existing
studies. This research is also among the first to assess the cooling
performance of green walls at different points from the wall surface
in a humid climate, offering a detailed analysis of how proximity to the
wall affects temperature reduction. By highlighting the benefits of
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integrating green wall systems, the study supports the development of
more effective and sustainable urban design practices.

2 Material and methods

2.1 Climate attributes of the study area

The city of Rasht is situated in the northern region of Iran and
falls under the humid subtropical climate category (Cfa) according
to the Köppen climate classification. With an average annual rainfall

of 1,359 mm, Rasht holds the top position for rainfall among the
provincial centers in Iran, earning it the nickname “the city of rain.”
Rasht experiences an average annual temperature of 15.9°C, with the
average annual maximum air temperature at 20.6°C and the average
annual minimum at 11.3°C. The annual temperature range is
reported to be 9.3°C. Figure 1 depicts the geographical location of
the study area, while Figure 2 illustrates its climatic attributes.

The latitude of Rasht is 37.280,834, and the longitude is
49.583,057 which is located in Iran country in the cities place
category with the GPS coordinates of 37° 16′ 51.0024″ N and 49°

34′ 59.0052″ E. According to the Köppen climate classification,

FIGURE 1
The location of the study area on the map.

FIGURE 2
Climatic attributes of Rasht include dry-bulb temperature, wind speed and direction, and relative humidity (Plotted by Dview).
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Rasht has a humid subtropical climate (Cfa). The city experiences an
average annual rainfall of 1,359 mm. The city of Rasht receives an
average annual rainfall of 1,359 mm, making it the leading city in
rainfall among the provincial capitals of Iran, and earning it the
nickname “the city of rain.” The average annual temperature in
Rasht is 15.9°C, with the average annual maximum temperature
being 20.6°C and the average annual minimum temperature at
11.3°C. This results in an annual temperature range of 9.3°C
between the maximum and minimum temperatures. Figure 1
depicts the geographical location of the study area, and Figure 2
illustrates the climatic features.

2.2 Case study selection criteria

Based on the findings reported by Oji et al (2021), the green
spaces in Rasht city underwent significant changes between 1964
and 2013. The total green areas decreased from 7,255 hectares to
5,990 hectares, marking a 17% reduction. Dense green spaces saw an
even more dramatic decline, shrinking from 2,855 hectares to 788

hectares, which represents a 72% decrease. The majority of these
reductions were observed in the central region of Rasht (see
Figure 3). On this basis, SC 1: FMA includes the selection of
4 case studies, all of which are situated in the central region of
Rasht with the same properties as SCP in a dense urban area. These
cases have the same leaf area index (LAI) (see Table 1).

Moreover, in selecting the samples, extensive care has been taken to
ensure consistency in all cases regarding the parameters influencing the
UHI effect. These parameters include the number, density, and height
of buildings; the window-to-wall ratio; floor height; building function;
and pavement characteristics such as material type, albedo, thermal
conductivity, thickness, and volumetric heat capacity. Additionally, the
level of traffic has been considered to maintain uniformity. SC 1: FMA
aims to evaluate whether the SCP orientation effectively reduces UHI.
The SCP used in the study features self-clinging plants that attach
directly to the wall through adhesive suckers with adventitious roots.
These climbers form a self-supporting layer of vegetation on solid
surfaces, creating a traditional green wall.

In the process of selecting our case study, we placed significant
emphasis on feasibility, ethical considerations, and contextual

FIGURE 3
(A) Changing process of green spaces in Rasht (Oji et al., 2021), and (B) the location of the candidate cases on the map.
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understanding. Ensuring the feasibility of the study was paramount,
considering available resources, time constraints, and logistical
factors. Ethical considerations played a crucial role in guiding
our choices to guarantee the privacy and confidentiality of
individuals involved. To uphold ethical standards, we sought
consent from the building owner, engaging in a detailed
conversation to obtain approval to experiment. Additionally,
contextual understanding was a key criterion, ensuring that the
chosen case study provided a rich and comprehensive
understanding of the specific environment in which the
experiment was conducted. Therefore, we selected C1 among the
four candidates as the primary case study to measure the effects of
SCP on dropping ambient temperature. We chose this case because
of the building’s favorable location for implementing data loggers.
The specific situation of the building facilitated this choice.
Additionally, we could redo the analysis when the data was not
recorded well. The orientation of the SCP is on the North façade.

2.3 Outline of the experimental
measurement

To experimentally characterize the effect of SCP on outdoor
cooling performance, among four cases across Rasht city, the
research team chose a potential SCP Case 1 as a case study for
field measurements. The essential reason is that the selected Case 1 is
situated in an urban area close to the pedestrian level where everyone
walks through the street. Secondly, the green wall is situated on a
sufficiently broad street, which prevents shadows from opposite
buildings from falling on its surface, thereby eliminating shadowing
as a potential confounding variable. Additionally, this case study
features an adequate density of plant cover. The green wall is
composed of self-clinging plants that attach directly to the wall
through their adhesive sucker’s adventitious roots, without requiring
external support (Steinbrecher et al., 2010). These climbers could
form a self-supporting vegetation (traditional) layer on a
solid surface.

The Solar Chimney Power (SCP) system was positioned facing
north, aligning the canyon’s axis parallel to the east-west direction.
Outdoor temperature measurements were recorded at 15-minute
intervals. The SCP was covered with Hedera helix, a commonly used
ivy species. Data loggers, placed 1.5 meters above ground near the
wall, were used to collect real-time outdoor temperature data
(Griffith and McKee, 2000). This height and location were
selected to capture temperature readings that accurately represent
the immediate vicinity ambient conditions. People can distinctly feel
temperature differences at a height of approximately 1.5 m above the

ground, which coincides with pedestrian dynamics. This height is
significant for environmental monitoring as it captures conditions
that are directly perceived and experienced by individuals in outdoor
settings. The dataloggers were placed in front of the SCP. Table 1
indicates the data loggers’ technical data. The data loggers are
secured on customized stands and placed at 0.15 m, 0.30 m,
0.60 m, and 0.90 m away from the substrate surface (see
Figure 3). Table 2 provides the details of experimental devices.

The data loggers collected temperature data at 15-min intervals
throughout the study period. Environmental parameters consist of
real-time outdoor air temperatures, measured for 5 days from
1 August 2020, to 6 August 2020, in front of the green wall
surface. Before any record, the temperature near the wall was
measured by two devices to ensure that the devices were
calibrated. The experimental analysis was carried out during
summertime to assess the cooling effects of the SCP in reducing
the ambient temperature. Afterward, the developed dataset was
generated to predict the SCP’s cooling effect for the near future.
Besides, the generated dataset was validated against experimental
results to ensure that the new dataset was accurate.

When studying the impact of plants on outdoor air temperature,
several factors come into play. While the direct equations can be
complex and depend on various environmental variables, we
provided the concepts and equations for our study.
Evapotranspiration is the combined process of water evaporation
from soil and plant surfaces and transpiration from plant leaves. It
can be a significant cooling factor in green walls. The Penman-
Monteith equation is often used to calculate evapotranspiration:

E � 0.408 × Δ × Rn − G( ) + γ × 900
T+273 × u × es − ea( )

Δ + γ × 1 + 0.34 × u( ) (1)

Where:

E = Evapotranspiration (mm/day)
Δ = Slope vapor pressure curve (kPa/°C)
Rn = Net radiation at the crop surface (MJ/m2/day)
G = Soil heat flux density (MJ/m2/day)
γ = Psychrometric constant (kPa/°C)
T = Air temperature (°C)
u = Wind speed at 2 m above the surface (m/s)
es = Saturation vapor pressure (kPa)
ea = Actual vapor pressure (kPa)

The effectiveness of green walls in cooling outdoor air
temperature can also be related to heat transfer equations. The
heat transfer equation can be applied to calculate the cooling effect

TABLE 1 This is a table. Tables should be placed in the main text near the first time they are cited.

Cases Orientation Plant species Thickness (+substrate) Growing media Total area (PWRa)

C1 North Papital 17 cm self-clinging 75%

C2 South Hedera helix 15 cm self-clinging 85%

C3 East Hedera helix 15 cm self-clinging 85%

C4 West Hedera helix 20 cm self-clinging 70%

aPercentage of plant-to-wall ratio.
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based on the rate of heat exchange and the surface area covered by
green walls.

Q � h × A × Tgreen − Tair( ) (2)

Where:

Q = Heat transfer rate (W)
ℎ = Heat transfer coefficient (W/(m2°C))
A = Surface area covered by green walls (m2)
Tgreen = Temperature of the green wall surface (°C)
Tair = Outdoor air temperature (°C)

2.4 Employing deep learning for data
augmentation

The research team encountered limitations in obtaining field
measurements in this work due to various practical constraints.
These limitations include limited data availability, difficulties in data
collection, and insufficient data coverage. By employing machine
learning techniques, specifically ANNs, we could generate synthetic
data that complement the available measurements. This allowed us
to overcome the data scarcity and perform more comprehensive
analyses. Machine learning techniques, such as ANNs, have
demonstrated remarkable capabilities in modeling complex
patterns and relationships within data (Graupe, 2013). By
training ANNs on the available field measurements, we were able
to develop a model that captured the intricate dynamics between the
distance for temperature reduction by SCP and the humid climate.
Data augmentation using ANNs is a strategy to enhance the
performance of models, especially when faced with limited
datasets (Gibson et al., 2022).

The trained ANN could then be used to make predictions and
estimate the temperature reduction at various distances, providing
valuable insights into the system’s behavior. By incorporating
machine learning techniques into the study, we have introduced
a novel approach to addressing data limitations in temperature
reduction by SCP under a humid climate. In the following, six
columns of data collected over 5 days, starting from 1 August 2020,
at 00:00:00 and ending on 5 August 2020, at 23:45:00 with a 15-min
resolution used to train the deep learning model, including a
timestamp, the real air temperature, and air temperatures
recorded at distances of 0.15 m, 0.30 m, 0.60 m, and 0.90 m
away from the SCP. 80% of the data collected over 5 days (every
15 min): real air temp. - air temp at 0.15 m - air temp at 0.30 m - air
temp at 0.60 m - air temp at 0.90 m.

The real-time air temperature (ambient) and air temperature
(in front of the four points) datasets were recorded at distances
of 0.15 m, 0.30 m, 0.60 m, and 0.90 m from the green wall. Eighty
percent of this dataset constituted the training group for the
ANN, aimed at discerning patterns and relationships to
accurately forecast temperatures across different SCP
distances. The remaining 20% of the dataset formed the
prediction group, evaluating the model’s ability to generalize
to new, unseen data points. The ANN model architecture
included two input layers for timestamps and air temperature
and four output layers for predicting temperatures at specified
distances from the SCP. The Mean Squared Error (MSE)
function was employed as the model’s loss function to
optimize predictions. The structure of the dataset is shown
in Table 3.

This paper presents the use of a Multilayer Perceptron
(MLP) Artificial Neural Network (ANN) as the Deep
Learning model. MLP ANN consists of a network of

TABLE 2 The outline of the measurement devices (Daemei et al., 2021).

MIC-98583, USB temp. Humidity datalogger Benetech GM8902 air flow anemometer

USB Temp/RH datalogger Digital Airflow Anemometer with USB interface (56 mm Vane)

LCD display: YES
LCD display: YES

Button Start/Stop, Wrist strip hole, Hi/Lo threshold setting, Tripod receptacle: YES

LCD display: YES
USB interface

Measures air velocity, temperature, and quantity. Maximum, average, and current
measurements. Temperature display in Celsius and Fahrenheit

Sample interval: 10 s, 1 m, 5 m, 30 m, 1 h, 2 h, 6 h, 12 h, 24 h
Logger mode: Key start/stop, Program start date and time, ID. Data rollover or stop

when memory is full

Wind speed units: m/s, Km/h, ft/min, knots, MPH
Data hold. LCD backlit display. Auto power off. Beaufort Scale indication. Wind chill

indication. Low battery indication

Temp. range: 40.0°C–85.0°C (−40.0°F–185°F) Temp. accuracy: ±0.6°C (−20°C–50°C),
others ±1.2°C

Air velocity measuring range: 0–45 m/s
* Air flow measuring range: 0–999900 m3/min
Wind temperature range: 0–45C, 32–113F

Dew Point, Wet Bulb Temp., Heat Index, WBGT Temp.: YES
RH% range: 0.1%–99.9%
RH% accuracy: ±3%

RH (at 25°C, 10%–90%
RH, others ±5%RH)

Temp. Range: 0.0°C - +45.0°C
Resolution: 0.1
Accuracy: ±1.0°C

Memory capacity-Total: 32,000 Temp.: 16,000
RH: 16,000 Power: 3.6 V Lithium batteries

Power supply: 4x AAA battery

Operating Temp. RH: 0°C–50°C (32°F–122°F) Main unit: 77 × 36 × 164 mm
Vane unit: 172 × 65 × 29 mm

Vane diameter: 56 mm

OT: operating temperature; MR: measuring range; Acc: Accuracy; Res: Resolution.
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interconnected simple processors, called artificial neurons, that
produce real-valued activations to perform a specific task. The
learning process of the ANN involves adjusting the weights to

achieve the desired behavior, which may be a sequence of
computational stages depending on the problem being
addressed. The activations are transformed non-linearly at
each step, allowing the network to accurately assign credit
across multiple stages, a critical property in deep learning.
The MLP ANN used in this research has four hidden layers.
The architecture of our MLP ANN model is illustrated in
Figure 4. The input layer with two neurons is fed with the
timestamp and real air temperature, the hidden layers try to
find the relationship between input data and the desired outputs,
and the output layer consists of four neurons that represent the
air temperature at four different distances from the green wall,
form the neural network.

The optimizer used in our Artificial Neural Network (ANN) is
the Adam algorithm, a Stochastic Optimization technique (Kingma
and Adam, 2014). The model’s performance was evaluated by

TABLE 3 Timestamp.

Columns Description

Timestamp The date and time of recording data

Real temp Real air temperature

Temp_p1 Air temperature at the distance of 0.15 m from the SCP

Temp_p2 Air temperature at the distance of 0.30 m from the SCP

Temp_p3 Air temperature at the distance of 0.60 m from the SCP

Temp_p4 Air temperature at the distance of 0.90 m from the SCP

FIGURE 4
The Deep Learning MLP architecture graph.
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calculating the Mean Squared Error (MSE) as the loss function,
described by equation 9.

MSE � 1
n
∑n

i�1 Yi − Ŷi( )
2

(3)

In this context, the number of samples is represented by “n,” the
true value by “Y_i,” and the predicted value by “Ŷ_i .”We divided our
dataset into two sets using random data point selection to train and
evaluate the model. The authors considered 80% to train our model
and used the remaining 20% to test its performance. For this purpose,
we used two well-known metrics for regression models’ evaluation,
MSE and Mean Absolute Error (MAE), as shown in Table 4.

3 Results and discussion

3.1 SC 1: FMA

Based on the primary aim of this study, the research
implemented four data loggers at four points near the SCP.
The collected real-time indoor temperature and humidity data
for the green wall were compared to those for a bare wall. The
plotted data illustrate the indoor temperature and relative
humidity variations, highlighting the differences between the
green wall and the bare wall (Figure 5). In fact, building blocks
surrounding the SCP, airspeed was reported to negligible by the
anemometer (0 m/s). Figure 6 shows the outputs of the data. At
this phase of the evaluation, the dependent variable and
independent variable are the temperature variation and SCP,
respectively. As aforementioned, the specific points (point A:
0.15 m, point B: 0.30 m, point C: 0.60 m, and point D: 0.90 m
away from the substrate surface) were specified, and the
temperatures were recorded through the data loggers.

Figure 5 indicates the real-time and SCP temperatures
gained during the field measurement in the summer season.
Based on the data, the temperature record differs for all four
points, so there is a significant temperature reduction and
differences between 0.15 m and 0.90 m. To better understand
the temperature reduction, Figure 7 provides the performance of
each point. Temperature fluctuations are observed in the same
range for each day. On the other hand, on the second day, the
amplitude of thermal fluctuations increased for all four points,
which could occur due to the increase in the real-time
temperature.

According to Figure 7, the ambient temperature may be
affected by air circulation. Though SCP is covered by well-
distributed greenery, it has thicker greenery near the
temperature data logger, which may block air circulation and
trap heat. Hence, it can be inferred that at point A, 0.15 m away
from the substrate (plant), the air temperature is most affected
by the presence of the SCP. The higher and lower temperature
data for the real-time are recorded at 26.5°C and 25.6°C. The
lowest and highest temperature range of the recorded points are
shown in Table 5.

3.2 SC 2: DLM

The trained model is used to estimate air temperature at the
distances from the SCP (points A to D), which is what our model is
trained for. The result is based on real air temperature from 2020 to
08-06 to 2020-08-10, depicted in Figure 8.

Figure 8 shows the data generated by deep learning, which
demonstrates normal and uniform fluctuations every day for every
point at the highest temperature and lowest temperature, including
information about the real-time air temperature and the recorded
temperature of each point over the first 5 days, which indicates the
performance of the SCP cooling effect in the next few days. Also, the
data obtained from the field measurement for real-time and the
specific points and the data generated by the deep learning for
predicting real-time conditions are compared with the base model
data (Figure 9).

TABLE 4 The deep learning model’s accuracy.

MSE (Mean Squared error) MAE (Mean Absolute error)

0.0199 0.1171

FIGURE 5
Experimental data: Real temperature versus SCP temperature.
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FIGURE 6
Layout of the study area and positions of data loggers for measuring ambient air temperature.

FIGURE 7
Experimental data: Real temperature versus SCP temperature (daily average).
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By considering the deep learning data and observing the
overall cooling performance of the SCP, it can be said that the
SCP was able to drop the air temperature in a suitable amount
compared with real-time. The average reduction was recorded
by about 24.6°C. The real-time average air temperature was
about 26°C, which proves that the amount of temperature
reduction in the data obtained from the experiments is equal
to the amount of the overall data generated by the deep learning
(about 1.5°C), indicates the validation of the research
process (Figure 10).

4 Discussion

The current study, which was carried out on an urban scale,
investigated the cooling impact of the SCP in a humid climate during
the summer season. The performance of the SCP was measured at
four points located at varying distances from the plant’s surface. The
measurements were conducted in two stages. In the first stage,
experimental measurements were performed using temperature
data loggers for both specific distances and real-time conditions
over 5 days. Subsequently, the research team employed a deep

TABLE 5 Summary of air temperature for each point.

Temperature

SCP Point A: 0.15 m Point B: 0.30 m Point C: 0.60 m Point D: 0.90 m

Lowest Highest Lowest Highest Lowest Highest Lowest Highest

22°C 24°C 24°C 25°C 24.6°C 25.1°C 25°C 26.2°C

FIGURE 8
Deep Learning results based on real air temperature.

FIGURE 9
Validation: (Left) Real-time experiment measurements were compared with the recorded data for each point (daily average); (Right) experiment
measurement records were compared with the deep learning generated data (daily average). Dl: deep learning; Exp. Mes.: Experiential measurement.
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learning model to predict the SCP’s future performance and
augment data through the ANN model. While the dataset may
appear limited in this work, the deep learning model’s ability to
generalize from this data to broader conditions was an essential
aspect of our approach.

Deep learning is a subset of machine learning that involves the
use of neural networks with many layers to analyze various kinds of
data (Ahmed et al., 2023). Deep learning applications are quickly
replacing traditional systems in numerous facets of our everyday
lives (LeCun et al., 2015). Traditionally, research has relied on costly
and time-consuming trial and error, guided by expert intuition. The
vast number of material combinations makes experimental study
impractical, necessitating empirical and computational methods.
Although computational approaches are faster, cheaper, and
somehow more accurate. They are constrained by length and
time scales, limiting their applicability (Goodfellow et al., 2016;
Choudhary et al., 2022). ANN is a computational model inspired by
the human brain’s neural structure and functioning. ANN learns
from labeled datasets to perform tasks such as classification,
regression, pattern recognition, and more (Hardesty, 2017; Pantic
et al., 2023).

During the data collection phase of our experimental model, we
encountered several measurement errors primarily due to
unpredictable weather conditions. These included cloudy periods
and unexpected wind, which affected the accuracy and consistency
of our temperature readings. Such variations in weather conditions
introduced anomalies in the data, making it challenging to maintain
uniformity across all measurements. These factors highlight the
inherent difficulties in field experiments, where environmental
conditions can vary unpredictably and impact the data collection
process. Therefore, we excluded the last day of data collection due to
these unpredictable weather conditions to maintain the integrity and
accuracy of our measurements.

Relying on the 5-day field measurements, the average air
temperature reductions for points A, B, C, and D were 23.08°C,
24.4°C, 25°C, and 25.66°C, respectively. The highest and lowest
ambient air temperatures were 26.7°C and 25.4°C, respectively. At

this stage, considering the performance of each point, the results
indicated that each distance had a significant temperature reduction
effect compared to real-time data. The findings of the first stage
demonstrated that the SCP had a considerable impact on reducing
nearby temperatures. The maximum average reduction across the
four points was 25°C, compared to the real-time temperature of
26.5°C. This implies that the SCP’s best performance in lowering air
temperature was approximately 6% against real-time conditions,
resulting in a drop of ambient air temperature by 1.5°C.

The air temperature reductions from 1 August 2020, to
11 August 2020, for points A, B, C, and D were approximately
23.2°C, 24.5°C, 25.2°C, and 25.6°C, respectively. The long-term real-
time daily average air temperature was 26°C. Therefore, the points
could reduce the ambient air temperature by about 11% for point A,
6% for point B, 3% for point C, and 1.5% for point D. Point A
exhibited better performance than point D by about 9%. For further
validation of the present study, some research studies have been
conducted under the same climate condition (Cfa), providing people
with outdoor thermal comfort (OTC). Spagnolo and de Dear (2003)
investigated that the preferred temperature for the Cfa climate zone
of Sydney during summertime is 23.4°C, and for the entire year is
25°C. Similarly, Binarti et al. (2020) concluded that the suitable OTC
is 23.9°C based on the PET neutral range. Consequently, the
appropriate temperature ranges during summertime are between
23°C and 24°C, suggesting that the distances of 0.15 m and 0.30 m
could reduce the air temperature to within the outdoor thermal
comfort range.

While confirming the outcomes of previous literature regarding
the mitigating effect of trees, shrubs, and green walls on the creation
of UHI (Abdulateef & A. S. Al-Alwan, 2022; Chun and Guldmann,
2018; Edmondson et al., 2016; Koch et al., 2020), our study takes a
step forward and argues for the most effective distance for these
systems to reduce ambient temperatures. This finding represents a
novel contribution to our research within the existing body of
literature. Moreover, our paper presents an innovative
methodology employing a deep learning model to improve the
precision of our analysis. This strategy involves utilizing data

FIGURE 10
The SCP air temperature long-term reduction from 08/01/2020 to 08/11/2020 (Daily average).
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derived from experimental scenarios, facilitating the anticipation of
precise future results. Integrating machine learning methodologies
into our investigation also provides an original avenue for mitigating
data constraints within the realm of temperature reduction through
SCP in a humid climate.

Numerous analyses and experiments remain pending for the future,
primarily due to the absence of stringent policies for buildings,
particularly their envelopes and facades. This gap hinders effective
measures against urban heat islands and climate change mitigation at
the regional level. According to the literature, the current materials are
unsustainable, posing environmental and human wellbeing challenges.
Future investigations could explore various ideas, including experiments
on the thermal performance of SCPs in both winter and summer
conditions. Moreover, considering different plant types is essential
when evaluating the reduction in ambient air temperature.

In this study, we investigate the impact of green walls in the
reduction of ambient air temperature. However, previous studies
have shown the influence of green walls on indoor ambient
temperature and human comfort. An instance is the study done by
Widiastuti et al. (2020), which demonstrated that the green wall could
significantly reducewall temperatures andmaintain indoor temperature.
Daemei et al. (2021) investigated the thermal performance of green walls
on indoor thermal comfort. Their study showed that green walls can
decrease indoor temperature and humidity. Zhang et al. (2019)
conducted a study focusing on the thermal performance of green
walls compared to bare walls on the northern facade of a two-story
residential building in the humid climate of Rasht during the summer.
The results demonstrated that the green wall significantly reduced both
indoor temperature and relative humidity. Specifically, the green wall
reduced indoor temperature by 9% and relative humidity by 32%.

Lastly, the study faced certain limitations. Firstly, due to building and
plant constraints and COVID-19 restrictions, real-time data collection
for the entire summer was not possible. Secondly, the research focused
on only one orientation (North) of the buildingwhere the green wall was
attached. These limitations indicate areas for further research and
consideration. In conclusion, while this research demonstrates the
self-cooling plants’ significant potential in lowering ambient
temperatures and enhancing urban comfort, these findings should be
understood within the context of these limitations. Moving forward,
addressing these constraints, and conducting more comprehensive
studies will be essential in refining our understanding of innovative
solutions like self-cooling plants and their applicability in creating
sustainable, comfortable, and resilient urban environments. For future
studies, we recommend expanding upon the findings of this research in
several key areas. Firstly, additional field measurements across diverse
urban environments are needed to validate the findings regarding the
cooling performance of green walls. Secondly, it is important to
investigate the impact of different orientations of green walls on their
cooling effectiveness. Also, we recommend future studies focusing on the
impact of such systems on indoor thermal comfort.

5 Conclusion

This study aims to measure green walls’ cooling effects in a
humid summertime climate. To do this measurement, this research
chose two scenarios, such as experimental measurement, to collect
real-time data of temperature and humidity in four different points

in front of the green wall, including 0.15, 0.30, 0.60, and 0.90 m.
Secondly, an Artificial Neural Network (ANN) model was utilized
for data augmentation to expand the dataset. The type of the plant
was self-cooling plants. This research focused on the cooling
performance of green walls in the north orientation of the
building. The findings show a relatively significant reduction in
ambient air temperatures at various distances from the plant surface.
The results indicate that the green wall effectively lowers air
temperature, achieving a 1.5°C (6%) reduction compared to real-
time conditions. Over a long-term investigation, specific distances
(A, B, C, and D) were found to contribute to temperature decreases
of approximately 23.2°C (11%), 24.5°C (6%), 25.2°C (3%), and 25.6°C
(1.5%), respectively.
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