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In response to the issue of short-term fluctuations in photovoltaic (PV) output due to
cloudmovement, this paper proposes amethod for forecasting short-termPVoutput
based on a Depthwise Separable Convolution Visual Geometry Group (DSCVGG) and
a Deep Gate Recurrent Neural Network (DGN). Initially, a cloud motion prediction
model is constructed using a DSCVGG, which achieves edge recognition andmotion
prediction of clouds by replacing the previous convolution layer of the pooling layer in
VGGwith a depthwise separable convolution. Subsequently, the output results of the
DSCVGG network, along with historical PV output data, are introduced into a Deep
Gate Recurrent Unit Network (DGN) to establish a PV output prediction model,
thereby achieving precise prediction of PV output. Through experiments on actual
data, the Mean Absolute Error (MAE) and Mean Squared Error (MSE) of our model are
only 2.18% and 5.32 × 10−5, respectively, which validates the effectiveness, accuracy,
and superiority of the proposed method. This provides new insights and methods for
improving the stability of PV power generation.
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1 Introduce

On 22 September 2020, China proposed carbon peak and carbon neutrality goals. These
goals attracted significant global and domestic attention (Ma et al., 2020). New energy systems,
especially photovoltaic (PV) power generation, became a key research focus in electrical power
generation, guided by these objectives (Mellit et al., 2020). PV power generation’s variability and
intermittency posed challenges to power system safety and stability (Fu et al., 2019).

Predictive methods for PV output variability fell into two main categories: physical and
statistical. Physical methods depend on weather forecasts and other data such as solar radiation,
temperature, and humidity, which have direct or indirect impacts on the efficiency of PV cells.
Bymonitoring and analyzing these data in real-time, it is possible to predict PV output relatively
accurately. However, physical methods have limitations, such as high model complexity and
computational requirements (Mellit et al., 2021).
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On the other hand, statistical methods utilize deep learning and
other techniques. These methods do not rely on specific physical
models but instead mine the relationships between PV output and
various influencing factors using large amounts of historical data.
Statistical methods have advantages in handling complex non-linear
relationships and are capable of capturing the variability of PV
output. Nevertheless, statistical methods also have limitations, such
as high data quality requirements and weak model generalization
capabilities (Wang et al., 2019).

In recent years, scholars both domestically and internationally have
conducted extensive research on cloud motion prediction and
photovoltaic power prediction. Benjamin G. Pierce et al. introduced
amethod for predicting cloudmovement that is based on convolutional
autoencoders (CAEs) and particle trackers. The method uses CAEs to
identify clouds and particle trackers to predict the movement of clouds
with high accuracy (Pierce et al., 2022). Additionally, Yongju Son et al.
developed an innovative photovoltaic power forecasting method that
relies on predicting future cloud images. This method generates cloud

images from random latent vectors using generative adversarial
networks (GANs) and employs long short-term memory (LSTM)
models to learn patterns in time-series input images, thus achieving
high-precision cloud movement predictions (Son et al., 2023).

Hamad Alharkan et al. employed a fusion neural network with
attentionmechanisms to effectively enhance the accuracy of photovoltaic
power prediction (Alharkan et al., 2023). Zun Wang et al. utilized
attention mechanisms to assign different weights to historical data and
calculate correlations between different photovoltaic sites, achieving
high-precision predictions for distributed photovoltaic power (Wang
Z. et al., 2023). Yujing Sun et al. identified meteorological factors that
significantly impact photovoltaic output and used backpropagation
neural networks to predict fluctuations in photovoltaic output (Sun
et al., 2015). YuqingWang et al. utilized one-dimensional convolutional
neural networks and long short-term memory networks to gather
weather and historical data, and based on fully connected neural
networks, they achieved ultra-short-term photovoltaic power
generation predictions (Wang Y. et al., 2023).

Although the aforementioned methods are effective in predicting
cloud movement and demonstrate some effectiveness in photovoltaic
output prediction, the cloud movement prediction models involved
are too complex and computationally intensive, making them difficult
to deploy. Furthermore, most of these photovoltaic output prediction
models fail to effectively address the short-term photovoltaic output
fluctuations caused by cloud obstruction.

This paper proposes a short-term PV output prediction method
using a Depthwise Separable Convolution Visual Geometry Group-
Deep Gate Recurrent Neural Network (DSCVGG-DGN). Main
contribution of this paper are listed as follows:

(1) A cloud motion prediction model based on DSCVGG is
proposed, which predicts whether clouds obscure the sun
using cloud edge features, thereby achieving precise cloud
movement prediction.

FIGURE 1
Control circuit diagram.

FIGURE 2
System architecture diagram.

FIGURE 3
System architecture diagram.
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(2) A PV output prediction model based on DGN is developed,
which predicts photovoltaic output using historical photovoltaic
output data and meteorological data, thereby achieving precise
photovoltaic output prediction.

(3) Integrating the strengths of both models, a short-term PV
output prediction model based on the DSCVGG-DGN
network is established.

Through a series of experiments, we validated the accuracy of the
DSCVGG-DGN model for short-term photovoltaic output prediction,
thus achieving the correction of short-term photovoltaic output
prediction for cloud movement and obstruction.

2Cloudmotion predictionmodel based
on DSCVGG

2.1 Sun tracking device

Our research group developed an innovative solar tracking
system to optimize the energy capture efficiency of solar
photovoltaic power generation systems. The system’s design

philosophy is to dynamically track the sun’s position. It does so
by automatically adjusting the orientation of the solar receptor
surface. This ensures that the photovoltaic panels receive the
optimal lighting angle throughout the day. Consequently, it
enhances the efficiency of light absorption and energy conversion.

The solar tracking system’s core components include a Micro
Controller Unit (MCU) and an array of photovoltaic sensors. The
selected MCU model is SCT15W4K58S4. Its control circuit design
are shown in Figure 1. Photovoltaic resistors R1, R2, R3, and R4 are
fixed at the four corners of the solar panel. They are connected to the
Analog Digital Converter (ADC) input ports of the MCU,
corresponding to V1, V2, V3, and V4 in Figure 2. By collecting
and analyzing these four voltage signals, the system can accurately
calculate the sun’s position and adjust the solar panel’s angle
accordingly. The actual installation diagram of the equipment is
shown in Figure 3.

The logic flowchart of the solar tracking algorithm, depicted in
Figure 4, illustrates the process by which the system determines the
sun’s position. It does so by analyzing the voltage output from the
photovoltaic resistors. The system then adjusts the angle of the solar
panel through MCU control, ensuring that it always faces the sun.

2.2 Cloud motion prediction model based
on VGG

To enhance the prediction accuracy of cloud movement, our
study integrated a camera onto the solar tracking device. We utilized
the existing solar tracking mechanism to ensure that the camera’s
field of view remained centered on the sun.

To improve cloud edge extraction, our study adopted a semantic
segmentation and classification model based on Depthwise
Separable Convolution Visual Geometry Group (DSCVGG). This
approach overcomes the limitations of traditional edge detection
algorithms, which often fail to accurately extract edge information
from cloud images with uneven color levels.

The proposed model uses deep learning technology to input
consecutive cloud images from two time periods. It automatically
extracts cloud edge features and predicts the likelihood of cloud

FIGURE 4
The logical flowchart of the sun tracking algorithm.

FIGURE 5
Structure diagrams of VGG model.
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obscuration in the next time period through a classification
mechanism. The design concept combines semantic segmentation
of cloud images with cloud movement prediction, achieving
integrated processing of edge extraction and motion prediction.

The VGG cloud prediction network employs the VGG19 model
as its backbone, comprising 16 convolution layers, 3 fully connected
layers, 5 pooling layers, and 2 deconvolution layers, as shown in
Figure 5 (Huang et al., 2024). This network’s design draws
inspiration from the VGG19 model, known for its hierarchical
feature extraction capabilities in image recognition.

The VGG cloud prediction network takes the previous
moment’s cloud edge image and the current cloud image as
input. It outputs the current cloud edge image and predicts
whether the sun will be obscured at the next moment. Its
architecture is divided into nine main parts (Thakur et al.,
2024). The first five parts consist of alternating 3 ×
3 convolution layers and pooling layers, capturing local
features. The use of smaller convolution kernels allows the
network to increase depth without parameter inflation,
enhancing expressiveness. Pooling layers reduce feature map
resolution, preserving crucial information while decreasing
computational complexity. The subsequent fully connected
layers integrate local features into global features for image
classification and prediction. The final deconvolution layers
upsample feature maps, enabling precise cloud edge localization.

Through this hierarchical structure, the VGG cloud prediction
network effectively learns image feature representations. It
demonstrates exceptional performance in cloud edge extraction
and sun obscuration prediction tasks (Wan et al., 2021). This
network not only serves as an efficient auxiliary decision-making
tool for solar tracking systems but also has significant application
potential in renewable energy technology automation and weather
forecasting accuracy improvement.

The convolution operation of the VGG19 network is
represented as Eq. 1 in the following manner:

yconv � f ∑M
ĵ�0
∑N
î�0
x̂î,ĵωî,ĵ + b̂⎛⎜⎝ ⎞⎟⎠, 0≤ î≤M, 0≤ ĵ≤N (1)

Where: yconv represents the output of the convolutional layer. f
denotes the activation function. x̂ represents a two-dimensional
matrix with dimensions (M, N) for the input data. ω signifies the
convolutional kernel with dimensions of î and ĵ. b̂ represents the
bias term added to each output feature map.

2.3 VGG network based on depthwise
separable convolutions

In order to reduce the computational time and model
parameter count, this study has introduced a novel VGG

FIGURE 6
Comparison of DSC and normal convolution; (A) Depthwise
Separable Convolution; (B) Normal Convolution.

FIGURE 7
Deep neural network.

FIGURE 8
Structure diagram of gate recurrent unit.
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model based on Depthwise Separable Convolution (DSC),
referred to as DSCVGG. Depthwise Separable Convolution has
been successfully applied in image classification tasks due to its
capacity to significantly reduce the number of model parameters
(Ayub and El-Alfy, 2024). Similar to the structure of the AlexNet
network, DSC consists of two components: Depthwise
Convolution (DC) and Pointwise Convolution (PC). A
comparison between Depthwise Separable Convolution and
standard convolution is illustrated in Figure 6.

In this research, one of the convolutional layers in theVGGnetwork,
located before the pooling layers, was replaced with Depthwise Separable
Convolution, resulting in the creation of DSCVGG. The original VGG
model contained a total of 14,591, 824, 384 parameters. Through the
improved DSCVGG model, this parameter count has been reduced to
12,165, 165, 856, which is approximately 83.37% of the original model’s
parameters. This substantial reduction effectively minimizes the
parameter count of the VGG network.

This study utilized collected cloud data to train and fine-tune the
DSCVGG network, successfully achieving accurate classification of
current sky cloud patterns. By training on a vast dataset of cloud
images, the DSCVGG network autonomously extracts crucial
features from the images, distinguishing between various cloud
types. This capability provides essential information for
subsequent photovoltaic output predictions.

Overall, the introduction of theDSCVGGmodel, based onDepthwise
Separable Convolution, offers improved computational efficiency and
parameter reduction compared to the original VGG model. This novel
model effectively classifies sky cloud patterns, which is valuable for
enhancing the accuracy of photovoltaic output predictions.

3 Depthwise separable convolution
Visual Geometry group-deep gate
recurrent neural network

3.1 Deep neural network

A Deep Neural Network (DNN) is a multi-layer neural network
that uses the error backpropagation algorithm for training. This
algorithm allows the network to extract higher-level abstract features
from raw data (Mittal, 2020). A DNN, as shown in Figure 7,
comprises three main components, and the number of hidden
layers can vary based on the application. A network with three
or more hidden layers is considered deep or multi-layer
(Miikkulainen et al., 2024).

The training process of a DNN involves two primary steps:
forward propagation and backward propagation. During
forward propagation, sample data enters the network, passes
through the hidden layers, and produces the network’s
prediction output. The network’s prediction is then
compared to the expected output, and any discrepancy
results in error propagation. The network updates the
weights and biases between layers continuously using
optimization methods, aiming to make the prediction output
match the expected output (Aldahdooh et al., 2022).

Through iterative training, DNNs can learn complex data
relationships and patterns, demonstrating robust representation
capabilities across various tasks. The error backpropagation

FIGURE 9
Diagram of Sigmoid, Tanh, ReLU and ELU activation functions.

FIGURE 10
Structure diagram of Deep Gate Recurrent Neural Network.

FIGURE 11
Structure diagram of photovoltaic short-term output prediction
method based on the DSCVGG-DGN networ.
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algorithm enables self-correction and continuous performance
improvement, making DNNs a cornerstone in modern machine
learning and AI. They are pivotal in numerous applications and
research domains.

3.2 Gate structure neural network

The Gate Recurrent Unit (GRU) is a recurrent neural network
(RNN) unit used for sequence modeling. Its structure is illustrated in
Figure 8 (Qin et al., 2024). Compared to Long Short-Term Memory
(LSTM) units, GRU units have fewer parameters and lower
computational costs, demonstrating excellent performance when
handling long sequence data (Zhang et al., 2024). Its simplified
architectural design and effective gate mechanisms enable it to better
capture long-term dependencies within sequences, thereby
enhancing the model’s performance on sequence data (Gozuoglu
et al., 2024).

The GRU unit consists of two gate mechanisms: the Reset Gate
and the Update Gate. These gate mechanisms allow the GRU unit to
control the flow and processing of information.

The forward propagation equation of GRU unit is shown in
Eqs 2–5:

rt � σ U rht−1 +Wrxt( ) (2)
zt � σ Uzht−1 +Wzxt( ) (3)

ht1 � tanh Wxt + U rt ⊙ ht−1( )( ) (4)
ht � 1 − zt( ) ⊙ ht−1 + zt ⊙ ht−1 (5)

Where: rt represents the Reset Gate, zt represents the Update Gate,
ht1 is the candidate hidden state, ht is the hidden state output,Wr andUr

are the weights for the Reset Gate, Wz and Uz are the weights for the
Update Gate, W and U are the weights for the candidate hidden state,
tanh is the hyperbolic tangent function, ⊙ represents the matrix
multiplication symbol, and σ is the sigmoid function.

Unlike LSTM units, GRU units have a single state variable,
which reduces computational burden and memory requirements.
They use the Reset Gate to integrate historical states and current
inputs. Compared to LSTM, GRU has a simplified gate mechanism,
making it more efficient at handling long-term dependencies in
sequence modeling and reducing model complexity.

LSTM units have three gates: Forget Gate, Input Gate, and
Output Gate, allowing them to capture and store information over
longer time spans. In contrast, GRU simplifies the gate structure to
include only the Update Gate and the Reset Gate. This simplification
maintains model accuracy while enhancing training speed. With
fewer gates, GRU units offer computational efficiency and excellent
performance in handling sequence data.

3.3 Exponential linear unit activation
function

Activation functions in neural networks are essential for introducing
nonlinearity, which enhances the network’s ability to model complex
relationships. However, traditional activation functions like Sigmoid and
Tanh can encounter issues such as getting trapped in local optima with
improper learning rate selection. Moreover, these functions can lead to
the vanishing gradient problem, where the derivatives approach zero as
signals propagate through multiple layers.

The Rectified Linear Unit (ReLU) activation function addresses
some of these issues by outputting only non-negative values. This
pushes activations towards positive values as the network depth
increases, which can improve training speed. However, ReLU has a
derivative of zero for negative inputs, which can lead to the “dying
ReLU” problem, affecting training stability and accuracy.

FIGURE 12
Cloud edge extraction results; (A) Original cloud map; (B) DSCVGG; (C) Roberts; (D) Prewitt (E) Sobel.

FIGURE 13
Input and output of the model.
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To overcome these challenges, this paper utilizes the
Exponential Linear Units (ELU) activation function, introduced
by Clevert et al., in 2016. ELU maintains nonlinearity while
providing a better handling of negative inputs, avoiding the
“dying ReLU” problem (Staer-Jensen et al., 2018). This
characteristic has made ELU popular in deep neural networks,
particularly in natural language processing and image processing,
where it has achieved notable results.

The mathematical expression for ELU, as shown in Eq. 6, offers
the advantage of a linear response to positive inputs and a smooth
treatment of negative inputs. This approach helps to improve
network performance and addresses many of the issues
associated with traditional activation functions (Kovaios
et al., 2024).

ELU x( ) � xin xin > 0
α exin − 1( ) xin ≤ 0

{ (6)

Where: xin represents the input to the activation function. α
controls the saturation of negative inputs. When α = 1, it becomes
the ReLU activation function. In this paper, α is set to 0.01.

Figure 9 illustrates the four activation functions mentioned
in the text.

3.4 Depthwise separable convolution Visual
Geometry group-deep gate recurrent
neural network

To effectively handle potential time series data, this paper
proposes a Deep Gate Recurrent Neural Network (DGN). The
DGN integrates concepts from Deep Neural Networks (DNN),
GRU units, and the ELU activation function, as discussed in
Section 3.1, Section 3.2, and Section 3.3. The network inputs
include “time,” “temperature,” “humidity,” and “photovoltaic
power output” at the current time step and predicts the
“photovoltaic power output” at the next time step. Figure 10
depicts the overall structure of the network.

The network begins with a three-layer stack of GRU units, which
constructs a time series prediction network. This structure enables
the network to model temporal dependencies in the input data.
Following the GRU layers, the network transitions to a deep neural
network consisting of 52 fully connected layers. These layers learn
and produce the predicted photovoltaic power output. The fully
connected layers comprise one layer with 1024 neurons, 50 layers
with 2048 neurons each, and one output layer with a number of
neurons equal to the desired output.

FIGURE 14
Test results of three models in cloud tier classification data.

TABLE 1 Test accuracy for four models.

Model type DSCVGG VGG ResNet NiNNet

Test accuracy (%) 98.13 98.16 86.32 79.63

TABLE 2 Three models calculate the time required for 1000 times.

Model type DSCVGG VGG ResNet NiNNet

Time (s) 12.86 15.99 18.24 9.23
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To mitigate the issue of vanishing gradients, which can degrade
model accuracy, this paper replaces all ReLU activation functions
following the fully connected layers with ELU activation functions.
This replacement helps to maintain gradient flow and improve the
network’s learning capabilities.

4 The short-term photovoltaic power
output prediction model based on the
DSCVGG-DGN

Existing short-term photovoltaic output prediction models have
limitations in addressing the photovoltaic output fluctuations
caused by cloud movement and obscuration. To address this
issue, this paper proposes an integrated approach. By utilizing
the output of the cloud movement prediction model based on
DSCVGG to correct the output of the photovoltaic output
prediction model based on the DGN network, a short-term
photovoltaic output prediction model that can correct for the
influence of cloud movement is constructed. This model
effectively corrects the short-term photovoltaic output
fluctuations caused by cloud movement and obscuration. The
overall process is illustrated in Figure 11.

5 Photovoltaic power output prediction
experiments and model performance
evaluation

5.1 Hyperparameter tuning and data
preprocessing

The experimental platform is based on a system equipped with an
Intel Core i5-12400 central processing unit (CPU) and anNvidiaGeForce
RTX 3060 graphics processing unit (GPU). All experiments were
conducted using the PyTorch framework in the Python environment.

5.1.1 Hyperparameter configuration and data
preprocessing for the cloud motion prediction
model based on DSCVGG

The training dataset for cloud image data was derived from
actual image captures. We took a photo every minute from 10:00 to
15:00 each day, resulting in a total of 2100 photographs of cloud
movement. We used the cloud photos from the previous and current
time intervals as model inputs, and the edge features of the clouds
and whether the clouds obscured the sun in the next time interval as
outputs to create the dataset for training the DSCVGG.

In this paper, the training epochs for the model are set to 300, and a
cosine annealing learning rate is employed to dynamically adjust the
learning rate during training, as expressed in Eq. 7. Compared to
traditional fixed learning rates, the application of cosine annealing
learning rate can help the model avoid getting stuck in local optima,
making it more likely to reach a global optimum. The cosine annealing
learning rate dynamically adjusts the learning rate during training. It
starts with a relatively high learning rate at the beginning of training,
which helps escape local optima, and gradually decreases the learning rate

FIGURE 15
Test results for different activation function models.

TABLE 3 Test MAE and MSE of model in different activation functions.

Sigmoid Tanh ReLU ELU

MAE 12.16% 6.32% 4.95% 3.53%

MSE 7.54 × 10−2 6.32 × 10−3 2.25 × 10−4 1.63 × 10−4
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as training progresses, ensuring stable convergencewhen approaching the
optimal solution. This strategy improves the performance, generalization
capability, and convergence effectiveness of the model during neural
network training (Loshchilov and Hutter, 2016).

ηt � ηmin +
1
2

ηmax − ηmin( ) 1 + cos π Tcur

Tmax
( )[ ] (7)

Where: ηt is the current learning rate. ηmin is the minimum
learning rate. ηmax is the maximum learning rate. Tcur is the current
iteration number. Tmax is the maximum iteration number.

When the model’s training iterations reach Tmax, ηt resets to the
maximum learning rate. This can cause sudden changes in the
model’s accuracy and loss during training as it moves away from
local optima but does not affect the final results.

The evaluation metrics include model accuracy (A) and the time
required for the model to classify samples. The expression for
accuracy is shown in Eq. 8.

A �
∑n
i�1
PT i

∑n
i�1

PT i + PF i( )
× 100% (8)

Where: PTi represents correctly classified samples. PFi represents
incorrectly classified samples.

5.1.2 Hyperparameter configuration and data
preprocessing for the short-term photovoltaic
power output prediction model based on
DGN network

The photovoltaic power output data required for the power
output prediction model is sourced from a photovoltaic power
generation station within the Southern Power Grid, covering a
15-day period. The dataset includes the following key variables:
“time,” “temperature,” “humidity,” and “photovoltaic power
output.” In this model, the variables at the current time step
are used as inputs, while the “photovoltaic power output” at the
next time step serves as the output.

During the model training process, the cosine annealing
learning rate is also employed to dynamically adjust the learning
rate. The number of training epochs is set to 300. Two evaluation
metrics are used in the experiments, namely, Mean Absolute Error
(MAE) and Mean Squared Error (MSE), expressed mathematically
as shown in Eqs 9, 10.

EMA � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣ (9)

EMS � 1
n
∑n
i�1

yi − ŷi( )2 (10)

Where: EMA stands for Mean Absolute Error. EMS stands for
Mean Squared Error. n represents the number of samples. yi
represents the actual values. ŷi represents the model’s output
data. These evaluation metrics are used to assess the model’s
performance in predicting photovoltaic power output.

FIGURE 16
Photovoltaic output prediction test results of four models.

TABLE 4 Test MAE and MSE of four models.

GRU LSTM RNN DGN

MAE 31.92% 72.65% 32.51% 3.53%

MSE 5.44 × 10−2 8.47 × 10−1 3.81 × 10−2 1.63 × 10−4
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5.2 Performance evaluation of cloud motion
prediction model based on DSCVGG

To assess the efficacy of the cloud motion prediction model
based on DSCVGG, a series of experiments were conducted on the
collected cloud image dataset.

Firstly, to validate the performance of the DSCVGG model in
cloud edge extraction, the experiment compared the edge

extraction effects of three traditional edge detection
algorithms—Roberts, Prewitt, and Sobel—against the DSCVGG
model. The output results of these methods, as depicted in
Figure 12, demonstrating the superior edge extraction
capabilities of the DSCVGG model.

According to the results shown in Figure 12, it is evident that
the DSCVGG model possesses a significant advantage in cloud
edge extraction. The model effectively eliminates false edges
caused by uneven cloud thickness, achieving high-precision
edge extraction.

This performance enhancement is primarily attributed to the
deep convolutional structure and strong feature learning capabilities
of the DSCVGG model. By stacking multiple convolutional layers,
the model can capture the complex textures and subtle changes in
cloud images, thus more accurately defining the true edges of the
clouds. This fine edge extraction is crucial for predicting cloud

FIGURE 17
The DSCVGG-DGN model and the PV output prediction diagram of the other three models; (A) DSCVGG-DGN; (B) DGN; (C) RNN; (D) GRU.

TABLE 5 The DSCVGG-DGN model was tested with three other models for
MAE and MSE.

GRU RNN DGN DSCVGG-DGN

MAE 31.92% 32.51% 3.53% 2.18%

MSE 5.44 × 10−2 3.81 × 10−2 1.63 × 10−4 5.32 × 10−5
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movement, as it directly impacts the adjustment precision of
subsequent solar tracking systems and the efficiency of
photovoltaic power generation.

Furthermore, to validate the accuracy of predictions regarding
whether the clouds will obscure the sun at the next moment, we
used the edge-extracted image from Figure 12B and the current
cloud layer image as input, with the output being whether the
clouds will obscure the sun at the next moment. As shown in
Figure 13, during the experimentation, the DSCVGG model and
the VGG model were trained and tested, and their performance
was compared with other similar network models, such as NiNNet
and ResNet. Figure 14 displays the accuracy of different models on
the test set, while Table 1 provides a detailed breakdown of the
accuracy of these four models in predicting whether the clouds will
obscure the sun at the next moment. Table 2 records the average
computation time required for these models to perform
1000 predictions.

As indicated in Figure 14, the cloud motion prediction model
based on DSCVGG converged after approximately 150 training
iterations. When comparing the test accuracy as shown in
Table 1, the DSCVGG model outperforms the NiNNet model
and is slightly better than the deeper ResNet model, with its
accuracy being comparable to that of the VGG model. Therefore,
from an accuracy perspective, the DSCVGG model is
exceptionally good.

Additionally, according to the data in Table 2, the DSCVGG
model requires significantly less time to compute 1000 iterations
compared to the VGG and ResNet models, but is slightly slower
than the NiNVGG model. Considering the results from both
Table 1 and Table 2, and taking into account both model
performance and computational efficiency, we selected the
validated DSCVGG model as the cloud motion prediction
model to enhance the accuracy and stability of short-term
photovoltaic output prediction.

5.3 Performance evaluation of short-term
photovoltaic power output prediction
model based on DGN network

To validate the effectiveness of the short-term photovoltaic
power output prediction model based on the DGN network
designed in this paper, experiments were conducted using the
aforementioned photovoltaic power output data. Initially, the
influence of the ELU activation function on the model’s loss was
verified. In the experiment, the ReLU function following GRU was
kept constant, and then the activation function following the fully
connected layer was successively replaced with Sigmoid, Tanh,
ReLU, and ELU functions. The model was trained and tested
using the constructed dataset. The experimental results are
shown in Figure 15 and Table 3.

From the results shown in Figure 15 and Table 3, it can be
observed that the DGN network based on the ELU activation
function starts to converge around the 150th epoch, and its test
loss, MAE, and MSE are lower than those of models using the other
three activation functions. Therefore, for subsequent experiments,

the DGN model based on the ELU activation function will be
selected as the performance testing model.

To validate the effectiveness of the short-term photovoltaic
power output prediction model based on the DGN network
proposed in this paper, experiments were conducted using the
aforementioned photovoltaic power output data. The
experiments involved testing various models, including GRU,
LSTM, RNN, and the DGN model proposed in this paper. The
training and testing results of the experiments are shown in
Figure 16 and Table 4.

Based on the experimental results from Figure 16 and Table 4, it
can be observed that the convergence speed of the proposed DGN
model, while slower than GRU, LSTM, and RNN models, starts to
exhibit a lower test loss than the other three models after
approximately 20 epochs. Beyond the 50th epoch, the DGN
model’s test loss is significantly lower than that of the other three
models. Additionally, the test MAE and MSE of the DGN model are
much lower than those of the other three models. Therefore, for the
subsequent fusion model, the DGN model is selected as the
photovoltaic power output prediction model.

5.4 Evaluation of short-term photovoltaic
power output prediction model based on
DSCVGG-DGN network

To mitigate the short-term fluctuations in photovoltaic
output caused by cloud movement and solar obscuration, this
study integrates the cloud movement data predicted by the
DSCVGG model with the input data of the DGN model
described in Section 4.3, feeding them together into the DGN
model. The aim is to enhance the accuracy of photovoltaic output
predictions by incorporating information on cloud movement
predictions. According to the research in literature (Ming et al.,
2015), the influence coefficient of clouds on irradiance ranges
from 0.4 to 0.9. In this experiment, we take the average influence
coefficient of 0.65. This means that when the prediction indicates
that clouds will obscure the sun, we consider that the
photovoltaic output prediction data for the next moment
needs to be multiplied by this influence coefficient to adjust
the predicted value.

To verify the feasibility of the DSCVGG-DGN network model,
this study compares its training results with the DGN model
described in Section 4.3. Figure 17 presents the photovoltaic
output prediction graphs for the four models, while
Table 5 records the MSE and MAE of these models’ predictions.
Since the LSTM model in Section 4 had a larger error, it was not
included in the comparative experiment.

From Figure 17 and Table 5, it can be concluded that the short-
term photovoltaic power output prediction model based on the
DSCVGG-DGN network proposed in this paper achieves MAE and
MSE values that meet the accuracy requirements for photovoltaic
power output prediction. This model can accurately and quickly
predict photovoltaic power output, effectively addressing the issue of
DGN’s inability to predict short-term photovoltaic power
fluctuations caused by cloud movement.
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6 Conclusion and outlook

This paper proposed a short-term photovoltaic output prediction
model based on the DSCVGG-DGN network. Through photovoltaic
output prediction experiments and performance evaluation results, the
following conclusions are drawn:

(1) The cloud motion prediction model proposed in this paper,
based on DSCVGG, effectively reduces the number of model
parameters and accelerates the calculation speed by replacing
the previous convolution layer of the pooling layer with
depthwise separable convolution. It can effectively extract
cloud edge features, predict whether clouds will obscure the
sun, and provide important information for subsequent
photovoltaic output predictions.

(2) The photovoltaic output predictionmodel proposed in this paper,
based on DGN, effectively improves the accuracy of model
predictions by integrating GRU, ELU, and DNN networks,
achieving high-precision predictions of photovoltaic output.

(3) The short-term photovoltaic output prediction model based
on DSCVGG-DGN network constructed in this article
effectively solves the problem of difficult prediction of
photovoltaic output due to cloud cover by combining the
cloud classification data of DSCVGG and the photovoltaic
output prediction data of DGN, reducing the model’s MAE
and MSE to 2.18% and 5.32 × 10−5, and achieving minute-
level prediction of photovoltaic output.

In subsequent research, new short-term photovoltaic output
prediction methods based on deep learning will be further developed
to improve model accuracy. Our article did not further study the
attenuation coefficient of photovoltaic output after cloud cover, and
we hope to conduct more in-depth research on it in future work.
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