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The detection and recognition of foreign objects on coal conveyor belts play a
crucial role in coal production. This article proposes a foreign object detection
method for coal conveyor belts based on EfficientNetv2. Since MBConv and
Fused-MBConv structures in EfficientNetv2 employ information compression
and fusion strategies, which may lead to the loss of important information and
affect the integrity of feature extraction, a hard shuffle attention (Hard-SA)
mechanism is utilized to enhance the focus on important features and
improve the representation ability of coal conveyor belts image features. To
address the potential gradient disappearance issue during the backpropagation
process of the network, an elastic exponential linear unit (EELU) activation
function is introduced. Additionally, since the cross-entropy loss function may
not be flexible enough to handle complex data distributions and may fail to fit the
non-linear relationships between data well, a Polyloss function is adopted.
Polyloss can better adapt to the complex data distribution and task
requirements of coal mine images. The experimental results show that the
proposed method achieves an accuracy of 93.02%, which is 2.39% higher
than that of EfficientNetv2. It also outperforms some other state-of-the-art
(SOTA) models and can effectively complete the detection of foreign objects
on coal conveyor belts.
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1 Introduction

In coal mine production, the coal conveyor belt plays a crucial role as the primary
channel for coal transportation, directly impacting the efficiency of mining and coal
transportation. Accurate detection and identification of foreign objects on coal conveyor
belts have become essential tasks to ensure safe production in coal mines (Zeng et al., 2019).
Common foreign objects on conveyor belts, such as bolts and large gangue, have the
potential to cause scratches, tears, and coal stacking on high-speed running belts. Therefore,
the timely detection and identification of foreign objects on coal conveyor belts are
necessary for early warning and prompt handling of potential problems. Currently,
different methods are employed for detecting foreign objects in coal conveyor belts,
including manual identification, the x-ray method, and image processing (Einarsson
et al., 2017; Zhang et al., 2021). Image processing methods encompass both object
detection and image classification techniques (Zhang M. et al., 2022). Compared with
object detection methods, the advantage of classification is that foreign objects can be
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identified directly without pre-positioning. This provides a simpler
process and enables a more efficient use of computational resources,
allowing rapid identification.

The complexity of the mining environment poses challenges to
existing image classification methods in detecting foreign objects in
coal conveyor belts. Some researchers have explored the application
of computer vision technology in the coal mining industry.
Literature (Pu et al., 2019) employed VGG16 and transfer
learning to recognize coal and gangue images, segregating coal
and gangue. Since they used only 240 images, an accuracy rate of
82.5%was achieved. Literature (Dou et al., 2019) proposed the relief-
support vector machine (relief-SVM) method to recognize coal and
gangue based on image analysis, achieving accuracies of 92.57% and
92% on two datasets, respectively. Literature (Su et al., 2018)
proposed an improved network based on LeNet-5, achieving a
recognition rate of 95.88% for coal gangue. Literature (Hong
et al., 2017) designed a gangue sorting system, con-structing a
convolutional neural network (CNN) model based on AlexNet
and transfer learning, and achieving an accuracy of 96.6%.
Literature (Liu et al., 2021) combined deep learning and transfer
learning to construct four CNN models with different depths and
structures based on VGG16, VGG19, InceptionV3, and Res-Net50,
with accuracy rates of 85.47%, 86.89%, 88.06%, and 90.91%,
respectively. Literature (Hu et al., 2022) optimized the
hyperparameters of CNN models using Bayesian algorithms for
the quick and accurate identification of coal and gangue. Literature
(Liu et al., 2023) proposed three different deep learning-based
mineral image data augmentation models based on generative
adversarial networks, addressing the issue of insufficient labeled
images in the coal mining field. Literature (Zhang J. et al., 2022)
proposed a novel algorithm that combines histogram equalization
(HE) and Laplace algorithm. Then, the YOLOv5 model was used to
identify the samples, with the recognition accuracy of this method
for 50 common minerals reaching 95.6%. In the literature (Önal
et al., 2020), AlexNet was used to classify minerals directly collected
and photographed from the site, achieving an accuracy of 92.3% in
an experiment that included a total of 1,491 images across
8 categories. Literature (De Lima et al., 2019) successfully
classified microfossils, core images, rock micrographs, and hand
sample images of rocks and minerals using a light-weight
mobilenetv2 model, achieving an accuracy rate of 98%. Literature
(Fan et al., 2020) established a rock image recognition model based
on the lightweight network architecture ShuffleNet, combined with
transfer learning methods. The recognition model achieved an
accuracy of 97.65% on the PC testing dataset and 95.30% on the
smartphone testing dataset.

Current research is primarily focused on the detection of coal
gangue, while there is relatively less research on other foreign
objects, such as anchor rods on coal conveyor belts. Due to the
intricate nature of the underground environment in coal mines,
challenges such as a substantial amount of dust, inconsistent
humidity, poor lighting, and difficulties in collecting sample data
arise. Current detection methods in the coal mining field still
encounter issues of poor robustness, high model complexity, and
extensive parameters. To address these challenges, this article
proposes a foreign detection method for coal conveyor belts
based on EfficientNetv2. The main contributions of this article
are as follows:

(1) By integrating a hard-shuffle attention (Hard-SA)
mechanism, the proposed method enhances the focus on
important features, addressing the potential loss of image
information caused by the MBConv and Fused-MBConv
structures in EfficientNetv2.

(2) To mitigate the gradient disappearance issue during
backpropagation, the elastic exponential linear unit (EELU)
activation function is introduced. This enhancement ensures
better network stability and improves the learning process,
contributing to more accurate detections.

(3) The adoption of the Polyloss function addresses the
limitations of the cross-entropy loss function in handling
complex data distributions and fitting nonlinear
relationships.

The organization of the remaining sections of the article is as
follows: The second section introduces the materials and methods,
detailing the dataset description, data augmentation techniques, and
the proposed method. The third section covers the experiments and
results, including the experimental environment and parameter
settings, model evaluation indicators, experimental results
and discussion. The fourth section presents the conclusions of
the article.

2 Materials and methods

2.1 Dataset

The experimental data came from the mine dataset published by
china university of mining and technology (https://github.com/
CUMT-AIPR-Lab/CUMT-AIPR-Lab?tab=readme-ov-file). A total
of 4,800 images of coal belt conveyor were collected, divided into
three categories: large gangue, bolts, and normal coal. Each category
includes 1,600 images, the training and test sets were split in a ratio
of 8:2, which means 3,840 training images and 960 testing images.

2.2 Data augmentation

Although the data augmentation method using neural
architecture search (NAS) for automatic search is effective, its
limitation lies in the need to balance search efficiency and data
augmentation performance. To address this issue, this article used
the trivial augment (TA) (Müller and Hutter, 2021) data
augmentation strategy. In contrast to previous data augmentation
techniques, TA stands out for its simplicity and efficiency. Unlike
other methods that involve complex parameter tuning and multiple
data augmentation techniques per image, TA opts for a
straightforward approach. Each image undergoes a random
selection of an enhancement operation, followed by a random
determination of its enhancement amplitude. This
straightforward process ensures a streamlined and efficient image
enhancement without the need for hyperparameter searches.
Therefore, compared to auto-augment (AA) (Cubuk et al., 2018),
population based augmentation (PBA) (Ho et al., 2019), and even
rand augment (RA) (Cubuk et al., 2020), its search cost is almost
negligible. After data augmentation, the amount of data is doubled.
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2.3 Proposed method

EfficientNetv1 (Tan and Le, 2019) introduced a lightweight
network structure that adjusts the resolution, depth, and width
dimensions of the input image to enhance network performance.
Building upon EfficientNetv1, EfficientNetv2 (Tan and Le, 2021)
addressed the issue of slow speed caused by the use of deep
convolution (DW) in the MBConv module of EfficientNetv1’s
shallow networks. EfficientNetv2 successfully reduced the number
of parameters and complexity of model training by adaptively
balancing these three dimensions, significantly improving model
performance. The MBConv module in the EfficientNetv2 network
model includes the squeeze-and-excitation (SE) attention
mechanism, which solely focuses on encoding information
between channels, overlooking the significance of positional
information. This results in incomplete feature extraction of
object through the attention mechanism, leading to lower
classification accuracy in the model. Additionally, the derivative
of the SiLU activation function may approach very small values for
larger negative inputs, potentially causing gradient vanishing during
back-propagation. This phenomenon can pose challenges in
training deep neural networks. In the realm of deep learning
classification networks, the cross-entropy loss function and the
focus loss function are commonly used. However, a good loss
function should ideally have a more flexible form and be tailored
for different tasks and datasets. This is particularly important for
coal mining data, where considerations for the underground lighting
environment and various noise factors are crucial.

Motivated by EfficientNetv2, this article presents an improved
network architecture. Initially, we incorporate Hard-SA module
within MBConv and Fused-MBConv. This enhancement
amplifies the net-work’s capacity to prioritize crucial feature
maps. Additionally, we utilize the EELU activation function,
which addresses the potential issue of vanishing gradients during
backpropagation. The utilization of EELU ensures a more stable and
efficient training process. The refined structures, namely, Hard-SA-
MBConv and Hard-SA-Fused-MBConv are as shown in Figure 1.

Additionally, a more flexible Polyloss function is adopted to
improve training efficiency. This adaptive loss function enables the
network to better adapt to the mining dataset, ultimately improving
detection accuracy. Before training, the images undergo

preprocessing to ensure consistency in formatting and
normalization. The preprocessed data is then fed into the
proposed network for training. The framework of the proposed
method is shown in Figure 2.

2.3.1 Hard-SA mechanism
Assuming C, H, and W represent the number of image channels,

height, and width, respectively. For feature map YϵRC×H×W, the
shuffle attention (SA) initially divides Y into D groups along the
channel dimension, Y � [Y1, Y2, . . .YD], and YkϵRC/D×H×W. Each
sub-feature Yk gradually captures a specific semantic response during
the training process (Zhang and Yang, 2021). Subsequently,
generating the corresponding importance coefficient for each sub-
feature through an attention module. At the beginning of each
attention unit, the input of Yk is split into two branches along the
channels dimension. One branch generates a channel attention map,
while the other branch produces a spatial attention map. To fully
capture channel-wise dependencies, global averaging pooling (GAP)
is employed. This process generates channel-wise statistics denoted as
u ∈ RC/2D×1×1, which can be calculated as Equation 1:

u � Fgp � 1
H × W

∑
H

a�1
∑
W

b�1
Yk1 a, b( ) (1)

In addition, a compact feature is developed to facilitate accurate
and adaptive selection. This is achieved through a straightforward
gate mechanism implemented using a Hard-sigmoid activation
function (Dou et al., 2023). Given an input x, the output of the
Hard-Sigmoid function is defined as Equation 2:

f x( ) � hardsig x( )
� 0 if x< − 2.5
� 0.2 px+0.5 if − 2.5≤ x≤ 2.5
� 1 if x> 2.5

⎧⎪⎨
⎪⎩ (2)

The final output of channel attention can be obtained as
Equation 3,

Yk1
′ � σ W1 u + b1( ).Yk1 (3)

where, W1 and b1 are utilized to scale and shift u. Unlike channel
attention, spatial attention is concerned with identifying the
informative regions, complementing channel attention. The
ultimate output of spatial attention is derived by Equation 4:

FIGURE 1
Hard-SA-MBConv and Hard-SA-Fused-MBConv structure.
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Yk2
′ � σ W2 .GN Yk2( ) + b2( ).Yk2 (4)

where GN is utilized to obtain spatial-wise statistics. The role ofW2

and b2 are the same to that of W1 and b1. Connecting the two
branches as Equation 5:

Yk � Yk1
′ + Yk2

′ (5)

Subsequently, all sub-features are aggregated, and the final
output of the Hard-SA module has the same size as Y,
facilitating its seamless integration into deep learning network
structures. The structure of Hard-SA is shown in Figure 3.

2.3.2 Activation and loss function design
The elastic exponential linear unit (EELU) is a versatile

activation function that combines the benefits of both ReLU and
ELU-type activation functions (Kim et al., 2020). EELU adjusts the

positive slope to mitigate overfitting, similar to EReLU and RReLU
(Jiang et al., 2018; Banerjee et al., 2020), while also preserving the
negative signal to mitigate the bias shift effect, similar to ELU.
Notably, the positive slope of EELU is determined using a Gaussian
distribution with a randomized standard deviation, which differs
from the approach of using a simple uniform distribution to
determine the scale of random noise seen in EReLU and RReLU.
This allows EELU to introduce randomness into the activation
function, which can help improve the generalization performance
of neural networks. It can be represented as Equations 6, 7:

f ya,b
c( )( ) � ta,b

c( )ya,b
c( ), if ya,b

c( ) > 0
� α c( ) eβ

c( )
y(
a,b

c( )−1), if ya,b
c( ) ≤ 0

⎧⎨
⎩ (6)

ta,b
c( ) � max o, min qa,b

c( ), 2( )( ), qa,b c( ) ~ N 1, σ( )σ ~ U 0, ϵ( ), ϵ 0, 1( )
(7)

FIGURE 2
Framework of the proposed method.

FIGURE 3
Hard-SA mechanism structure.
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where ya,b
(c) is the value of the cth channel at position (a, b), ta,b(c) is

a coefficient extracted from a Gaussian distribution with a random
standard deviation and a fixed mean. α(c) and β(c) are learning
parameters greater than zero, determined from the training sample.
∈ is the maximum standard deviation of the Gaussian distribution.
In the training process, the slope of the positive part undergoes
adjustments through a Gaussian distribution. In the testing phase,
the slope is substituted with the expectation derived from a Gaussian
distribution.

When training deep neural networks for classification and
segmentation problems, cross-entropy loss and focal loss are
commonly used. However, a good loss function should have a
flexible form and can be customized for different tasks and
datasets. Polyloss allows for easy adjustment of the importance of
different polynomial bases based on the target task and dataset (Leng
et al., 2022). For images of coal mines, with characteristics such as
complex backgrounds and poor lighting, the flexibility of the
PolyLoss function provides convenience. The classification loss
function is decomposed into a series of weighted polynomials by
Taylor expansion, as shown in Equation (8):

Lpoly−1 � ∑
∞

j�1
1/j 1 − Pt( )j + ε 1 − Pt( ) (8)

where ε is the polynomial coefficient, Pt represents the probability of
the target-label prediction.

3 Experiments and results

3.1 Experimental environment and
parameter settings

The experiment was performed on a 64-bit Windows 10 system,
using Python 3.8, PyCharm, and PyTorch 1.13.0. Hardware
included an Intel Core i7-12700 CPU, 64GB RAM, and an
Nvidia RTX 3090 24G GPU. The experimental setup involved
resizing images to 224 × 224 pixels and utilizing a batch size of
32. Adam optimizer with a momentum of 0.9 and a weight decay of
0.0001 was employed for optimization. The initial learning rate was
set at 0.0125, and a CosineAnnealingLrUpdater strategy with a
minimum learning rate of 0.0001 was implemented. The
experiment ran for 150 epochs, with 1,280 channels configured.
Initialization of EELUwas done with α set to 0.25 and β set to 1. Both
learning parameters underwent weight decay, and the hyperparamet
∈was fixed at 1.0. Additionally, the Polyloss function was configured
with a polynomial coefficient ε of 2.

3.2 Models evaluation indicators

In the experiments, accuracy, precision, recall, F1-score and
other metrics are used to evaluate the detection performance. The
formulas of these evaluation metrics are given as Equations 9–12:

Accuracy � TP + TN

TP + TN + FN + FP
(9)

Precision � TP

TP + FP
(10)

Recall � TP

TP + FN
(11)

F1 − score � 2 pPrecision pRecall
Precision + Recall

(12)

where TP represents true positive, FP represents false positive, FN
represents false negative, TN represents true negative. In
experiments, the precision-recall (P-R) curve is commonly used
to evaluate the trade-off between precision and recall. The larger the
area under the P-R curve (average precision, AP), the better the
balance between precision and recall, indicating superior
performance. The receiver operating characteristic (ROC) curve
can also help assess the performance of a classification model. By
observing the shape of the ROC curve and the area under the curve
(AUC) value, one can intuitively understand the model’s ability to
classify different categories. A higher AUC value indicates better
performance of the classifier.

3.3 Experimental results and discussion

The experimental results presented in Table 1 showcase the
effectiveness of the proposed method in classifying different objects:
bolt, gangue, and normal. For the bolt class, the method achieved a
precision of 93.02%, recall of 91.56%, and an F1-score of 92.28%.
The AP and AUC values are notably high at 97.47% and 98.58%,
respectively, indicating excellent performance. The gangue class,
while exhibiting slightly lower precision at 90.86%, has the highest
recall at 96.25%, resulting in an F1-score of 93.47%. Its AP and AUC
values are also high at 97.13% and 98.81%, respectively, reflecting
robust detection capabilities. The normal class shows the highest
precision at 95.42%, with a recall of 91.25% and an F1-score of
93.29%. The AP and AUC for this class are 97.67% and 98.33%,
respectively. These results indicate that the proposed method
performs consistently well across all classes, maintaining a strong
balance between precision and recall, and achieving high accuracy in
challenging detection environments. Figures 4, 5 respectively show
the P-R curves and ROC curves of different objects.

We tested the model using different activation functions and
attention mechanisms, with the cross-entropy loss function. The
experimental results in Table 2 compare the performance of
different models based on various activation functions and
attention mechanisms, “Ev2” represents EfficientNetv2, “Acc”
represents accuracy. The “Ev2-SE” model, utilizing the SiLU
activation function and SE attention mechanism, achieves an
accuracy of 90.63%. Similarly, the “Ev2-CA” model, employing
SiLU activation and the coordinate attention (CA) mechanism
(Hou et al., 2021), achieves an accuracy of 91.88%. Introducing
the SAmechanism with SiLU activation in the “Ev2-Hard-SA-SiLU”
model improves accuracy to 92.19%. Notably, the “Ev2-Hard-SA-
EELU” model, incorporating the EELU activation function with
the SA mechanism, demonstrates the highest accuracy of 92.92%.
These findings suggest that the combination of specific activation
functions and attention mechanisms significantly impacts model
performance, with the “Ev2-Hard-SA-EELU”model outperforming
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others in terms of accuracy. Figure 6 shows the accuracy curves of
different models.

To evaluate the impact of different modules, ablation
experiments were performed. Table 3 presents the classification
results of different improved modules using various combinations of
enhancements on the EfficientNetv2 model. Each row represents a
specific combination of techniques: Polyloss, EELU, and Hard-SA.

The baseline EfficientNetv2 model without any enhancements
achieves an accuracy of 90.63%. When the Polyloss module is
added, the accuracy improves to 91.35%, indicating a notable
enhancement in performance. Introducing the EELU module
alone results in an accuracy of 91.98%, demonstrating a similar
improvement. Adding the Hard-SA module on its own raises the
accuracy further to 92.40%. Combining Polyloss with EELU yields
an accuracy of 92.29%, while the combination of EELU and Hard-
SA achieves 92.92%. Notably, combining Polyloss and Hard-SA
without EELU results in an accuracy of 92.50%. The most significant
improvement is observed when three modules Polyloss, EELU, and
Hard-SA are combined, achieving the highest accuracy of 93.02%.
This suggests that the combined effect of these three enhancements
provides the most substantial performance boost, indicating their
complementary strengths in improving detection accuracy. This
method holds significant value for the detection of foreign objects in
coal conveyor belts in dark well environments, as it offers improved
accuracy and performance over the baseline model.

In Table 4, we compare the performance of several lightweight
network models in detection tasks. These models include EdgeNext
(Maaz et al., 2022), MobileNetv2 (Dong et al., 2020), EfficientNetv1
(Tan and Le, 2019), ShuffleNetv2 (Ma et al., 2018), and our proposed
model. From the perspective of Acc, all models achieve relatively
high performance, with our model slightly outperforming the others
with an accuracy of 93.02%. This indicates that, despite having a
slightly higher number of parameters (Params) compared to some
other lightweight models, our model is able to achieve higher
detection accuracy while maintaining model complexity.
Regarding model complexity, MobileNetv2 and
ShuffleNetv2 exhibit significant advantages in terms of smaller
parameter counts and floating-point operations (Flops). However,
this advantage comes with a sacrifice in accuracy. In contrast,
EfficientNetv1 and EdgeNext strike a relatively good balance
between accuracy and complexity. Notably, our model achieves
the highest score in accuracy while maintaining a relatively low
Flops of 0.6 G (G = 109). This further demonstrates the efficiency of
our model in maintaining high performance while having a low
computational cost. Figure 7 presents the confusion matrices for the
comparison of these models, which clearly demonstrate the
detection performance for each class.

Based on the provided confusion matrices for five different
models, we can analyze the performance of each model on the three
classes: ‘bolt’, ‘gangue’, and ‘normal’. Our model demonstrates
exceptional performance with minimal misclassifications,
particularly in the gangue category where no instances were
misclassified as normal. It can be seen that in the proposed
method, 308 out of 320 gangue images were accurately identified,
while only 293 were identified in the bolt images. The lowest
recognition of normal images was only 292. MobileNetv2 also

TABLE 1 The classification results of proposed method for each class.

Objects Pr (%) Re (%) F1-score (%) AP (%) AUC(%)

Bolt 93.02 91.56 92.28 97.47 98.58

Gangue 90.86 96.25 93.47 97.13 98.81

Normal 95.42 91.25 93.29 97.67 98.33

FIGURE 4
P-R curves of different objects.

FIGURE 5
ROC curves of different objects.
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shows strong results but with slightly higher misclassification rates,
especially between normal and gangue. EdgeNext presents a higher
rate of confusion, notably misclassifying bolts as normal and vice
versa. ShuffleNetv2 performs well in classifying bolts but struggles
significantly with the normal category, indicating a trade-off in its
classification ability. EfficientNetv1 exhibits high accuracy in the
gangue category but faces challenges in distinguishing between bolt
and normal. Overall, our model achieves the best balance with the

fewest misclassifications, highlighting its robustness and reliability
in complex classification tasks, thereby underscoring its suitability
for practical applications in the mining environment. Figure 8
visually presents the heatmaps generated by the proposed
method and other models using Grad-CAM. As seen from
Figure 8, the proposed method demonstrated superior capability
in emphasizing the prominent features within the image.

In Table 5, we compare the performance of several mainstream
classification network models in detection tasks, including ResNet34
(Koonce and Koonce, 2021), Swinv2 (Liu et al., 2022), DeiT III
(Touvron et al., 2022), MViTv2 (Li et al., 2022), and methods used
for the classification of foreign matter in belts (Kou et al., 2023; Liu
et al., 2024). From the perspective of Acc, all models achieve
relatively high scores, but our model stands out with an accuracy
of 93.02%. In terms of model complexity, our model significantly
outperforms all other models. Its params is 5.86 M (M = 106),
significantly lower than that of other models such as ResNet34’s
21.29 M and Swinv2’s 27.52M. Similarly, in terms of Flops, our
model only requires 0.6 G, which is far lower than other models such
as ResNet34’s 3.68 G and Swinv2’s 4.36 G. This advantage suggests
that our model achieves high performance while having a lower
computational cost, making it more suitable for resource
constrained environments. Moreover, compared to other models,
our model achieves a better balance between accuracy and
complexity. Although models such as Swinv2 approach our
model in accuracy, they fall far behind in terms of model
complexity. The methods by (Kou et al., 2023; Liu et al., 2024),
demonstrate relatively high accuracy, achieving 88.30% and
91.20%, respectively. However, both models exhibit higher
computational demands compared to ours. Kou et al.‘s method
has 18.40 M parameters and requires 2.69 G, while Liu et al.’s
model has 29.15 M parameters with 6.28 G. This indicates
that our model has made significant progress in optimizing
network structure, reducing redundant parameters, and lowering
computational costs.

TABLE 2 Comparative analysis of the performance of different models.

Model Activation function Attention mechanism Acc (%)

Ev2-SE SiLU SE 90.63

Ev2-CA SiLU CA 91.88

Ev2-Hard-SA-SiLU SiLU SA 92.19

Ev2-Hard-SA-EELU EELU SA 92.92

FIGURE 6
Comparison of test accuracy of the improved network model.

TABLE 3 Classification results of different improved module.

Method Acc (%)

EfficientNetv2 Polyloss EELU Hard-SA

√ 90.63

√ √ 91.35

√ √ 91.98

√ √ 92.40

√ √ √ 92.29

√ √ √ 92.92

√ √ √ 92.50

√ √ √ √ 93.02

TABLE 4 Comparison of lightweight network detection results.

Model Acc (%) Params (M) Flops (G)

EdgeNext 90.83 5.28 0.96

MobileNetv2 92.29 2.23 0.32

EfficientNetv1 91.25 4.01 0.02

ShuffleNetv2 90.94 1.26 0.15

Ours 93.02 5.86 0.60
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Our model exhibits excellent performance in classification
network detection tasks, achieving the highest level of accuracy
while maintaining relatively low model complexity. This result
provides strong support for the deployment of high-performance
classification networks in practical applications, especially in
resource-constrained scenarios.

The improved network architecture addresses the
shortcomings of EfficientNetv2, enhancing the MBConv and
Fused-MBConv modules while addressing vanishing gradient

issues and providing a more flexible loss function for training.
These modifications aim to improve the classification accuracy of
foreign objects on coal belts and pave the way for more effective
deep learning applications in this domain. The experimental
results showed that the proposed method can not only
effectively capture the prominent features of underground coal
mine images, but also achieve the best performance in
classification. Additionally, the smaller params and Flops
make it easier to deploy the proposed model to edge devices.

FIGURE 7
Confusion matrices of different models. (A) EfficientNetv1. (B) MobileNetv2. (C) EdgeNeXt. (D) ShuffleNetv2. (E) Ours.
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Our proposed EfficientNetv2-based classification method is
primarily designed for single-object classification, making it
suitable for scenarios with one foreign body. To address cases
with multiple foreign bodies, we suggest using sliding window or
region-based approaches. This involves dividing the input image
into overlapping patches or employing a sliding window
technique for independent classification, enabling the
detection of multiple foreign bodies in different regions of the
belt. Additionally, if multiple foreign bodies are frequently
encountered, we can enhance our pipeline with a YOLO-based
object detection module for accurate localization, while

EfficientNetv2-based ensures high classification accuracy for
each detected object.

4 Conclusion

This article presents a method utilizing EfficientNetv2-based for
detecting foreign objects on coal conveyor belts. To address the
challenge of limited data, a simple data augmentation technique, TA
was utilized during preprocessing to enhance the model’s fitting
ability. The proposed method integrates Hard-SA into the MBConv
and Fused-MBConv modules of the EfficientNetv2 architecture and
employs the EELU activation function within these modules.
Additionally, a more flexible loss function Polyloss is utilized in
the model. Experimental results demonstrate that this approach
significantly improves detection performance. To evaluate the
model’s effectiveness, a quantitative analysis was conducted,
comparing the proposed method’s detection results with those of
existing advanced models. Our method achieved a detection
accuracy of 93.02% on datasets of coal conveyor belts. These
findings indicate that the proposed neural network structure
effectively learns the characteristics of foreign objects on coal
conveyor belts, accurately classifying and recognizing these
objects in coal mines. This study lays a solid foundation for the
detection and recognition of foreign objects on coal conveyor belts
in underground coal mines.

FIGURE 8
Comparison of heatmaps for different methods.

TABLE 5 Comparison of detection results for mainstream classification
networks.

Model Acc (%) Params (M) Flops (G)

ResNet34 90.31 21.29 3.68

Swinv2 92.19 27.52 4.36

DeiT III 90.73 21.80 4.24

MViTv2 91.88 23.41 3.99

Kou et al 88.30 18.40 2.69

Liu et al 91.20 29.15 6.28

Ours 93.02 5.86 0.60
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In future research, there are still some issues to explore:

(1) The dataset used in this study primarily originates from a
publicly available dataset for foreign object detection on coal
conveyor belts in an underground mine. While it includes
three categories: bolts, gangue, and normal, the dataset is
limited in both quantity and diversity of classes. To enhance
the algorithm’s generalization ability, it is advisable to
supplement the dataset with additional data on foreign
objects found on conveyor belts used for coal
transportation, thereby increasing dataset diversity.

(2) Conveyor belts used for coal transportation are often subjected
to harsh underground environments with low light conditions.
Additionally, there is a considerable presence of dust and water
mist. The robustness of the algorithm is crucial under such
conditions. However, the study did not evaluate the improved
algorithm’s performance under different conditions.
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