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Proposed within the framework of the sharing economy, Shared Energy Storage
(SES) aims to enhance the efficiency of Energy Storage Systems (ESS) and drive down
costs. This study focuses on an innovative approach to emphasize the multifaceted
utilization of individual ESS units and the centralized use of dispersed ESS resources.
Renewable Energy Power Plants (REPPs) collaborate to create SES pools, leveraging
their ESS assets. Beyondmeeting the needs of REPPs, these resources are shared for
ancillary services like Secondary Frequency Regulation (SFR) to yield additional
benefits. The paper delves into the scheduling techniques for SES. While
conventional day-ahead robust optimization algorithms specify ESS power output
for each period, they struggle to adjust schedules due to time-dependent constraints
like renewable energy output and ESS state limitations. To address this, a distributed
SES scheduling method based on optimal operating intervals is proposed. This
method introduces an optimal interval variable for Energy Storage State of
Charge (SOC) into the traditional three-layer optimization problem, effectively
decoupling time-related constraints. Furthermore, a novel Nested Column and
Constraint Generation (Nested C&CG) algorithm is presented to solve the
mathematical model. Lastly, a revenue sharing model grounded in cooperative
game theory is introduced, along with an illustrative example showcasing the
efficacy of the proposed approach in managing uncertainties.
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1 Introduction

In recent years, there has been a growing deployment of Energy Storage Systems (ESS)
across various applications in different tiers of power systems, encompassing enhancements
in reliability, peak-valley electricity price arbitrage, voltage and frequency regulation,
renewable energy integration, and other functionalities (Zahedmanesh et al., 2021; Hou
et al., 2020; Bitaraf and Rahman, 2018). Particularly on the generation-side, the increasing
volatility, intermittency, and uncertainty associated with renewable energy sources have
heightened the demand for flexible resources like ESS (Brouwer et al., 2015; Zeng et al.,
2014; Dai et al., 2021). Despite the evident potential of ESS, their effective utilization
encounters several challenges. Notably, a significant hindrance to widespread adoption is
the considerable upfront investment required. Hence, the emergence of a Shared Energy
Storage (SES) model, grounded in the principles of the sharing economy, is becoming
increasingly pertinent. The SES model, as discussed below, can be categorized into two
distinct setups proposed within this study:
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(1) Independent SES operators providing storage services to
diverse users.

(2) Users owning energy storage systems and engaging in
collective utilization.

For the former model, research (Jo and Park, 2020) introduces
the concept of energy capacity trading and operational games,
alongside a 24-h ahead charging-discharging scheduling scheme
aimed at minimizing energy operation costs. Furthermore, the
advantages of centralized SES operations, particularly in terms of
their cost-effectiveness, are meticulously examined in (Walker and
Kwon, 2021). A pioneering energy trading system designed for
demand-side management within a neighborhood network
involving an SES provider, users with non-dispatchable energy
sources, and an electricity retailer is outlined in (Mediwaththe
et al., 2020). Additionally (Cao et al., 2021), presents an optimal
economic dispatch method for microgrid owner/operators
leveraging SES.

Exploring the latter model, investigations are conducted into
user-owned structures in (Liu et al., 2021). Moreover, a cost-benefit-
based approach to SES planning aimed at reducing electricity
procurement costs for electricity retailers is proposed in (Zhong
et al., 2020a). Furthermore (Zhong et al., 2020b), introduces an
online control strategy for real-time energy management of
distributed ESS, while (He and Zhang, 2021) suggests a double
auction-based mechanism for a community energy sharing market
where all participants possess ESS and engage in demand response
activities.

Although previous studies have largely focused on delivering
single services through SES, such as peak-valley electricity price
arbitrage, renewable energy integration, and frequency regulation,
the necessity for SES to cater to multiple service demands in order to
enhance profitability has become apparent. Notably, limited
attention has been given to the application of SES in the
generation-side context. This paper introduces a novel
application model focusing on the generation side, where
Renewable Energy Power Plants (REPPs) join forces to utilize
energy storage resources for Primary Frequency Regulation
(PFR), penalty cost reduction, and increased earnings through
Secondary Frequency Regulation (SFR) auxiliary services. The
cooperative game involves independent REPPs, and the
coalition’s revenue maximization is achieved through strategic
SES scheduling decisions.

Addressing the uncertainties associated with renewable energy,
this paper proposes a robust day-ahead scheduling approach to
optimize ESS State of Charge (SOC) intervals, thereby decoupling
time-coupled constraints. A novel nested C&CG (Column-and-
Constraint generation) method is employed to address the
proposed min-max-min three-layer optimization model.
Additionally, a profit-sharing scheme grounded in cooperative
game theory ensures financial rewards for all participants.

2 Distributed shared energy storage
application mode

After forming an alliance of shared energy storage in new energy
stations, a cooperative game will be played. As follows:

Pde
i,t � Pre

i,t + Pd
i,t − Pex

i,t − Pc
i,t + Ptr

i,t + Ps
i,t − Pcur

i,t (1)

∑n

i�1P
ex
i,t � ∑n

i�1
Ptr
i,t (2)

where Pde
i,t is the power generation plan reported by the new energy

station i during time t; Pre
i,t is the actual output of the new energy

station i during time t; Pd
i,t and Pex

i,t are the charging and discharging
power of the energy storage system of the new energy station i
during time t, respectively; Pc

i,t is the provide power for the shared
energy storage of the new energy station i during time t; Ptr

i,t is the
inject power for the new energy station i to share energy storage
during time t; Ps

i,t is the shortfall power of the new energy station i
during time t; Pcur

i,t is the abandoned wind or solar power of the new
energy station i during time t.

The basic application of shared energy storage aims to reduce
the cost of deviation assessment or wind/solar power abandonment.
In addition, in the auxiliary service market, shared energy storage
can serve as an independent market entity, utilizing the remaining
capacity to provide primary or secondary frequency modulation
services, thereby improving equipment utilization and energy
storage investment returns. According to the regulations of the
electricity market, the bidding capacity for secondary frequency
regulation will be determined in advance. Therefore, the shared
energy storage cloud platform needs to optimize the day ahead
scheduling plan according to the needs of new energy stations.

2.1 Primary frequency modulation

This study assumes that each REPP is equipped with ESS. As the
REPPs participating in the coalition are not far apart geographically and
the electrical distance is close, the cost of line loss is small and is a certain
value. As theREPPs participating in the coalition, the ESS of REPPs utilize
the SES model. All the ESS of REPPs utilizing SES model is regarded as a
whole. In thismodel, all REPPs utilizing SESmodel canmeet the needs of
primary frequency regulation (PFR), reduce punishment cost, and
improve the information is provided to SES processing platform for
centralized regulation by communication network.

China requires new energy stations to have a primary frequency
regulation function. The droop characteristics of their primary
frequency regulation are as follows:

P �

P0 − 1
δ%

pPN p
f − fup

d

f0
, f>fup

d

P0, flow
d ≤f≤fup

d

P0 − 1
δ%

pPN p
f − flow

d

f0
, f<flow

d

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(3)

fup
d � f0 + Δf (4)

flow
d � f0 − Δf (5)

wherefup
d andflow

d respectively represent the upper and lower limits of
the primary frequency modulation dead zone; F0 is the rated frequency;
Δ F is the dead zone range of primary frequency modulation; PN is the
rated power of the new energy station; δ% Adjust the frequency
difference rate for primary frequency modulation; P0 is the initial
value of the active power of the new energy station; At that
flow
d ≤f≤fup

d time, the system frequency was in the dead zone of
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primary frequency regulation, and the active power of the new energy
station did not need to be changed; At that f>fup

d time, the new
energy station reduced the active power output and conducted a
frequency modulation; At that f<flow

d time, the new energy station
increased active power output for primary frequency regulation.To
illustrate this better, we add a graph.

When fup
d and flow

d are ±0.05 Hz, δ% = 2%, the maximum
power limit is set at 10% of the rated power, PFR droop curve of
REPP is shown in Figure 1.

2.2 Secondary frequency modulation

In the recent optimization stage, shared energy storage can not
only reduce the penalty cost of new energy stations and assume the
obligation of primary frequency regulation, but also participate in
the auxiliary service market, use the remaining capacity to provide
secondary frequency regulation services, thereby improving the
utilization rate of shared energy storage and increasing the
revenue of the new energy station alliance.

The secondary frequency regulation auxiliary service market in this
chapter adopts the rule of compensating for bid winning capacity and
mileage, with the decision variable being the secondary frequency
regulation capacity tendered the day before each time period. Due
to the fact that energy storage is a high-quality frequency modulation
resource, it is assumed that its bidding quantity is the same as the
winning bid quantity. There may be a deviation between the scalar
quantity and the actual charging and discharging power. Deviation is
reflected as a penalty term in the objective function. The secondary
frequency modulation market recently conducted hourly bidding. The
benefits of shared energy storage secondary frequency regulation
include two parts: capacity and mileage benefits:

Rsf � ∑n
i

∑T
t

ccap · Pcap
i,t + cmil · Pmil

i,t

� ∑n
i

∑T
t

ccap + cmil ·m( )Pcap
i,t

(6)

where Rsf represents the shared energy storage secondary frequency
regulation revenue; ccap and cmil are the secondary frequency

regulation capacity and mileage benefit coefficients, respectively;
Pcap
i,t and Pmil

i,t are the declared energy storage capacity andmileage of
the i-th new energy station during time period t, respectively; M is
the mileage benefit coefficient, which is an estimated value. For fast
frequency modulation resources, based on experience, m = 3 can
be taken.

2.3 Shared energy storage scheduling mode

The deviation between actual power generation and predicted
values will result in deviation assessment and penalty costs for
wind and solar curtailment. However, the energy storage SOC
needs to maintain consistency throughout the scheduling cycle to
cope with the scheduling plan for the next cycle, so its output
power has a coupling relationship in time. In addition, due to the
uncertainty of renewable energy and the limitations of energy
storage capacity, the current shared energy storage scheduling
decisions may not be efficient from an all day perspective, leading
to the possibility of insufficient/excess energy storage capacity in
the future, resulting in increased penalty costs. For example, in
the daily scheduling, in order to meet the daily scheduling plan,
the energy storage SOC is close to the maximum value. Due to the
uncertainty of renewable energy output, new energy may
experience a sudden increase in output during the next
scheduling period, and energy storage will not be able to meet
the usage needs of the next scheduling period.

This article proposes a robust scheduling method to obtain the
SOC interval of shared energy storage in the worst-case scenario, in
order to guide the daily operation of shared energy storage. This
scheduling method aims to maximize the benefits of the new energy
station alliance and improve the efficiency of renewable energy
utilization. In the current stage, considering the uncertainty of
renewable energy, determine the optimal SOC range. During the
intraday phase, shared energy storage is optimized and scheduled
within the SOC range based on short-term predictions. In addition,
for real-time auxiliary service requirements, energy storage can be
adjusted arbitrarily within the SOC range to improve economic
efficiency. The proposed shared energy storage scheduling
framework is shown in Figure 2.

3 Robust optimization scheduling
method for min max min three-layer
optimal SOC interval

3.1 Summary

The principle of robust optimization algorithms is to obtain
optimized scheduling strategies in the worst scenario. This chapter
obtains the optimal SOC interval for shared energy storage by
solving the min max min three-layer robust optimization model,
which can also be applied to intraday scheduling problems. The min
max min three-layer optimization problem first takes the optimal
interval of each energy storage SOC as a decision variable in the first
stage, known as the “Here and Now” variable. Based on factors such
as the predicted output of renewable energy, the optimal SOC
interval for energy storage is determined. Solve the max min

FIGURE 1
PFR droop curve of REPP.
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problem in the second stage. In the max problem, simulate the
worst-case scenario of renewable energy output based on the SOC
interval generated in the first stage, attempting to maximize the total
cost. The min problem is based on the decision-making of the max
problem in the first and second stages, to determine the actual
output of shared energy storage in new energy stations, namely the
“Wait and See” variable. The min problem attempts to maximize the
benefits of the alliance. This process simulates the game process
between the output power of new energy stations and the decision-
making of shared energy storage cloud platforms. It is worth noting
that the two-stage model is a unified whole. The SOC interval
generated in the first stage will constrain the min problem in the
second stage, thereby affecting the decision-making of the max
problem in the second stage. Therefore, it is necessary to collaborate
in these two stages to solve the problem. The overall scheduling
framework of the min-max-min three-layer robust optimization
scheduling algorithm considering the optimal SOC interval is shown
in Figure 3.

In real-time scheduling within the day, the obtained energy
storage SOC interval is used as a constraint. Within this range, the
adjustment of energy storage output will no longer incur penalty
costs. Energy storage output can track real-time fluctuations in new
energy and demand generated by frequency regulation, achieving
greater benefits.

3.2 Phase Ι

The decision variable in the first stage is the optimal SOC
operating interval for shared energy storage, which is the upper
and lower bounds of the energy storage SOC for each time
period. The goal of the first stage is to minimize the objective
function of the second stage. The first stage objective
function is:

min
R

max
Z

min
P,o

Cpen + Ctr − Rsale − Rsf (7)

where R is the interval vector of the first stage shared energy storage
SOC. The first stage constraints are as follows:

SOCi,min ≤ SOClow
i,t ≤ SOCup

i,t ≤ SOCi,max (8)
SOClow

i,TT � SOCup
i,TT � SOCi,o (9)

SOCup
i,t − SOClow

i,t−1 ≤
Pi

maxηcΔt
Ei

max (10)

SOCup
i,t−1 − SOClow

i,t ≤
Pi

maxΔt
ηdEi

max (11)

where SOCi,min and SOCi,max are the upper and lower limits of the
energy storage SOC of the i-th new energy station, respectively;
SOClow

i,t−1 and SOCup
i,t−1 are the SOC intervals during the storage

FIGURE 2
Distributed shared energy storage scheduling framework for power generation.
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period t of the i-th new energy station, respectively; SOCi,o is the
initial SOC value of the i-th new energy station’s energy storage; TT
is the final scheduling period; Pmax i and Emax i are the rated power
capacity and rated energy capacity of the i-th new energy station,
respectively; η C and η D represents the efficiency of energy storage
charging and discharging, respectively. The Formulas 5–8 stipulates
that the upper bound of the shared energy storage SOC interval
should be greater than the lower bound, and the energy storage SOC
interval should be between the maximum and minimum SOC
values; The Formula 9 ensures that the energy storage SOC
recovers to its initial SOC value at the end of the scheduling
period; In the Formula 10, it SOCup

i,t − SOClow
i,t−1 refers to the

maximum amount of rechargeable energy that the i-th new
energy station can charge within the SOC interval of time t; In
the Formula 11, SOCup

i,t−1 − SOClow
i,t refers to the maximum amount

of discharge that can be carried out by the i-th new energy station
within the SOC interval of time t.

3.3 Phase Ⅱ

3.3.1 Objective function

max
Z

min
P,o

Cpen + Ctr − Rsale − Rsf

where Z represents the uncertainty set of renewable energy stations;
P is a continuous variable in the second stage; O is a binary 0-
1 variable in the second stage, referring to the charging and
discharging state of energy storage; Cpen is the penalty cost for
the new energy station alliance; Ctr is the cost of line loss; Rsale

represents the sales revenue of the alliance; Rsf represents the revenue
from the alliance’s secondary frequency modulation
auxiliary services.

Cpen � ∑n
i

∑T
t

Ppu
i,t .∂1 + Pcur

i,t · ∂2
+ Pff,pu

i,t

∣∣∣∣∣ ∣∣∣∣∣ · ∂3 + Psf,pu
i,t

∣∣∣∣∣ ∣∣∣∣∣ · ∂4
(12)

Ctr � ∑n
i

∑T
t

πtrP
tr
i,t (13)

Rsale � ∑n
i

∑T
t

πsell
t Pde

i,t − Ppu
i,t( ) (14)

Rsf � ∑n

i
∑T

t
CcapPcap

i,t + CmilPmil
i,t( ) (15)

where Ppu
i,t is the shortfall power of the i-th new energy station during

period t; Pcur
i,t is the wind/solar power curtailed by the i-th new

energy station during time t; Pff,pu
i,t is the primary frequency

regulation power shortfall of the i-th new energy station during
time t period; Psf,pu

i,t is the secondary frequency regulation deficit

FIGURE 3
Three layer robust optimization scheduling algorithm.
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power of the i-th new energy station during time t period; ∂1, ∂2, ∂3,
and ∂4 Respectively represent the corresponding penalty cost
coefficients; Selling electricity prices πsell

t for time period t; πtr is
the cost coefficient of line loss.

3.3.2 Constraint condition

Pre
i,t � Pforecast

re,i,t + zui,tΔP
forecast
re,i,t − zli,tΔP

forecast
re,i,t (16)

zui,t + zli,t ≤ 1 (17)
Pch
i,t − Ptr

i,t � Ppf,c
i,t + Psf,c

i,t + Psu,c
i,t (18)

Pdis
i,t − Pex

i,t � Ppf,d
i,t + Psf,d

i,t + Psu,d
i,t (19)

Ppf,c
i,t − Ppf,d

i,t + Ppf,pu
i,t � Ppf

i,t (20)
Psf,c
i,t − Psf,d

i,t + Psf,pu
i,t � Psf

i,t (21)

SOCi,t+1 � 1 − δe( )SOCi,t + Pch
i,tηcΔt −

Pdis
i,t Δt
ηd

( )Ei
max

(22)

0≤Pch
i,t ≤ ε

c
i,tM (23)

0≤Pdis
i,t ≤ εdi,tM (24)

εci,t + εdi,t ≤ 1 (25)
0≤Pch

i,t , P
dis
i,t ≤Pi

max
(26)

SOCi,min ≤ SOCi,t ≤ SOCi,max (27)
where Pforecast

re,i,t is the predicted power of the i-th new energy station in
time period t; zu,i,t and zl,i,t are binary 0-1 variables that represent the
fluctuation state of new energy output power; ΔPforecast

re,i,t is deviation
value from predicted power; δ E is the self discharge rate of energy
storage; P

pf,c
i,t , P

pf,d
i,t and P

pf,pu
i,t are storage charging and discharging power of

the i-th new energy station during time t; P
sf,c

i,t , P
sf,d
i,t and P

sf,pu
i,t respectively

represent the primary frequency regulation charging, discharging, and
excess power of the i-th new energy station during time t; P

sf,c
i,t , P

sf,d
i,t and

P
sf,pu
i,t respectively represent the secondary frequency regulation charging,

discharging, and excess power of the i-thnew energy station during time
t; P

su,c
i,t and P

su,d
i,t are the charging and discharging power of the i-th new

energy station to reduce penalty costs during time t; Charge εci,t and
discharge status εdi,t of the i-th new energy station during time t.

3.4 Intraday scheduling

After completing the optimization scheduling calculation, the
optimal operating range of the distributed shared energy storage
SOC can be obtained. Therefore, it is only necessary to optimize each
time period. At various time periods during the day, the upper and
lower bounds of energy storage SOC are known quantities, so the
output power of renewable energy in the Formula 1 can also be
measured using actual observations. The energy storage SOC can be
obtained based on the execution situation in the previous period,
which is a known quantity and achieves temporal decoupling.
Therefore, it is unnecessary to consider the minimum deviation
from the day ahead scheduling plan in the intra day scheduling
phase. The output power of distributed shared energy storage can be
flexibly adjusted according to the actual power output of renewable
energy. As long as it is within the optimal SOC range, all constraints
can be met.

4 Solution method

The mathematical model proposed in this chapter can be
abbreviated as follows:

min
R

max
z

min
P,o

AT · P
s.t.CRv ≤ d
F · Rv + Y · P + Q · o + z · T≤ ∂
z ∈ 0, 1{ }, o ∈ 0, 1{ }

where R represents the optimal interval vector of the first stage
distributed shared energy storage SOC; Z is the uncertain set of
renewable energy output power; P is a continuous variable in the
second stage; O is a binary variable in the second stage, referring to
the charging and discharging status of energy storage in each new
energy station; CRv ≤ d Constraints F · Rv + Y · P + Q · o + z · T≤ ∂
include Equations 8–11, constraints include Equations 1–6 and
Equations 12–27. Due to the presence of 0–1 binary variables in
the second stage, the Nested C&CG algorithm is used for solving in
this chapter.

5 Case study

5.1 Case description

This chapter selects actual calculation examples of three renewable
energy stations in a certain area of China, as shown in Figure 4. Among
them, Station 1 is a photovoltaic power station, and Stations 2 and 3 are
wind power stations. The scheduling period is 1 h. In the calculation
example, the primary frequency regulation demand is calculated based
on the actual frequency variation curve of the local power grid through
droop characteristics. The dead zone of the primary frequency
regulation is set to ± 0.02 Hz, and the rated frequency is 50 Hz.
The declaration of secondary frequency modulation is in hours. The
daily declared capacity of secondary frequency regulation is predicted
based on historical data. The energy storage parameters are shown in
Table 1. The online prices of new energy stations are shown in Table 2
(Zhang et al., 2015). πtr is 0.1 $/kWh, πpu is 1.5 times the real-time grid
electricity price (Zhang et al., 2015), ccap is 10 $/MW, and cmil is 8
$/MWh. Other basic data can be found in (Available at).

5.1.1 Results analysis
After calculation, the SOC range of distributed shared energy

storage at various new energy stations in the worst-case scenario is
shown in Figure 5. The worst-case scenario is shown in Figure 6. The
output power of distributed shared energy storage is shown in
Figure 7. The various costs of optimizing scheduling recently are
shown in Table 3. The benefits of new energy station alliances with
different sets are shown in Table 4. The results of income
distribution using the Shapley value method are shown in Table 5.

5.2 Comparison with unshared energy
storage mode

When the combination of members in the collection is {1}, {2},
{3}, each alliance has only one participant, that is, the shared energy
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FIGURE 4
Structural diagram of three renewable energy stations.

TABLE 1 Distributed shared energy storage parameters.

Parameter New energy station 1 New energy station 2 New energy station 3

Energy capacity (MWh) Forty Fifty Sixty

Power capacity (MW) One hundred and fifty One hundred and sixty One hundred and eighty

SOCmin SOCmax 0.2–0.9

SOC0 Zero point five

η C, η D Zero point nine

TABLE 2 Online electricity prices of new energy stations.

Time interval Time Electricity price ($/kWh)

Valley period 00:00–06:00 Zero point two seven two

Peak hours 10: 00–15:00 19:00–21:00 Zero point seven nine five

Regular period 07:00–09:00, 16:00–18:00, 22:00–23:00 Zero point five three four

FIGURE 5
SOC range of new energy station energy storage in the worst scenario.
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storage mode changes to the unshared energy storage mode model.
Alliance participants can only rely on their own energy storage
equipment and optimize their own energy storage configuration to
reduce deviation assessment costs and waste wind/solar costs,
achieving maximum self benefits.

In this situation, compared to self built energy storage, adopting a
shared energy storage model generates additional benefits. The total
revenue of each alliance increased by 1.23%. The revenue of New
Energy Station 1 increased by 33,889 $. The revenue of New Energy

Station 2 increased by 7,180 $. The revenue of New Energy Station
3 increased by 7,095 $. The results verified the group rationality and
individual rationality under the cooperative game model.

Comparison with traditional intraday rolling optimization
algorithms.

Set the intra day rolling optimization algorithm as scenario 2, as
shown in Figures 8.

First of all, make a day ahead scheduling plan based on the
predicted output of renewable energy. The intraday scheduling stage
assumes that it can be obtained from the current time period to the
future τ The accurate value of renewable energy output power for each
time period, while the predicted values are still used for the remaining
time periods, as shown in the prediction domain in Figures 6.
Considering time coupling constraints, with the objective function of
minimizing cost, an optimization calculation is performed for each

FIGURE 6
Worst scenario of new energy stations.

FIGURE 7
Distributed shared energy storage output power.

TABLE 3 Results of recent optimized scheduling.

Project Cost or benefit ($)

Total revenue of the alliance 4,131,763

Secondary frequency modulation revenue 9,310

Electricity sales revenue 4,269,585

Penalty costs 140,748

Line loss cost 6,384

TABLE 4 Benefits of different collective new energy station alliances under
shared energy storage mode.

Number Aggregate Revenue ($)

one {1} 1,348,680

two {2} 1,332,924

three {3} 1,399,843

four {1,2} 2,730,223

five {1,3} 2,969,444

six {2,3} 2.733.559

seven {1,2,3} 4,131,763
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scheduling cycle, and only the current time period strategy, i.e. the
control domain time period, is executed until the scheduling cycle ends.
And further useMonte Carlo simulationmethod to generate renewable
energy output for optimization calculation, and change the forward-
looking parameters in the intraday rolling optimization algorithm τ。
The results are shown in Table 6.

It can be seen that with the prospective parameters τ The total
revenue of rolling optimization within the day gradually increases
with the increase of. This is because the more renewable energy
output information is obtained, the less uncertainty in the
subsequent period, the less impact it has on the scheduling plan,
and the lower the cost of deviation penalty. τ It has a significant
impact on the performance of intra day rolling optimization. The
comparison results show that when τ = At 4 o’clock, its total revenue

is slightly higher than Scenario 1, but in reality, it is difficult to
accurately predict the renewable energy output power within 4 h.

The results indicate that although the scheduling method in
Scenario 1 can only be based on the output of renewable energy in
the current stage, compared with the method in Scenario 2, it lacks
accurate prediction information for the output power of new energy
stations in subsequent periods. Therefore, its scheduling method has
more uncertain factors, but the total revenue is higher than that in
Scenario 2. On the one hand, since Scenario 1 considers the worst
scenario through robust optimization in the day ahead scheduling,
the SOC optimal operation interval obtained has a stronger ability to
deal with uncertainty. On the other hand, the scheduling method in
Scenario 2 must track the previous day’s scheduling plan to meet
time coupling constraints, resulting in limited adjustment intervals

TABLE 5 Distribution results of alliance benefits.

New energy station 1 New energy station 2 New energy station 3

Revenue ($) 1,382,569 1,340,105 1,406,939

FIGURE 8
Framework of rolling optimization algorithm within a day.

TABLE 6 Different τ Value optimization calculation results.

τ = 1 τ = 2 τ = 3 τ = 4

Total revenue of the alliance ($) 3,953,662 3,973,608 4,083,506 4,132,403

Secondary frequency modulation revenue ($) 9,310 9,310 9,310 9,310

Electricity sales revenue ($) 4,162,878 4,163,994 4,233,994 4,270,994

Punishment cost ($) 212,442 193,563 153,563 141,563

Line loss cost ($) 6,084 6,133 6,235 6,338
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for energy storage. Scenario 1, after optimization, obtains the SOC
operating range, which is no longer constrained by time coupling
and can be adjusted arbitrarily within the range. Therefore, shared
energy storage has greater flexibility, and the charging and
discharging behavior of energy storage can be decided based on
the real-time output of new energy and the real-time demand of the
auxiliary service market, thereby obtaining more profits. This also
indicates the economic viability of the scheduling method proposed
in this article.

6 Conclusion

Considering the uncertainty of renewable energy, this chapter
proposes an optimization scheduling method for distributed shared
energy storage on the generation side based on the optimal SOC
interval, decoupling the coupling constraints of energy storage time.
And propose a mode of shared energy storage to participate in
multiple auxiliary services, that is, to use idle capacity to participate
in frequency regulation auxiliary services on the basis of reducing
deviation assessment costs. To solve the min max min problem with
binary variables in the second stage, the nested C&CG method is
used for solving, and the Shapley value method is applied to develop
a reasonable profit distribution plan. The specific conclusion is
as follows:

(1) The distributed shared energy storage model can effectively
improve the benefits of participants in the new energy
station alliance.

(2) Considering the coupling relationship between the output
power and time of energy storage during the scheduling cycle,
in order to cope with the uncertainty of new energy, this
chapter proposes an optimization scheduling method for
distributed shared energy storage on the generation side
based on the optimal SOC interval. The method used in
this chapter is not limited by time coupling constraints and
does not need to track the day ahead scheduling plan, so it has
high flexibility and can further play the advantages of energy
storage in the ancillary service market.

(3) The Shapley value method is used to allocate the benefits of
the alliance, which satisfies both individual rationality and
overall rationality, and is an effective method for
distributing benefits.
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