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With the increasing penetration of electric vehicles (EVs) in road traffic, the spatial
and temporal stochasticity of the travel pattern and charging demand of EVs as a
mode of transportation and an electrical load have generated different degrees of
congestion impacts on both the power grid and the transportation network.
Based on this, this paper proposes a power–transportation-coupled distribution
network optimization strategy based on stochastic user traffic equilibrium theory.
First, a stochastic user equilibrium-mixed traffic flow allocation model that
expresses user non-completely rational path selection behavior is established,
and the traffic flow equilibrium solution is obtained using an improved method of
successive algorithm and mapped to charging loads. Second, a distribution
network power flow optimization model under the coupled
power–transportation architecture is established to optimize the operation
state of the distribution network by combining distributed resources such as
energy storage, demand response loads, wind power, photovoltaic, and gas
turbines.
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1 Introduction

With the implementation of China’s new energy vehicle development strategy, China’s
electric vehicle market scale continues to expand; in 2023, China’s new energy vehicle
production and sales were 9.587 million units and 9.495 million units, respectively, with a
year-on-year growth of 35.8% and 37.9%, and the new energy vehicle market penetration
rate reached 31.6%, which is 5.9% points higher than that in 2022. Production and sales
have ranked first in the world for 9 consecutive years, accounting for more than 60% of
global sales. By the end of 2023, China’s new energy vehicle ownership of 20.41 million
accounted for 6.07% of the total number of vehicles (PRC National Development and
Reform Commission, 2024). The popularity of electric vehicles (EVs) in people’s daily life is
getting higher and higher. Electric vehicles have the dual identity of transportation and
electric load, and the increasing number of electric vehicles makes the coupling relationship
between the road network and the power distribution network deeper and deeper. First, the
spatiotemporal disordered access of a large number of electric vehicle charging loads to the
distribution network and conventional loads superimposed will result in the superposition
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of the total peak load of the distribution network, resulting in
increased load fluctuations within the grid, aggravating the
pressure on the grid supply of electricity (Veldman and
Verzijlbergh, 2015). Second, the distribution of charging stations
on the road network and the charging capacity will affect the user
travel behavior. If the electric vehicle users need to charge and
choose the road with more traffic, it will lead to an unbalanced
distribution of traffic on the road network, resulting in an increase in
the cost of time to pass in the road network (Wei et al., 2018). In
addition, a large number of electric vehicles with charging needs are
concentrated in a charging station waiting for charging response due
to the capacity limitations to the charging station, resulting in
queuing and congestion, which not only brings bad service
experience to the user but also aggravates the burden of the
power distribution node of the charging station. In this context,
the coupled electric power–transportation system has been the
subject of extensive scholarly attention and research.

In recent years, many studies have been conducted on the
cooperative optimization of the two networks under power-
transportation coupling. HE et al. (2013) explored the use of
wireless power transmission technology to achieve integrated
pricing transmission technology for electricity and roads. WEI
et al. (2017) optimized the traffic distribution in electric traffic
coupling networks by charging congestion fees on electrified
roads by independent operators with the aim of minimizing
social costs. Zhang Hengrong et al. (2024) identified the location
and scale of electric vehicle fast charging stations, distributed
photovoltaic generation, and renewable power supply through
multi-objective integer planning to increase electric vehicle
adoption and reduce emissions caused by transportation and
power systems. Considering the fact that power and
transportation systems often operate independently in reality,
many papers have introduced distributed solving algorithms,
such as the pairwise solution (ALIZADEH et al., 2017),
alternating direction multiplier method (GENG et al., 2019),
optimality condition solution (ZHOU et al., 2020a), and Benders
solution (SUN et al., 2019), to protect the privacy of the data on both
sides of the network. XIE et al. (2023a) studied the optimization of
distributed coefficients for multi-district power–transportation
coupling networks. In the coupled power–transportation system,
the traffic distribution model established in the current mainstream
literature mainly consists of macroscopic network characteristics at
the physical level and microscopic user decision-making
characteristics at the social level, which can be classified into
static, semi-dynamic, and dynamic models according to the
network characteristics. Dynamic models are used for the time
scales of 15 min, semi-dynamic models are used for the time
scales of 15–90 min, and static models are used for the time
scales of more than 90 min. According to the decision-making
characteristics of the user, it can be divided into user equilibrium
(UE) and system optimization (SO). UE describes that the costs on
all the paths actually used are equal and smaller than the costs borne
by individual vehicles on any unused paths, and SO describes that all
the vehicles show cooperative behaviors in choosing the routes, and
the costs of the whole transportation system are minimized. Yan
et al. (2022) summarized the various types of traffic models with the
integration of the two characteristics. Shiwei et al. (2024) adopted
the static traffic model to establish a two-layer game model of the

power–transportation network considering demand elasticity and
adopted the proposed variational inequality to solve the problem.
ZHOU et al. (2020b), in the study of the power–transportation
multi-time period collaborative pricing problem, used the semi-
dynamic model to describe the traffic propagation between adjacent
time periods, and the traffic propagation residual flow effect was
transformed into a part of the objective function to form a convex
optimization for solving. XIE et al. (2022) introduced a two-way
wave model and a point queue model to describe the dynamic
charging and queuing process in a charging station, established a
traffic model with dynamic equilibrium for mixed users, and solved
it based on a dynamic network loading algorithm.

Currently, the research on the optimization of the coupled
operation of two networks is mainly based on the principle of
user equilibrium. The user equilibrium criterion starts from the
assumption of individual rational self-interested decision-making
that “each vehicle aims to minimize its own travel costs.” Eventually,
the traffic flow in the network will reach an equilibrium state, and
the result of traffic allocation can be expressed as Wardrop’s first
law: for each origin–destination (OD) pair, the access cost on all the
paths (with traffic flow greater than 0) that it actually uses is equal,
and it is smaller than the access cost on any unused path (with traffic
flow equal to 0). Most researchers consider two networks managed
by the same central system based on the principle of user
equilibrium and establish an optimization model to minimize the
total social cost by sharing the data. WEI et al. (2017) developed a
mixed-integer, second-order conic power distribution network
optimization model under traffic–user equilibrium by setting a
road congestion charge to the users and minimizing the
operating costs of the two networks as the objective function. LV
et al. (2021) established a cooperative demand response model for
electricity transportation based on user equilibrium to improve
dual-grid congestion by considering multi-travel time slot choices
of users and incorporating the flexible load scheduling decisions of
the aggregator. ZHOU et al. (2020a) and XIE et al. (2023b)
demonstrated from different perspectives, such as optimality
condition decomposition and variational inequality, that under
the mechanism of the distributed interaction of power and
transportation through node marginal tariffs, the operation of the
two networks can naturally reach the state of minimizing the
operating cost of the power grid and the cost of
transportation access.

However, the principle of conventional UE only considers the
user rational choice of paths based on time cost, but in reality, users
cannot accurately make rational judgments on path selection. Only a
few studies have introduced stochastic user equilibrium (SUE) into
the study of power–transportation coupling, and ZHOU et al. (2021)
analyzed the characteristics of this stochastic user equilibrium from
the perspective of a potential game. Qiu et al. (2021) introduced the
stochastic user equilibriummodel into the charging station planning
problem. In addition, the coupled electric power–transportation
system still has the uncertainty of the physical link and the
perceptual decision-making of the user, and with the increase in
the penetration rate of electric vehicles and the proportion of
wind–scenery allocation, the distribution grid still needs to be
optimized using other flexibility resources to optimize and adjust
the power distribution network to solve the ensuing voltage
overruns, load fluctuations, and a series of other problems and to
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ensure the safe and stable operation of the distribution network. In
the problem of uncertainty in the physical link, there are related
research studies working from stochastic optimization. Leng et al.
(2023) proposed a stochastic planning method for the coordinated
operation of distributed energy sources in an unbalanced active
distribution network, which effectively reduces the system cost and
achieves the synergistic optimization of active and reactive power. Li
et al. (2021) proposed a risk-averse approach for the deployment of a
residential multi-energy microgrid HES, which uses a multilevel self-
adaptive stochastic optimizationmethod, which effectively improves
the system equivalent daily profit and is more immune to
uncertainty. Li et al. (2022) discussed a coordinated two-layer
operation scheme for multi-energy building microgrids with
integrated uncertainty sources and established a stochastically
weighted robust optimization two-layer model of multi-energy
building microgrids that considers the actual thermal load and
battery degradation, obtaining economical operating instructions,
high computational performance, and uncertainty immunity. In
summary, the contributions of this paper are described below:

1 In order to better describe the irrational choice behavior of EV
users with charging demand for paths in the transportation
system, this paper introduces the random utility theory based
on the user equilibrium model (Sheffi and Powell, 1982), which
assumes that users are finite rationality when choosing paths
and charging stations, so that the probability of users’ choosing
charging stations and paths follows some kind of distribution,
which reflects the bias due to the perception of the information
on the road network, which, in turn, leads to the fact that users
do not necessarily always choose the path with the lowest access
cost, which is more in line with realistic driving needs (Huang
and Bell, 1998; Maher, 1998; Du et al., 2019).

2 In order to optimize the distribution network node overload
and voltage overrun due to the increase in EV penetration and
photovoltaic (PV) ratio in the coupled power–transportation
network, this paper introduces a dynamic time-of-use tariff
system in the coupled power–transportation system and
optimizes the scheduling of the distribution network by
considering flexibility resources such as energy storage,
demand response loads, wind, PV, and gas turbines, and the
two networks are coupled through charging stations and
improve the operation status of the two networks by
proposing the interaction of charging costs and path costs.

2 Optimization architecture for
power–transportation coupled
distribution grids based on stochastic
user effects

Unlike other energy networks, EVs, as the main body of the
transportation network, are not physical devices that can be directly
dispatched but are controlled by the travel behaviors of individual EV
users. Therefore, the traffic flow and charging loads in the coupled
power–transportation network are usually determined by the micro-
behaviors and charging decisions of a large number of EVusers under the
influence of external information, and due to the complex socialization
characteristics embedded in them, to exploit its flexibility, multiple units

such as transportation departments, power grid companies, and charging
operators must be united to optimize the interaction of EV users and
their other grid devices through information systems.

In order to facilitate the management and data sharing and, at the
same time, protect the data privacy of various departments and users,
this paper assumes the existence of a non-profit government
organization through the optimal results of the model solution to the
two networks to issue scheduling instructions to achieve the macro-
control of the entire system. The coupled power–transportation system
is coupled through charging stations, and the optimal road traffic flow
distribution and charging load distribution are first found through a
traffic equilibriummodel under the interaction of charging cost and path
cost. Then, the dynamic time-sharing tariff is set according to the load
state of the distribution network to establish an optimization model to
adjust the optimal generator output and flexibility resource response.
Eventually, under the interactive regulation of the two networks, the
operation status of the two networks reaches the optimal state, as shown
in Figure 1.

3 Stochastic user-equilibrium traffic-
flow assignment model

In order to analyze the macroscopic spatiotemporal distribution of
traffic flow and charging load, the OD pair analysis is used to aggregate
the travel-charging demand of vehicles departing from and arriving at
similar regions in the same time period into the same OD pair, and the
distribution of traffic flow and charging load in the network is finally
obtained based on the path selection of the OD pair group. In order to
estimate the traffic demandmore accurately, this paper adopts the great
likelihood estimation method for OD matrix estimation.

First, the average travel speed data provided by the car navigation
system can be used to obtain the road section traffic flow by using the
road section travel time function, which is a function that describes the
relationship between the road section traffic flow and the road section
travel time. The road section traffic flow can be derived by taking the
inverse function of the road section travel time function through the
road section travel time query API provided by the navigation software
company. However, the road section traffic flow does not accurately
reflect the traffic demand, so this method uses the great likelihood
estimation to estimate theODmatrix. The basic idea of themethod is to
find anOD distribution that maximizes the probability of observing the
corresponding traffic flow samples. The formula is shown in Equation 1
(Feng et al., 2023):

max L O, P( ) � −N
2
log 2π( ) − N

2
log AΛA′

∣∣∣∣∣∣∣∣( )
− 1
2
∑K
k�1

tr k( ) − AP′O( )′ AΛA′( )−1 tr k( ) − AP′O( ),
(1)

where P is the path selection probability matrix, the path is the
set of road segments connecting the starting and ending points, O is
the one-dimensional OD vector obtained by transforming the OD
matrix, tr is the traffic flow vector, Λ is the diagonal matrix with
diagonal elements P’O, and A is the path-road segment correlation
matrix, andAij = 1 if the road segment i is a part of the path j.N is the
number of samples, K is the set of paths, and k denotes the path.
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The OD matrix can be obtained by obtaining the traffic flow with
maximum probability, and then, the Markov Monte Carlo method
(Feng et al., 2023) is used to simulate the behavior of EVs to determine
the number of EVs choosing charging at different time intervals. The
Monte Carlo sampling of the departure time, travel time, and departure
SOC of each EV is carried out, and the state and state transfer probability
of each EV in each time interval are obtained by simulation. The number
of EVs with fast charging needs is derived fromEquation 2, and the path
selection and traffic flow distribution of these EVs on different paths and
different charging stations can be solved based on the stochastic user-
equilibrium traffic flow model developed later.

qodt � Nod,tpz,t, (2)

where qodt is the number of EVs with fast charging demand from
o to d in time period t,Nod,t is the total number of EVs from o to d in
time period t, and pz,t denotes the transfer probability from the
driving state to the fast charging state under time period t.

To establish a traffic flow distribution model, first, the topology of
the traffic network is defined and represented by G = [N,A], where N is
the node set of the traffic network, N = Nr∩Nc, Nr is the regular road
node, andNc is the road node containing charging stations; A is the line
set, which represents the road sections in the actual traffic. Virtual road
sections are introduced on the basis of the traffic network, and the

virtual road section impedance function is established to describe the
charging queuing behavior of the charging stations. On the basis of the
traffic network, a virtual road section is introduced, and a “virtual road
section impedance function” is established to describe the charging
queuing behavior of charging stations, A = Ar∩Ac, Ar is the road
section without charging stations, and Ac is the virtual road section
describing the charging stations. The set of paths contained in a certain
OD pair is Kod; the road section impedance function is calculated by
using a function of the Bureau of Public Roads as shown in Equation 3,
and the virtual roadway section is described using a Davidson function
developed based on queuing theory:

τa,t xa,t( ) � τ0a 1 + α
xa,t

ca
( )β⎡⎣ ⎤⎦ ∀a ∈ Ar

τ0a 1 + R
xa,t

cn − xa,t
( )[ ] ∀a ∈ Ac

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (3)

where xa,t and ca are the traffic flow and roadway capacity of
roadway section a at time t, respectively; τa,t and τ0t are the roadway
travel time function and the free-flow travel time of roadway section a,
respectively; α and β are the impedance coefficients of the corresponding
roadway sections, taken as α= 0.15 and β= 4.R is the shape parameter of
the function; and cn is the limiting capacity of the charging station n.

FIGURE 1
Power–transportation coupling optimization system architecture.
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In the traffic flow distribution model, Equations 4–6 need to
be satisfied:

∑
k∈Kod

fod
k,t � qodt ,∀ o, d( ), (4)

xa,t � ∑
o,d( )

∑
k∈Kod

fod
k,tδ

od
ak,∀a, (5)

codk,t � ∑
a∈A

τa,t xa,t( )δodak,∀k,∀ o, d( ), (6)

where fod
k,t is the traffic flow of path k between the starting point

o and the ending point d in time period t. δodak is the path-segment
association matrix. δodak = 1 when the segment a is on path k;
otherwise, δodak = 0. codk,t is the time cost of traveling the kth path
at time period t.

All road travelers in a transportation network have stochastic path
selection behavior, i.e., they always try to find the path with the smallest
travel cost to travel, but the travel cost of each path is usually not
accurately estimated due to the influence of individual finite rational
behavior. Thus, the stochastic user equilibrium model refers to the
assumption that “all traffic in the network will eventually reach
equilibrium under the assumption of individual imperfectly rational
self-interested decision-making, where each vehicle aims tominimize its
own perceived travel costs.” This method uses a Logit-based random
utility model to determine the probability of a user choosing a travel
path. The probability of path k at time period t is shown in Equation 7:

Pod
k,t �

exp −θcodk,t( )
∑

k∈Kod

exp −θcodk,t( ), (7)

where Pod
k,t is the probability that the user chooses path k from o

to d; θ reflects the user’s familiarity with the traffic road network
information, and when θ tends to be 0, it means that the user is
completely unfamiliar with the road network condition. As θ

increases, the user’s familiarity with the road network increases.
It has been proved that the traffic flow model with stochastic

user equilibrium belongs to a nonlinear complementary problem
(Beckmann et al., 1956) (Sheffi, 1985), which can be transformed
into a convex optimization model according to the
Karush–Kuhn–Tucker condition as shown in Equation 8:

min
t

−{ ∑
a

∫xa

0
ta x( )dx +∑

od

qodSod τod t( )( )
Sod τod t( )( ) � −1

θ
ln∑

k

exp −θτodk{ } � E min
k

~τodk[ ] , (8)

where Sod is the minimum expected travel cost between
OD pairs.

Since the above objective function and the pavement impedance
function in the constraints are nonlinear, solving their optimization
problems using common commercial solvers requires segmental
linearization, but this introduces a large number of new variables,
leading to an increase in the efficiency and difficulty of the solution.
This method adopts the improved method of successive algorithm
(MSA) for the stochastic user equilibrium of semi-dynamic traffic
model solving. The main idea of this method is to average a series of
auxiliary points in the iterative process, where each iteration point is
obtained by solving the auxiliary planning problem, which, in turn,
is based on the auxiliary of the previous iterative process. The

advantage is that in the process of each iteration, there is no
need to solve the linear search problem, and the iteration step is
pre-determined, so the MSA is simple and commonly used in the
field of transportation research to solve the stochastic user
equilibrium model.

4 Distribution network model under
coupled power–transportation

Bymeans of charging stations in the coupled power–transportation
network, EVs realize the conversion of traffic flows to charging loads
based on the traffic flow distribution model given in Section 3. The
overall process structure is shown in Figure 2. Affected by the spatial
distance, each charging station is powered by the nearest distribution
node, thus coupling the transportation node and the distribution node
and mapping to the node charging load through the traffic flow and
then to the node charging load. Its linear mapping relationship can be
expressed as shown in Equation 9:

Pcs
j,t � γEBxa,t ∀n ∈ Nc, (9)

where Pcs
j,t is the charging power of node j at time t, γ is the charging

coefficient, and EB is the battery capacity of the electric vehicle;
The load power PD

j,t at each node of the distribution network can
be expressed as shown in Equation 10

PD
j,t �

pD
j,t ∀n ∈ N+/Ncs}{

pD
j,t + pcs

j,t ∀n ∈ Ncs
{ , (10)

where PD
j,t is the fixed load of node j; N+ is all nodes of the

distribution network except the balancing node.
The tidal current constraint is the most fundamental constraint

for active distribution networks. Conventional tidal equations are
nonlinear nonconvex equational constraints that contain delta
functions in addition to product terms, as shown in Equation 11:

Pi � Vi∑n
j�1
Vj Gij cos θij + Bij sin θij( )

Qi � Vi∑n
j�1
Vj Gij sin θij − Bij cos θij( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
, (11)

where Vi and Vj are the voltage amplitudes of node i and node j,
respectively; Pi and Qi are the active and reactive power injected at
node i, respectively; n denotes all the branches connected to i; Gij and
Bij are the real and imaginary parts of the elements of the ith and jth
rows and columns of the node conductance matrix, respectively; and
θij is the difference in the phase angle of the voltages at nodes i and j.
The distribution network current model in this paper uses the
DistFlow current model, as shown in Equation 12:

∑
i∈u j( )

Pij,t − rij
P2
ij,t + Q2

ij,t

U2
i,t

( ) � ∑
k∈v j( )

Pjk,t + Pj,t

∑
i∈u j( )

Qij,t − xij

P2
ij,t + Q2

ij,t

U2
i,t

( ) � ∑
k∈v j( )

Qjk,t + Qj,t

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
, (12)

where Pij,t denotes the active and reactive power flowing into the first
end of line ij at time t; rij and xij are the resistance and reactance of
line ij, respectively; Pjk,t and Qjk,t denote the active and reactive
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power flowing out of node j at time t, respectively; the left side of the
equation denotes the sum of power injected into node j; and the right
side of the equation denotes the sum of power flowing out of node j.
Pj,t and Qj,t are the node injected power, which contains the injected
power of interruptible loads, gas turbine, distributed PV, wind
turbines, energy storage, and loads, and the loads contain
conventional and charging loads, as shown in the previous
section. It is shown in Equation 13:

Pj,t � PMT
j,t + PPV

j,t + PWT
j,t + PCS

j,t + ΔPind
j,t + PESS,D

j,t − PESS,C
j,t − PD

j,t

Qj,t � QMT
j,t + QPV

j,t + QWT
j,t − QD

j,t

{ ,

(13)
where PESS,D

j,t and PESS,C
j,t denote the discharging and charging power

of the energy storage of the access junction j, respectively; ΔPind
j,t

denotes the shifted load of the demand response of access node j;
PMT
j,t and QMT

j,t denote the active and reactive power injected into the
gas turbine at node j, respectively; PPV

j,t and QPV
j,t denote the PV

injected power of the access junction j, respectively; PWT
j,t and QWT

j,t

denote the wind turbine injected power at access node j, respectively;
The voltage–current equation for the branch ij is constrained as

shown in Equation 14:

U2
j,t � U2

i,t − 2 rijPij,t + xijQij,t( ) + r2ij + x2
ij( )P2

ij,t + Q2
ij,t

U2
i,t

I2ij,t �
P2
ij,t + Q2

ij,t

U2
i,t

, (14)

where Uj,t and Iij,t are the amplitude of the voltage at node j and the
current at branch ij, respectively. Among the above constraints, the
power flow constraint is a quadratic equality form and does not belong
to the solution category of convex optimization. To this end, this
chapter uses second-order cone programming (SOCP) to convexly
relax the power flow equality constraints, so that the abovemodel can be
solved in polynomial time, as shown in Equation 15:

Uj,t � U2
j,t

~Iij,t � I2ij,t

⎧⎪⎨⎪⎩
~Iij,t ≥

P2
ij,t + Q2

ij,t

Ui,t
0

2Pij,t

2Qij,t

~Iij,t − Ui,t

���������������

���������������
2

≤ ~Iij,t + Ui,t

. (15)

In summary, the power balance equation constraints and
voltage–current constraints can be converted as shown in
Equation 16:

∑
i∈u j( )

Pij,t − rij~Iij,t( ) � ∑
k∈] j( )

Pjk,t + Pj,t

∑
i∈u j( )

Qij,t − xij
~Iij,t( ) � ∑

k∈] j( )
Qjk,t + Qj,t

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Uj,t � Ui,t − 2 rijPij,t + xijQij,t( ) + r2ij + x2

ij( )~Iij,t
U 2

min ≤Uj,t ≤U 2
max

0≤ ~Iij,t ≤ I 2
max

{
, (16)

The MSA framework is as follows

Step 1. Initialization: obtain the OD matrix of each time period, the initialization time and the number of iterations t = 1 and n = 1;
Step 2. Initialize the path flow: the equilibrium solution of the previous time period is used as the initial flow of the path in that time period;

f(t) � f(t − 1)
Step 3. Obtain the traffic flow of road sections based on the path–road section relationship matrix and traverse to calculate the cost of all path passages;
Step 4. Stochastic traffic allocation: allocate traffic flow based on the logit model to obtain an auxiliary path flow;

f(n)
new,t � f(n)

k,t × P(n)
k,t

Step 5. Update the roadway flow using an iterative weighting method:
f(n+1)
k,t � f(n)

k,t + 1
n (f(n)

new,t − f(n)
k,t )

Step 6. Convergence test: if the following equation is satisfied, thenmake t = t+1 return to step 2 to iteratively calculate the equilibrium solution for the next time period; if not, then
the other n = n+1 return to step 3 to continue to iteratively calculate the equilibrium solution for the time period, and ε > 0 is the preset convergence parameter of the iteration;

|f(n+1)
k,t − f(n)

k,t |≤ ε
Step 7. Determine whether the solution for all time periods is completed, and output the traffic flow equilibrium solution for each time period

FIGURE 2
Charging load calculation process.
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where Umin and Umax indicate the minimum and maximum values
allowed for the node voltage in the operation, respectively; Imax

denotes the line current in the operation of the maximum
value allowed.

The output of the gas turbine should satisfy a number of
constraints, and it should not exceed its allowable range during
operation. Climbing constraints should also be considered. It is
shown as shown in Equation 17:

0≤PMT
j,t ≤PMT

max

0≤QMT
j,t ≤QMT

max

−λdΔt≤PMT
j,t − PMT

j,t−1 ≤ λ
uΔt

, (17)

where PMT
max and QMT

max are the upper-limit values of the active and
reactive power output of the gas turbine, respectively; and λu and λd

are the maximum climb rate and maximum slip rate of the gas
turbine, respectively. Δt is the system scheduling period.

The energy storage output should not only satisfy the upper and
lower limits of its power output but also satisfy the constraints of
capacity and state of charge in order to minimize the damage of deep
charging and discharging of energy storage to the battery life. It is
shown as shown in Equation 18:

0≤PESS,C
j,t ≤ ζESS,Cj,t P ESS,C

max

0≤PESS,D
j,t ≤ ζESS,Dj,t P ESS,D

max

ζESS,Cj,t + ζESS,Dj,t ≤ 1

E SOC
maxE

SOC
j,t−1 + PESS,C

j,t ηcΔt − PESS,D
j,t−1,max

ηD
Δt � E SOC

maxE
SOC
j,t

SOCmin ≤ESOC ≤ SOCmax

ESOC
j,0 � ESOC

j,24

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

, (18)

where PESS,C
max and PESS,D

max are the maximum values of the charging and
discharging power of the energy storage, respectively; ζESS,Cj,t and
ζESS,Dj,t are the state variables of charging and discharging of the
energy storage, respectively, which are 0 or 1 logic variables to ensure
that the energy storage cannot be charged and discharged at the
same time; ESOC

j,t is the storage power of the energy storage, and ESOC
max

is the maximum value of the storage power; ηC and ηD are the
charging and discharging efficiencies of the energy storage,
respectively; and SOCmin and SOCmax are the minimum and
maximum values of the storage charge state, respectively.

PV and wind power outputs need to meet the constraints
constraints of Equation 19:

0≤PPV
j,t ≤P

PV
max

0≤PWT
j,t ≤PWT

max

0≤QPV
i,t ≤Q PV

max

0≤QWT
i,t ≤QWT

max

P PV
max( )2 + Q PV

max( )2 � S PV
max( )2

PWT
max( )2 + QWT

max( )2 � SWT
max( )2

, (19)

where PPV
j,t and Q

PV
i,t are the active and reactive power emitted by the

PV, respectively; PWT
j,t and QWT

i,t are the active and reactive power
emitted by the wind power generation, respectively; and SPVmax and
SWT
max are the maximum installed capacity of the PV and wind
turbine, respectively.

Demand response load refers to a type of electric load that can be
adjusted to the needs of the system. It is a flexible load that can be
adjusted to the needs of the power system in order to better match
the balance between supply and demand. Demand response loads
play an important role in improving power system reliability,
reducing energy costs, and promoting the use of renewable
energy. This paper adopts an incentive-based demand-response
load model, which mainly considers the participation of
interruptible loads in scheduling, and its purpose is to selectively
cut off all or part of the interruptible loads when the power system
relying on the ramping capacity of various types of power supply
units fails to satisfy the demand for peak shifting so as to guarantee
the balance between the active power supply and demand of the
system. The interruptible contract signed in advance between the
power supply company and the relevant load users is the realization
of interruptible load participation in scheduling, and when the load
is interrupted, this part of the users can obtain certain economic
compensation. The operation of the demand response load needs to
satisfy the constraints as in Equation 20:

∑T
t�1
Pind
1,t � ∑T

t�1
Pind
0,t

Pind
in,min#Pind

in,t#Pind
in,max

Pind
out,min#Pind

out,t#Pind
out,max

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (20)

where T is the scheduling period, Pind
1,t and Pind

0,t are the total amount
of load before and after the demand response, respectively; Pind

in,max,
Pind
in,min, P

ind
out,max, and P

ind
out,min are the maximum andminimum values

of the load transferred in and out of the load in the demand
response, respectively.

Based on the power–transportation coupling architecture, in
order to ensure the reliable operation of the distribution network,
optimize the distribution network node load distribution, and
channel the distribution network node load congestion problem
caused by the uncontrolled charging of EVs, the objective function is
established as shown in Equation 21:

minF � ∑
t∈T

∑
n∈N+

an PMT
n,t( )2 + bnP

MT
n,t[ ] +∑

t∈T
ρPG

0,t +∑
t∈T

∑
n∈N+

πΔPind
n,t

+∑
t∈T

∑
ij∈Nl

μlossrijPij,t

st. 9( ), 10( ), 13( ), 17( ), 18( ), 19( ), 20( ), (21)
where an and bn are the primary and secondary cost coefficients
of the gas turbine, respectively; PG

0 is the power purchased from
the superior grid; π is the response incentive coefficient of the
demand-responsive loads; and μloss is the penalty coefficient of
the unit network loss. ρ is the time-of-purchase tariff of the
higher grid, which can be determined according to the
figure given.

As shown in Figure 3, the time-sharing tariff model is
established on the basis of equivalent load. When the equivalent
load is higher than the sum of the mean value and σ times the
difference between the peak and valley, it is the peak period. When it
is lower than the difference between the mean value and σ times the
difference between peak and valley, it is the trough period, and the
rest of the time is the flat period. The time-of-day tariff is expressed
as shown in Equation 22:
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ρ t( ) �
1 + δ( )ρ0, Peq t( )≥Pav,1 + σPh

ρ0, Pav,1 − σPh ≤Peq t( )≤Pav,1 + σPh

1 − δ( )ρ0, Peq t( )<Pav,1 − σPh

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Pav,1 � 1

T
∑T
i�1
Peq t( )

Peq t( ) � PD t( ) + PCS t( )
Ph � ∑

t∈ 1,T[ ]
Pmax
eq − Pmin

eq

, (22)

where ρ0 is the tariff of the equivalent load in the usual period; σ is
the range of up and down fluctuation of the tariff in the peak hour
and the valley hour; Peq is the equivalent load; Pav,1 is the average
value of the equivalent load; and Ph is the peak-to-valley difference
of the equivalent load.

5 Case study

5.1 Date settings

The modified IEEE33 node system and Nguyen
transportation network coupling topology is shown in
Figure 4. The power distribution network rated voltage is
12.66 kV; the base power is 10 MVA; nodes 7, 8, 24, and
25 are the daily peak load nodes; and a certain percentage of
the demand response loads is set up. Node 18 is the storage node,
and the upper and lower limits of the energy storage loading state
are set to 0.2 and 0.8, respectively; node 28 is a photovoltaic
power plant; node 14 is a wind turbine; and nodes 16, 20, and
32 are electric vehicle charging stations in the coupling network.
Other parameters are set as follows: an = 0.024, bn = 85, and π =
105. Voltage magnitude boundaries are Umin = 0.95 and Umax =
1.05 (all are standardized values), the gas turbine power
boundary is Pg max = 500 kw, and the creep rate is 200 kw/h.
The time-of-day electricity price is as shown in Table 1. All
simulations in this paper are based on the MATLAB platform,
using the MSA to solve the stochastic traffic equilibrium model to
obtain the equilibrium state of the traffic flow, through the
coupling point converted into charging station power. The
distribution network optimization model is solved by invoking
the commercial solver GUROBI in MATLAB.

5.2 Analysis of results

The flow problem is solved for each time period using the
continuous iterative MSA to obtain the flow rate of the charging
station in the random user equilibrium state, and the flow rate is
converted into charging load by the charging coefficients. The results
are shown in Figures 5, 6.

FIGURE 3
Dynamic time-sharing electricity prices.

FIGURE 4
Power–transportation coupling network topology.
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By improving the traditional MSA for single-time period static
traffic equalization, i.e., initializing the flow rate of the paths
before the start of each time period iteration, so that the

equilibrium solution (roadway flow) of the previous time
period is used as the initial flow rate of the next time period,
due to the continuity of the roadway flow in adjacent time periods
of the actual road section and the small rate of change of the traffic
flow of the adjacent time periods, we screened out eight paths
belonging to the OD pair of 1 for analysis; Figures 7, 8 show that
only when t = 1, the number of iterations is more and when t = 2,
after two iterations have been completely converged, so the
convergence speed of the method is faster than initializing
different traffic flows in each time period, which improves the
speed of solving the traffic equilibrium problem.

As can be seen in the power balance shown in Figure 9, a large
number of electric vehicles and grid charging will lead to the
distribution network peak stacking situation. As the peak price of
electricity is relatively higher, the upper level of the economic
cost of purchasing power will be increased significantly, and a

TABLE 1 Time-sharing electricity price.

Electricity price
level

Time/h Electricity
price

(CNY/KWh)

High electricity price 13, 14, 15, 16, 17, 18, 19,
and 20

1.09

Flat electricity price 9, 10, 11, 12, 21, 22, and 23 0.68

Low electricity price 1, 2, 3, 4, 5, 6, 7, 8, and 24 0.35

FIGURE 5
Traffic flow on road sections.

FIGURE 6
Vehicles being charged at the charging station.

FIGURE 7
OD converges for all paths of 1 at t = 1.

FIGURE 8
OD converges for all paths of 1 at t = 2.
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FIGURE 9
Power balance situation.

FIGURE 10
Demand-response load shifting.
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high proportion of the load access will make the grid voltage
decrease too large to affect the safety and reliability of its
operation. Therefore, the power balance of the electric vehicles
can be optimized. Based on the introduction of gas turbines,
energy storage, and demand-response loads to optimize the
adjustment under the time-sharing tariff system, it can be seen
from the figure that the new energy power is absorbed by the
comprehensive use of energy storage and demand response loads
during the time when the new energy power is large and released
during the time when the new energy power is low, which ensures
that the power balance of the system reduces the amount of
power purchased by the superior grid and improves the rate of
new energy consumption.

As shown in Figure 10, the demand response loads of high-load
nodes 7, 8, 24, and 25 are no more than 30%, and the tariffs obtained
according to the dynamic tariff model at the moments from 18 to
22 are high. In order to alleviate the excessive load-bearing burden
on the distribution network due to the large amount of EV access
charging, the demand loads are cut down more at these moments,
and at the times when the tariffs are low and the charging loads are
small, such as at the time periods from 7 to 8, the demand response
load will be supplemented to maintain the demand response balance
constraint of the system.

As shown in Figure 11, energy storage is charged when the price
of electricity is low and discharged at the peak load to supply power
to the system to reduce the amount of power purchased from the
upper level, reduce the cost of power purchase and voltage decrease,
and improve the rate of new energy consumption.

In order to verify the accuracy of the second-order cone
relaxation current model used in this paper, the error caused by
the second-order cone relaxation inequality is calculated as follows:

Gi,t � ~Iij,t −
���������
P2
ij,t + Q2

ij,t

√
Ui,t

∣∣∣∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣∣∣∣, (23)

where Gi,t is the error of line current at time t caused by the second-
order cone relaxation at the ith node. The error at all nodes of the

system is calculated according to Equation 23, and the results are
shown in Figure 12. It can be found that the error at all nodes of the
system is at the level of 10–6, which proves that the accuracy of the
second-order cone relaxation distribution network current model
adopted in this paper can meet the demand of distribution network
scheduling.

6 Conclusion

Aiming at the unbalanced distribution of traffic flow in the
traffic road network and the spatiotemporal disorder of
charging loads, the superposition of charging loads and
conventional loads in the distribution network exacerbates the
fluctuation of grid loads, which affects the safe and stable
operation of the power grid. In this paper, a stochastic user
effect-based optimization strategy for power–transportation-
coupled distribution networks is proposed. First, a stochastic
user equilibrium model considering EV charging is established
based on the traffic flow distribution problem, and the traffic
model is solved by combining the method of OD matrix
estimation and Markov Monte Carlo simulation with the
improvement of the successive averaging algorithm. Second, a
distribution network trend optimization model under the
coupled power traffic architecture is established, and the
overall optimal scheduling of the distribution network model
is performed by combining energy storage, demand response
loads, wind power, photovoltaic, and gas turbines. Finally, an
arithmetic example analysis is carried out on the improved
coupled network model of distribution grid and
transportation network, which realizes the mutual benefits of
the grid and transportation network through the
coordinated interaction of flexibility resources and the
balanced allocation of traffic flows in the transportation
network, effectively reduces the peak-to-valley difference of
the grid load curve, reduces the operating cost of the system,

FIGURE 11
Energy storage charge and discharge.

FIGURE 12
Second-order cone relaxation error.
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and ensures the safe, reliable, and economic operation of the
distribution network.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding author.

Author contributions

XM: funding acquisition, project administration, and
writing–review and editing. YY: writing–original draft and
writing–review and editing. JL: writing–review and editing. WZ:
writing–review and editing. RX: writing–review and editing. GC:
methodology, project administration, and Writing–review and editing.

Funding

The author(s) declare that financial support was received
for the research, authorship, and/or publication of this
article. This study was supported by the Natural Science
Foundation of Gansu Province (22JR11RA157) and the

Science and Technology Project of State Grid Gansu
Electric Power Company (52272223004A) (corresponding
author: YanPeng YJ).

Conflict of interest

Authors XM, WZ, and RX were employed by State Grid Gansu
Electric Power Company.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The authors declare that this study received funding from
Technology Project of State Grid Gansu Electric Power
Company. The funder had the following involvement in the
study: the design, collection, analysis and interpretation of data.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors, and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Alizadeh, M., Wai, H. T., Chowdhury, M., Goldsmith, A., Scaglione, A., and Javidi, T.
(2017). Optimal pricing to manage electric vehicles in coupled power and
transportation networks. IEEE Trans. Control Netw. Syst. 4 (4), 863–875. doi:10.
1109/tcns.2016.2590259

Beckmann, M., McGuire, C., and Winsten, C. (1956). Studies in the economics of
transportation. New Haven, CT: Yale University Press.

Du, Y. C., Yu, S. C., Meng, Q., and Jiang, S. C. (2019). Allocation of street parking
facilities in a capacitated network with equilibrium constraints on drivers’ traveling and
cruising for parking. Transp. Res. Part C Emerg. Technol. 101, 181–207. doi:10.1016/j.
trc.2019.02.015

Feng, J., Hu, Z., and Duan, X. (2023). EV fast charging station planning considering
competition based on stochastic dynamic equilibrium. IEEE Trans. Industry Appl. 59
(3), 3795–3809. doi:10.1109/TIA.2023.3235343

Geng, L. J., Lu, Z. G., He, L. C., Zhang, J., Li, X., and Guo, X. (2019). Smart
charging management system for electric vehicles in coupled transportation and
power distribution systems. Energy 189, 116275. doi:10.1016/j.energy.2019.
116275

He, F., Y In, Y. F., and Zhou, J. (2013). Integrated pricing of roads and electricity
enabled by wireless power transfer. Transp. Res. Part C Emerg. Technol. 34, 1–15. doi:10.
1016/j.trc.2013.05.005

Huang, H. J., and Bell, M. G. H. (1998). A study on logit assignment which excludes all
cyclic flows. Transp. Res. Part B Methodol. 32 (6), 401–412. doi:10.1016/s0191-2615(98)
00008-3

Leng, R., Li, Z., and Xu, Y. (2023). Two-stage stochastic programming for coordinated
operation of distributed energy resources in unbalanced active distribution networks
with diverse correlated uncertainties. J. Mod. Power Syst. Clean Energy 11 (1), 120–131.
doi:10.35833/MPCE.2022.000510

Li, Z., Wu, L., Xu, Y., and Zheng, X. (2022). Stochastic-weighted robust optimization
based bilayer operation of a multi-energy building microgrid considering practical
thermal loads and battery degradation. IEEE Trans. Sustain. Energy 13 (2), 668–682.
doi:10.1109/TSTE.2021.3126776

Li, Z., Xu, Y., Feng, X., and Wu, Q. (2021). Optimal stochastic deployment of
heterogeneous energy storage in a residential multienergy microgrid with demand-side
management. IEEE Trans. Industrial Inf. 17 (2), 991–1004. doi:10.1109/TII.2020.
2971227

Lv, S., Wei, Z. N., Chen, S., Sun, G., andWang, D. (2021). Integrated demand response
for congestion alleviation in coupled power and transportation networks. Appl. Energy
283, 116206. doi:10.1016/j.apenergy.2020.116206

Maher, M. (1998). Algorithms for logit-based stochastic user equilibrium
assignment. Transp. Res. Part B Methodol. 32 (8), 539–549. doi:10.1016/s0191-
2615(98)00015-0

PRC National Development and Reform Commission (2024). Building on
comparative advantages to benefit the people of the world--A review of China’s new
energy vehicle development. Available at: https://www.ndrc.gov.cn/fggz/202405/
t20240521_1386406.html.

Qiu, H. T., Dou, S. H., Shang, H. Y., and Zhang, J. (2021). Charging station planning
based on the accumulation prospect theory and dynamic user equilibrium. Complex tell
Syst. 9, 2521–2539. doi:10.1007/s40747-021-00414-w

Sheffi, Y. (1985). Urban transportation network: equilibrium analysis with
mathematical programming methods. Upper Saddle River, NJ: Prentice-Hall.

Sheffi, Y., and Powell, W. B. (1982). An algorithm for the equilibrium assignment
problem with random link times. Networks 12 (2), 191–207. doi:10.1002/net.
3230120209

Shiwei, X. I. E., Chen, K., Zhang, Y., Xie, L., and Wu, Q. (2024). A two-layer game
model for power-transportation coupled networks considering demand
elasticity——based on quasi-variational inequalities. Proc. CSEE 44 (6), 2185–2196.
doi:10.13334/j.0258-8013.pcsee.230715

Sun, Y. Y., Chen, Z. Q., Li, Z. Y., Tian, W., and Shahidehpour, M. (2019). EV charging
schedule in coupled constrained networks of transportation and power system. IEEE
Trans. Smart Grid 10 (5), 4706–4716. doi:10.1109/tsg.2018.2864258

Veldman, E., and Verzijlbergh, R. A. (2015). Distribution grid impacts of Smart
electric vehicle charging from different perspectives. IEEE Trans. Smart Grid 6 (1),
333–342. doi:10.1109/tsg.2014.2355494

Wei, W., Wu, L., Wang, J., and Mei, S. (2018). Network equilibrium of coupled
transportation and power distribution systems. IEEE Trans. Smart Grid 9 (6),
6764–6779. doi:10.1109/tsg.2017.2723016

Wei, W., Mei, S. W., Wu, L., Shahidehpour, M., and Fang, Y. (2017). Optimal traffic-
power flow in urban electrified transportation networks. IEEE Trans. Smart Grid 8 (1),
84–95. doi:10.1109/tsg.2016.2612239

Frontiers in Energy Research frontiersin.org12

Ma et al. 10.3389/fenrg.2024.1444727

https://doi.org/10.1109/tcns.2016.2590259
https://doi.org/10.1109/tcns.2016.2590259
https://doi.org/10.1016/j.trc.2019.02.015
https://doi.org/10.1016/j.trc.2019.02.015
https://doi.org/10.1109/TIA.2023.3235343
https://doi.org/10.1016/j.energy.2019.116275
https://doi.org/10.1016/j.energy.2019.116275
https://doi.org/10.1016/j.trc.2013.05.005
https://doi.org/10.1016/j.trc.2013.05.005
https://doi.org/10.1016/s0191-2615(98)00008-3
https://doi.org/10.1016/s0191-2615(98)00008-3
https://doi.org/10.35833/MPCE.2022.000510
https://doi.org/10.1109/TSTE.2021.3126776
https://doi.org/10.1109/TII.2020.2971227
https://doi.org/10.1109/TII.2020.2971227
https://doi.org/10.1016/j.apenergy.2020.116206
https://doi.org/10.1016/s0191-2615(98)00015-0
https://doi.org/10.1016/s0191-2615(98)00015-0
https://www.ndrc.gov.cn/fggz/202405/t20240521_1386406.html
https://www.ndrc.gov.cn/fggz/202405/t20240521_1386406.html
https://doi.org/10.1007/s40747-021-00414-w
https://doi.org/10.1002/net.3230120209
https://doi.org/10.1002/net.3230120209
https://doi.org/10.13334/j.0258-8013.pcsee.230715
https://doi.org/10.1109/tsg.2018.2864258
https://doi.org/10.1109/tsg.2014.2355494
https://doi.org/10.1109/tsg.2017.2723016
https://doi.org/10.1109/tsg.2016.2612239
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1444727


Xie, S., Chen, Z., Zhang, Y., Cao, S., and Chen, K. (2023a). Decentralized optimization
of multi-area power-transportation coupled systems based on variational inequalities.
CSEE J. Power Energy Syst. 99, 1–12. doi:10.17775/CSEEJPES.2022.05760

Xie, S. W., Wu, Q. W., Hatziargyriou, N. D., Zhang, M., Zhang, Y., and Xu, Y. (2023b).
Collaborative pricing in a power-transportation coupled network: a variational inequality
approach. IEEE Trans. Power Syst. 38 (1), 783–795. doi:10.1109/tpwrs.2022.3162861

Xie, S. W., Xu, Y., and Zheng, X. D. (2022). On dynamic network equilibrium of a
coupled power and transportation network. IEEE Trans. Smart Grid 13 (2), 1398–1411.
doi:10.1109/tsg.2021.3130384

Yan, C. U. I., Hu, Z., and Duan, X. (2022). Review on the electric vehicles operation
optimization considering the spatial flexibility of electric vehicles charging demands.
Power Syst. Technol. 46 (3), 981–994.

Zhang, H., Qiu, J., and Wang, Y. (2024a). A joint planning strategy for EV charging
system towards net-zero transportation electrification. J. Clean. Prod. 441, 141019.
0959-6526. doi:10.1016/j.jclepro.2024.141019

Zhou, Z., Moura, S. J., Zhang, H. C., Zhang, X., Guo, Q., and Sun, H. (2021). Power-
traffic network equilibrium incorporating behavioral theory:a potential game
perspective. Appl. Energy 289, 116703. doi:10.1016/j.apenergy.2021.116703

Zhou, Z., Zhang, X., Guo, Q. L., and Sun, H. (2020a). Decomposition approach for the
interdependency analysis of integrated power and transportation systems. IET Smart
Grid 3 (6), 825–834. doi:10.1049/iet-stg.2019.0310

Zhou, Z., Zhang, X., Guo, Q. L., and Sun, H. (2020b). Integrated pricing framework
for optimal power and semi-dynamic traffic flow problem. IET Renew. Power Gener. 14
(18), 3636–3643. doi:10.1049/iet-rpg.2020.0150

Frontiers in Energy Research frontiersin.org13

Ma et al. 10.3389/fenrg.2024.1444727

https://doi.org/10.17775/CSEEJPES.2022.05760
https://doi.org/10.1109/tpwrs.2022.3162861
https://doi.org/10.1109/tsg.2021.3130384
https://doi.org/10.1016/j.jclepro.2024.141019
https://doi.org/10.1016/j.apenergy.2021.116703
https://doi.org/10.1049/iet-stg.2019.0310
https://doi.org/10.1049/iet-rpg.2020.0150
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1444727

	Optimization of the power–transportation coupled power distribution network based on stochastic user equilibrium
	1 Introduction
	2 Optimization architecture for power–transportation coupled distribution grids based on stochastic user effects
	3 Stochastic user-equilibrium traffic-flow assignment model
	4 Distribution network model under coupled power–transportation
	5 Case study
	5.1 Date settings
	5.2 Analysis of results

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


