
TYPE Original Research
PUBLISHED 18 December 2024
DOI 10.3389/fenrg.2024.1444697

OPEN ACCESS

EDITED BY

Shuangqi Li,
Cornell University, United States

REVIEWED BY

Renyou Xie,
University of New South Wales, Australia
Yijie Zhang,
Hong Kong Polytechnic University, Hong
Kong SAR, China

*CORRESPONDENCE

Martiya Zare Jahromi,
martiya.zare@alumni.utoronto.ca

RECEIVED 06 June 2024
ACCEPTED 28 November 2024
PUBLISHED 18 December 2024

CITATION

Jahromi MZ, Khalaf M, Kassouf M and
Kundur D (2024) Towards a more secure
reconstruction-based anomaly detection
model for power transformer differential
protection.
Front. Energy Res. 12:1444697.
doi: 10.3389/fenrg.2024.1444697

COPYRIGHT

© 2024 Jahromi, Khalaf, Kassouf and Kundur.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

Towards a more secure
reconstruction-based anomaly
detection model for power
transformer differential
protection

Martiya Zare Jahromi1*, Mohsen Khalaf1,2, Marthe Kassouf3 and
Deepa Kundur1

1Department of Electrical and Computer Engineering, University of Toronto, Toronto, Canada,
2Electrical Engineering Department, Assiut University, Assiut, Egypt, 3Hydro-Québec’s Research
Institute, IREQ, Varennes, QC, Canada

Introduction: Cyberattacks against Power Transformer Differential Protection
(PTDP) have the potential to cause significant disruption and widespread
blackouts in power infrastructure. Recent literature has demonstrated how
reconstruction-based anomaly detection models can play a critical role in
enhancing the security of PTDP against such attacks. However, these models
themselves are vulnerable to cyber threats. Adversarial sample generation is an
example of a threat against reconstruction-based anomaly detection models.

Methods: To address this threat, we propose an approach for adversarial training
of such models appropriate for PTDPs. We then review and compare the effect
of adversarial training on the performance of four different model architectures.
To demonstrate the efficacy of our proposed approach for improved security
and performance in PTDP scenarios, the IEEE PSRC D6 benchmark test system
is tested in an OPAL-RT environment.

Results: Simulation results show the effectiveness of the proposed method for
improved detection of cyberattacks.

KEYWORDS

cyber-physical systems, trustworthy machine learning, anomaly detection, transformer
protective relays, adversarial defense

1 Introduction

The growing integration of communication protocols in smart power grids has
increased the grid’s exposure to cyber threats yielding an observable rise in the rate
and sophistication of cyberattack attempts against these infrastructures (Glenn et al.,
2016). The Ukrainian power grid and Colonial Pipeline attacks are prominent examples
of such cyberattacks (Case, 2016; Hobbs, 2021) demonstrating their potential for
widespread blackout, economic loss, and even loss of life (Case, 2016; Hobbs, 2021;
Slowik, 2018; National Academies of Sciences, 2017). To enhance the cybersecurity of
power system substations, machine learning-based anomaly detection models can play

Frontiers in Energy Research 01 frontiersin.org

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2024.1444697
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2024.1444697&domain=pdf&date_stamp=2024-12-14
mailto:martiya.zare@alumni.utoronto.ca
mailto:martiya.zare@alumni.utoronto.ca
https://doi.org/10.3389/fenrg.2024.1444697
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1444697/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1444697/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1444697/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1444697/full
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1444697/full
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Jahromi et al. 10.3389/fenrg.2024.1444697

a vital role as suggested in the recent literature (Jahromi et al.,
2021; Khaw et al., 2020; Jahromi et al., 2020; Khaw et al., 2019;
Guato Burgos et al., 2024; Narang and Bag, 2024; Akagic and Džafić,
2024). However, as the use of machine learning models increases, it
has become apparent that the associated model itself can become a
target for attackers.

For example, deep neural networks have achieved high
performance for a variety of classification problems including
anomaly detection. This largely stems from optimizing the weights
of an associated multi-layer network of nonlinear artificial neurons
(Goodfellow et al., 2016; Rezaee et al., 2024) using a back
propagation algorithm. As it is often difficult to interpret the
results of such an optimization, the associated network model may
exhibit counter-intuitive properties. One such example involves
expecting a well-performing deep neural network to be robust
to small perturbations of the input. However, it has been shown
that small perturbations may result in unexpected outputs from
a model (Szegedy et al., 2013; Ferrara, 2024). These perturbed
inputs are termed adversarial samples that exist, in part, because
of model linearity in high-dimensional spaces. In fact, some deep
neural network architectures including Long Short-Term Memory
(LSTM) are designed to behave linearly, which makes them easier
to optimize but leaves them vulnerable to linear input perturbations
(Goodfellow et al., 2014). Hence, attackers can leverage such model
characteristics to mislead power grid decision-making processes.
Thus, machine learning models have their own vulnerabilities
with the risk of exploitation more significant in integral cyber-
physical environments such as smart power grids. In general, attacks
against machine learning models fall into two categories: attacks
during training and attacks at test/inference. Training time attacks
include, but are not limited to, data poisoning (Koh and Liang, 2017;
Yang et al., 2023; Cinà et al., 2023) and backdoor attacks (Chen et al.,
2017; Wu et al., 2023), which both target model integrity. Training
time attacks can also target confidentiality in specific scenarios such
as federated learning (McMahan et al., 2017;Wen et al., 2023; Ji et al.,
2024). In contrast, adversarial sample generation, model extraction,
and membership inference are examples of inference time attacks
(Goodfellow et al., 2014; Tramèr et al., 2016; Shokri et al., 2017;
Liu et al., 2023; Zhang et al., 2024).

Power transformers represent integral components of power
system substations linking critical points between different grid
voltage levels. Power Transformer Differential Protection (PTDP)
has been used as a main protection mechanism in power
transformers (Horowitz and Phadke, 2014). A cyberattack on the
PTDP can force a false tripping of the differential protection relays,
possibly disconnecting system loads. In this work, we address
cyberattacks that occur in inference time. We focus on adversarial
sample generation, which demonstrates the most potential in
PTDP settings, where the attacker’s goal is to craft input feature
perturbations to craft samples that cause false prediction by anomaly
detection models (Szegedy et al., 2013; Kurakin et al., 2016a); the
perturbed inputs for a givenmodel that produce incorrect results are
known as adversarial samples. Ironically, these adversarial samples
can also be leveraged to improve machine learning model security
using an approach called adversarial training (Goodfellow et al.,
2014). Here, the machine learning model is preemptively trained
on the adversarial samples, so that the model has forewarning of
such attacks. In classification tasks, this involves finding adversarial

examples, adding them with the correct label to the training
set, and retraining the model to achieve greater robustness and
security to such attacks. Previous work on adversarial training
is applicable to supervised learning contexts (Madry et al., 2017;
Sanchez-Matilla et al., 2020; Wang et al., 2019; Fu et al., 2023).
However, adversarial sample generation is also a significant threat
to unsupervised settings such as reconstruction-based anomaly
detection. Specifically, in reconstruction-based anomaly detection,
the models operate in a self-supervised manner, meaning they do
not utilize labeled data. Instead of having samples from every class,
these models are trained solely on benign samples. Consequently, it
is challenging to integrate adversarial samples during training due to
the absence ofmalicious samples in dataset. Our approach addresses
this gap by proposing seed selection methods and reformulating
adversarial training methods. This is crucial for enhancing the
robustness of reconstruction-based anomaly detection models,
especially in critical applications like power grid monitoring, where
maintaining performance against adversarial attacks is essential.

To tackle the aforementioned challenge, the main contributions
of this work are summarized as:

• The timely problem of cyberattacks on PTDP is studied. For
the first time, the effect of False Data Injection (FDI) and Time
Synchronization (TS) attacks are formulated mathematically.
• We propose a new method for adversarial training of
reconstruction-based anomaly detection models applicable to
PTDPs. Given such models are self-supervised, the proposed
method aims to force the model to reconstruct adversarial
samples poorly without the use of training labels. We compare
the effect of adversarial training on the performance of
four different reconstruction-based anomaly detectionmodels:
the linear autoencoder, fully connected autoencoder, 1D
convolutional network and LSTM.
• We study the ability of our adversarial training approach to
generalize adversarial samples generated by three methods:
Projected Gradient Descent (PGD), DeepFool and Jacobian-
Based Saliency Map Attack (JSMA) to study the ability of our
approach to address a variety of cyberattacks.

While the proposed adversarial training method is formulated
for reconstruction-based anomaly detection for PTDP,we assert that
the method is general and can be applied to a wide variety of other
smart grid monitoring, control and protection applications.

The remainder of the paper is organized as follows.
Section 2 discusses reconstruction-based models in the context of
cybersecurity applications. Section 3 studies cyber-physical attacks
of PTDP. Section 4 presents possible attacks against reconstruction-
based anomaly detection models. In Section 5, we propose a
novel adversarial training method to enhance the security of
reconstruction-based models. Section 6 details the test system used
for data generation as well as the empirical results. Finally, the paper
concludes in Section 7.

2 Reconstruction-based anomaly
detection

Reconstruction-based anomaly detection models are machine
learning models that aim to differentiate malicious behaviour in
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FIGURE 1
Autoencoder structure. In anomaly detection, the autoencoder is
trained on benign data such that the reconstructed output is very
similar in a mean squared error sense to the input data sequence.

a system by assessing its deviation from a model of “normal”
behaviour. In our scenario, the attacker launches cyberattacks as
described in Sections III-A and III-B to trigger a transformer’s
protective relay when no actual system fault exists. Such an attach
has the potential to disrupt the system leading to cascading failure
and possible blackout. Anomaly detection in this context, then,
detects the legitimacy of the data sequence, used by a corresponding
protective relay for decision-making, when the relay is activated.

Unlike classification models, reconstruction-based anomaly
detection models are trained only on benign data. The benign
data, in this formulation, consists of legitimate power system
fault data sequences that have been previously captured by
measurement devices. The training process of an autoencoder
involves finding parameters of a corresponding encoder/decoder
model shown in Figure 1 such that the encoder transforms the
input into a latent space of reduced dimensionality and the decoder
generates a reconstructed output which is an accurate estimate
of the input data sequence. Specifically, the resulting autoencoder
model would be able to reconstruct inputs with a reconstruction
error given by Equation 1:

MSEi = ‖Xi −M(Xi)‖22, (1)

where Xi is the input data sequence, M(Xi) is the result of
successively encoding and decoding Xi, ‖ ⋅ ‖2 is the L2 norm and
MSEi is the mean squared error of Xi andM(Xi).

Since the model is trained only on benign data, we expect to
observe larger reconstruction errors when the input is not from
the distribution of benign electrical faults. Hence, we can identify,
with high probability, malicious/anomalous behaviour by setting a
threshold ϵ for the reconstruction error as in Equation 2:

MSEi > ϵ→ anomalousdatasequence. (2)

Different autoencoder architectures can be used to implement
reconstruction-based anomaly detection. We consider four popular
model types, including linear autoencoder, fully connected
autoencoder, 1-dimensional convolutional neural networks (CNN)
and Long Short TermMemory (LSTM) as suggested in Jahromi et al.
(2021), and compare the effects of different adversarial training
approaches on them in this paper.

3 Cyber attack scenarios against PTDP

We begin framing our motivation for anomaly detection by
developing attack models for PTDPs. Specifically, we focus on the
design of False Data Injection (FDI) and Time Synchronization (TS)
cyberattacks. To the best of the authors’ knowledge, this is the first
time such attacks on PTDPs have been formulated in the literature.
The following notation is used: X = X|∠θX represents a vector of
magnitude of |X| or X and a phase angle of θX.

Differential protection in power systems protects a specified
zone or piece of equipment (such as a transformer) by comparing the
phase angles and magnitudes of the same electrical quantities (e.g.,
current) taken at specific locations and operates when an internal
fault is likely to have occurred within an associated zone based on
the observed electrical quantities. A relay that senses and operates
on the phase difference between the current entering into the
power transformer, I1 = |I1|∠θ1, and the current leaving the power
transformer, I2 = |I2|∠θ2, is called a power transformer current
differential relay. Figure 2 shows the restraining characteristics
between the operating current, Iop and the restraining current Ir of a
power transformer differential relay as defined in Equations 3, 4:

|Iop| = I1|∠θ1 + |I2|∠θ2 (3)

|Ir | = |I1| + |I2|. (4)

The relay picks up when the operating point moves from the
restraining region to the tripping region in Figure 2; i.e., |Iop| > |Ipu|
where the pick-up current Ipu is defined in Equation 5:

Ipu =
{{{{
{{{{
{

IB inZone1

k1Ir inZone2

k2 (Ir − IR0) inZone3

, (5)

and IB, k1, k2 and IR0 are the settings of the relay. Zone 1 to
Zone 3 define the characteristics of the relay. IB is usually set
between 0.3 and 0.5 pu and accommodates CT remanence and
accuracy errors. Slope k1 considers the differences between I1
and I2 due to steady-state and proportional errors such as power
transformer tap-changer, CT errors, excitation current and relay
errors. Therefore, k1 should be set above normal steady state and
proportional errors (Laboratories, 2022). Slope k2 accommodates
transient errors caused by CT saturation.

3.1 False data injection attacks on PTDP

In this threat model, we assume that a cyberattacker has remote
access to the corresponding substation automation system of the
PTDP through a malicious device which is connected to the process
bus or merging unit; see Figure 3. The attacker is either assumed to
have recruited a substation employee who has authority to access
communication devices to install the malicious device or to have
infiltrated an appropriate component of the supply chain to insert
it. Recent literature points to the feasibility of such attacks. With
access to the process bus or data through the malicious device, the
attacker can disrupt the flow of information packets to the relay
IEDs and forward falsified packet payloads (intended to coerce false
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FIGURE 2
Restraining characteristics of transformer differential protection.

FIGURE 3
PTDP threat model.

tripping) to the IEDs using a combination ofman-in-the-middle and
FDI attacks.

Specifically, we consider FDI attacks that yield a malicious
change in the currentmeasurements to instigate tripping. It is shown
in the literature (Taha et al., 2016; Lee andKundur, 2014) that an FDI
attack can affect both the magnitude and angle of the measurements
and/or system states. Therefore, we assume that the attacker injects
an attack signal ΔI1 = |ΔI1|∠Δθ1 into the current value of the first

transformer side such that |I1|∠θ1 becomes (|I1| + |ΔI1|)∠(θ1 +Δθ1)
after cyberattack. Substituting in (3) and (4), the operating and
restraining currents after attack, |Iaop| and |Iar | can be calculated as
shown in Equations 6, 7:

|Iaop| = |(|I1| + |ΔI1|)∠ (θ1 +Δθ1) + |I2|∠θ2| (6)

a|Iar | = |Ir | + |ΔI1|. (7)
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The value of |Iop| is ideally zero during normal (no-
fault) operation, and hence |I1|∠θ1 = − |I2|∠θ2. Substituting
into (6) to calculate the operating current due to the attack
results in Equation 8:

|Iaop| = |(|I1| + |ΔI1|)∠ (θ1 +Δθ1) − |I1|∠θ1| . (8)

Therefore, for the relay to pick up during an attack, the current
difference has to be greater than Iapu; that is,

|(|I1| + |ΔI1|)∠ (θ1 +Δθ1) − |I1|∠θ1| > I
a
pu, (9)

where Iapu = f(Ir +ΔI1) is the post-attack pick-up current.
In order to cause tripping during the attack, the attacker must

adjust the value of the attack signal, |ΔI1|∠Δθ1, to satisfy Equation 9.
This can be achieved through a few sub-scenarios, each one

of them resulting in different measurement patterns. Hence, we
leverage these sub-scenarios to diversify our attack datasets.This can
be mathematically formulated to represent different sub-scenarios
as follows.

3.1.1 Manipulating current magnitude
In this scenario, we assume that the attacker injects malicious

data only on the magnitude of the current I1; hence, Δθ1 = 0.
Substituting into (9), the value of |ΔI1| should satisfy:

|ΔI1| >

{{{{{{{
{{{{{{{
{

IB inZone1
k1Ir
1− k1

inZone2

k2 (Ir − IR0)
1− k2

inZone3

. (10)

3.1.2 Manipulating current phase angle
In this scenario, we assume that the attacker manipulates the

phase angle of the current I1. In this case, the value of I1 after
the attack is |I1|∠(θ1 +Δθ1) and the magnitude of Ir is preserved.
Substituting into Equation 9 gives:

||I1|∠ (θ1 +Δθ1) − |I1|∠θ1| > I
a
pu. (11)

To satisfy Equation 11, Δθ1 should be selected within the following
interval for tripping:

Δθ1 ∈ [2 arcsin
|Ipu|
2|I1|
,2π− 2 arcsin

|Ipu|
2|I1|
] . (12)

3.1.3 Replay attack
Here, the attacker injects current magnitude data from a

previously captured fault in the system. This way, the injected
data is consistent with a snapshot of a benign fault. Therefore, the
attacker aims to have a better chance of bypassing the protective
systems. In this scenario, the values should satisfy the criteria
mentioned in Equation 10.

3.2 Time synchronization attacks

TS attacks are also a kind of man-in-the-middle attacks.
However, in contrast to FDI attacks, TS attacks target the timing

information in a smart grid, by incorporating the delay of time
synchronization pulses being sent from one node to another in
the communication network. in timing errors or cause the loss
of synchronization, TS attacks cause catastrophic failures of the
PTDP due to the timing error and/or the loss of communication
caused by the attack (Han and Crossley, 2019). For PTDP, TS
attacks can be represented as a change in the phase angle of current
measurements θ1 (Zhang et al., 2013). Given that Δθ1 should be
selected as in Equation 12 to initiate false tripping, the attacker can
correspondingly change the time reference by Δt for an appropriate
Δθ1 as Equation 13:

Δt =
Δθ1
2π f
, (13)

where f is the power frequency of the system.
Applying the reconstruction-based anomaly detectionmodels of

Section 2 shows promising results in detecting the aforementioned
attacks in a variety of scenarios (Jahromi et al., 2021; Khaw et al.,
2020). However, as discussed, the models themselves can be a target
of the cyberattack. In the subsequent two sections, we will address
the following key points:

• Adversarial Sample Generation Methods: An overview of
methods used to generate adversarial samples targeting our
anomaly detection models, designed to protect PTDP.
• Seed Generation in Absence of Malicious Data: We propose
how to generate seeds when there are no malicious data point
available in the dataset.
• Expected Output for Generated Seeds: We propose the
expected output for the seeds generated from previous step.
• Reformulation of adversarial training in order to be applicable
to reconstruction-based anomaly detection models, utilizing
the dataset generated in the preceding steps.

4 Attacks against anomaly detection
model

We consider reconstruction-based anomaly detection models
that are trained on benign data using the four architectures
discussed in Section 2. In adversarial sample generation, the
attacker’s goal is to craft samples that the model will misclassify. In
our problem context, the attacker aims to devise samples that are
detected as faults by the differential relay while not being detected
as anomalous by the anomaly detection model. We consider three
well known adversarial sample generation approaches, and propose
novel modifications, where appropriate, for our reconstruction-
based anomaly detection methods.

4.1 Adversarial sample generation methods

In our proposed modified methods, adversarial sample
generation exploits vulnerabilities in anomaly detection models,
making it a potent method to compromise PTDP. By subtly altering
input data, attackers can evade detection mechanisms, posing a
significant challenge to system integrity. This approach offers a
accessible means of attack, emphasizing the need for robust defense
mechanisms to counter evolving threats.
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4.1.1 Projected gradient descent (PGD) attack
Fast Gradient Sign Method (FGSM) is a method of generating

adversarial examples. Starting froman input that themodel correctly
classifies, a small perturbation is calculated as shown in Equation 14:

η = σ.sgn (∇XL (Θ,X,y)) , (14)

whereX is the original input sample, y is the target/label, Θ aremodel
parameters, L is the loss function, ∇XL represents the gradient of
L with respect to X, and scalar σ determines the magnitude of the
perturbations. Then, the perturbation η is added to X to obtain an
adversarial sample as follows: X

∗
= X+ η.

This method is successful for a variety of models
(Goodfellow et al., 2014). However, the success rate of FGSM is
not always optimal, and selecting σ can be challenging compared
to its iterative version, the Projected Gradient Descent (PGD)
(Kurakin et al., 2016b; Kurakin et al., 2016a). In PGD, FGSM is
applied iteratively in small step sizes starting with the original input
sample (also known as the seed) X0:

Xi+1 = Xi + σ.sgn(∇Xi
L(Θ,Xi,y)) , (15)

where Xi+1 is the adversarial sample at step i+ 1, Xi is the adversarial
sample at step i. Hence, adversarial sample generation is typically
discussed in relation to supervised classification models, which is
not compatible with anomaly detection where no label y exists.

To address this limitation, our approach adapts PGD to
unsupervised contexts by replacing the traditional loss function in
Equation 15 with Equation 16:

L(Θ,Xi) =MSE(Xi −M(Xi)) , (16)

whereM(Xi) is the reconstructed output for input Xi. For each step
in adversarial sample generation, we thus have Equation 17:

Xi+1 = Xi + σ.sgn(∇Xi
MSE(Xi −M(Xi))) . (17)

Compared to Equation 16,M(Xi) changes after each step, and it
is the current reconstruction of Xi. Using Equation 18, at each step,
we achieve a new sampleXi+1 that is reconstructed byMwith a lower
reconstruction error. Hence, we move toward lower reconstruction
error by repeating this step.However, as this is not a convex problem,
it is not guaranteed to converge to adversarial samples and pass the
decision boundary for every chosen seed.

4.1.2 DeepFool attack
DeepFool is another iterative approach focused onmore efficient

adversarial sample generation (Moosavi-Dezfooli et al., 2016). Here,
a linear classifier is first assumed for formulation:

f (X) =WTX+ b, (18)

whereby the corresponding decision boundary is given byEquation 19:

F = X:WTX+ b = 0. (19)

The main idea behind DeepFool is to project the initial input
sample (or seed) X0 onto and slightly across the decision boundary.
In the first step, the perturbation needed for the projection is
calculated as shown in Equation 20:

d = −
f (X0)
‖W‖22

W. (20)

Then, the attack sample is calculated as in Equation 21:

X∗ = X0 + (1+ ϵ) d, ϵ≪ 1, (21)

where ϵ is a very small positive number [ϵ = 0.02 is used (Moosavi-
Dezfooli et al., 2016)] to help push an attack sample X

∗
over the

decision boundary by a small amount.
This attack can be generalized to nonlinear classifiers by applying

the approach iteratively. Starting with an initial input seed sample,
X0, at each iteration i, f is linearized aroundXi, and the perturbation
di is calculated as in Equation 22:

di = −
f (Xi)
‖∇ f (Xi)‖22

∇ f (Xi) . (22)

Thenext iteration of the attack sample is computed as in Equation 23:

Xi+1 = Xi + di, (23)

with the iterations continuing until the generated attack sample
crosses the decision boundary.

4.1.3 Jacobian-Based Saliency Map Attack (JSMA)
Thismethod is based on the saliencymap of the input (Moosavi-

Dezfooli et al., 2016). Large absolute values refer to features that
considerably impact the outcome. At each iteration, the Jacobian
matrix is first calculated as give in Equation 24:

J f (X) = [
δ fj (X)

δxi
]
i=1…M,j=1…N

, (24)

where X is the input vector (or seed), fj is the output of the network
at index j, xi is the input at index i, M is the size of input and N is
the total number of outputs. Then, a saliency map is created using
Equation 25:

S (X,c) =
{
{
{

0if Jij (X) < 0orΣj≠cJij (X) > 0

Jij (X) |Σj≠cJij (X) |otherwise
, (25)

where i is the input index, j is the output index, Jij is the partial
derivative of fj(X) with respect to xi and c is a given output index.
For a scalar output problem, this simplifies to Equation 26:

Si (X) =
{
{
{

0if Ji (X) < 0

Ji (X) otherwise
, (26)

where Ji is the partial derivative of f(X) with respect to xi and Si is
the value of the saliency map for input index i. Then, at each step,
we select the feature that has the maximum value in saliency map as
shown in Equation 27:

maxIndex = argmaxi S (X) , (27)

and then modify the attack sample as in Equation 28:

Xi+1,maxIndex = Xi,maxIndex + θ, (28)

where θ is a problem-specific perturbation amount. Same as the
previous methods, we apply this approach until the attack sample
passes the decision boundary.
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FIGURE 4
Adversarial sample generation in classification problems. Yellow circles
and green cross signs each represent samples from one class. The red
cross represents an adversarial sample generated using one of the
samples from the green class as the seed.

4.2 Seed selection in anomaly detection
problems

Selecting the initial samples, also known as seeds, from
which to generate adversarial samples is an essential step in the
aforementioned approaches. As shown in Figure 4, choosing seeds
in classification problems is straightforward because samples from
each class exist in the training set. In a reconstruction-based
anomaly detection model, the model is trained only on benign data.
Moreover, the attacker aims to devise samples that are detected as
faults by the differential relay while not being detected as anomalous
by the anomaly detection model. Hence, the seeds must come from
the set of anomalous data unavailable during training.

To address this challenge, we devise an approach to generate
seeds randomly. Given the non-discriminate way in which
anomalies are detected, we consider any data sequence that is
reconstructed “poorly” by the model as a potential seed; the idea
is clarified in Figure 5. We assert that because the model is not
trained on randomdata sequences, it is not capable of reconstructing
them with low error. Moreover, random data sequences can give
us randomly spread data points in the feature space. Hence,
using them as seeds gives us the potential to generate a rich set
of adversarial samples. Thus, in this work, we consider random
data sequence seeds. Algorithm 1 details the process of generating
adversarial examples. As we discuss in the next section, adversarial
samples can be utilized to enhance themodel’s robustness. It is worth
noting that, unlike image processing, where the human eye limits
the perturbations allowed by the attacker, in our setting, there are
no limitations on the set of perturbations that an attacker can make
in order to achieve adversarial samples. Even in the field of image
processing, the set of perturbations that an attacker iswilling tomake
is an open problem. If we know those sets of perturbations, then we
know the actual decision boundary, which is not the case.Therefore,
it is important to monitor the performance of the models after
adversarial training on the set of data that has not been perturbed
to prevent overfitting.

FIGURE 5
Adversarial sample generation in reconstruction based anomaly
detection problems. The grey area represents the space from which
samples will be detected as anomalies.

seed: Randomly generated data sequence

1 advx← seed

2 for iteration ← 0 to maxIterations do

3  grad← ∇advxMSE(advx −M(advx))

4 perturbation← σ ∗ sgn(grad)

5 advx← advx +perturbation

6 reconstructionError← MSE(advx,M(advx))

7 if reconstructionError < threshold then

8   return advx

9  end

10 end

Algorithm 1. Adversarial sample generation.

5 Adversarial training for
reconstruction-based anomaly
detection model

Adversarial training is an effective defense technique that can
be used to enhance the robustness and security of machine learning
models against adversarial sample generation (Madry et al., 2017).
In this approach, we first find a set of adversarial samples. Then, we
retrain the model using those samples with the correct classification
(of the original seed). In supervised learning, this process is
straightforward because there is a simple label for each seed.

The distinction with unsupervised anomaly detection is that
training is only conducted on benign data. Hence, we cannot
append adversarial samples (which are correctly classified as
anomalous) to our training set. This requires that we reformulate
adversarial training in the context of reconstruction based models
and introduce a new methodology.
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5.1 Adversarial training for classification
problems

Adversarial training, for standard classification, can
be formulated as a saddle point problem shown in
Equation 29 (Madry et al., 2017):

minθE(x,y)∼D (maxδL (θ,x+ δ,y)) , (29)

where δ is the perturbation added to the seed x of label y and E(x,y)∼D
denotes population risk. The inner maximization problem aims to
find the adversarial sample that maximizes the loss, while the outer
optimization endeavours to train a model that minimizes the loss
for the generated attack samples. However, since y (which is the
label corresponding to x) does not apply to unsupervised contexts,
wemust reformulate the problem for reconstruction-based anomaly
detection.

5.2 Adversarial training for
reconstruction-based anomaly detection
models

First, in our setting, the attacker’s goal is to add perturbations
to a sample initially detected as an anomaly by the model to craft a
new sample with low reconstruction error. Therefore, we propose to
change the inner optimization problem to Equation 30:

ρ (θ) = E(x)∼D (minδL (θ,x+ δ,M (x+ δ))) , (30)

where y is replaced by M(x+ δ) to reflect the task of the inner
optimization to find a new sample x+ δ that is closest to its
reconstruction M(x+ δ). This new formulation reflects the self-
supervised nature of the problem.

Unlike Equation 29, we start with an anomalous seed that
corresponds to high reconstruction error, thus to move toward the
non-anomalous sample’s distribution, we must make changes to
the seed to generate new seeds with lower reconstruction error.
This implies the inner optimization problem must change to a
minimization. Moreover, in order to make the model unable to
reconstruct adversarial samples with low reconstruction error, we
mustmaximize the risk for adversarial samples population.

Our proposed changes results in a new formulation, in which, an
anomalous input seed that is effectively perturbedwould be detected
as normal with low reconstruction error requiring aminimization of
the associated loss with respect to δ.

Moreover, adversarial training should aim to maximize
reconstruction error for adversarial samples to flag them as being
truly anomalous as given by:

maxθρ (θ) =maxθE(x)∼D (minδL (θ,x+ δ,M (x+ δ))) . (31)

We remind the reader that for the first time we consider
adversarial training for reconstruction-based models, for which
the training data consists of solely benign data and the model’s
input and expected output are the same. Thus, to achieve the
goals of adversarial training as described by Equation 31, we
propose to employ adversarial samples in training (although they
are anomalous) to help with security, but instead restrict the

FIGURE 6
Adversarial input X (dashed green line) and expected output X′ (solid
blue line) example.

expected output to deviate significantly from the adversarial sample
input as follows:

X′ = argmaxx′MSD(x− x′) , (32)

where X′ is the expected output used for training with the
adversarial sample input x and MSD is the Mean Squared
Distance. By employing Equation 32 that maximized reconstruction
error to create an adversarial training set, we expect the model
will adapt to appropriately address adversarial samples and flag
such attacks. Figure 6 shows an example of an adversarial input
X and the corresponding expected output X′ that will be used in
adversarial training; note that data is scaled in the range [−1,1] in
each time step.

Table 1 highlights the differences between adversarial
training for classification vs. reconstruction-based anomaly
detection models. Figure 7, summarizes the adversarial training
steps described above in a flowchart.

6 Testing and validation

6.1 Test system and data generation

The IEEE power system relaying committee (PSRC) D6
benchmark test system is simulated via OPAL-RT HYPERSIM to
generate the data sets in our studies (Gras et al., 2017). The test
system consists of two parallel transmission lines that connect a
power plant consisting of four 250MVA generator units to a 230 kV
transmission network. Differential protective relays are used to
protect the power plant transformers as shown in Figure 8. The
settings of the differential protection relays are adjusted as per the
SEL-587 relay parameters mentioned in (Laboratories, 2022).

Simulations are run for different generation levels of generator
units ranging from 350 MW to 360 MW (inclusive) with a step
size of 2 MW. This results in 64 = 1296 different generation level
simulation cases for all possible permutations of generation levels.
Each simulation is performed for 1.5 s whereby a fault is triggered
at a randomly selected time between t = 1 s and t = 1.02 s; this
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TABLE 1 Key differences between adversarial training for classification vs. reconstruction-based models.

Method Classification Reconstruction-based

Differences

Supervised/Samples have labels Self-supervised/no labels

Samples from every class in database exist Only benign samples are available in dataset

Seeds can be selected from dataset No seeds available in dataset

FIGURE 7
Adversarial training steps flowchart.

interval is selected because it encompasses one frequency cycle
(which has a period of 0.0167 s) of a 60 Hz power system to
ensure that the fault happens at different points of the current
waveform to create a diversely rich data set. Specifically, each
generation level case is run 16 times varying the fault start time.
Moreover, three different fault types, one-phase-to-ground, two-
phase-to-ground, and three-phase-to-ground, are considered for
each fault start time. This results in 62,208 different data sequence
sets captured during the simulations. As typical, 80% of the data sets
are used for training while the remaining 20% are split in half for
validation and test data sets. It should be noted that measurements
are sampled at the rate of 4,800 packets/sec to be consistent with IEC

61850-9-2 standard for Sampled Value (SV) packet specifications
(Brunner et al., 2004).

Input to the anomaly detectionmodel is selected to be a window
size of 10 m, which is equivalent to 48 samples of current and angle
measurements (for the given sampling rate of 4,800 packets/sec).
At each time step, there are 6 current measurements captured from
the two current transformers (CTs) on each side of the transformer
and 3 phase angle measurements, which amounts to a total of 9
measurements. A 10 m windowW is extracted as in Equation 33:

W = [S f−23,…,S f ,…,S f+24] , (33)
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FIGURE 8
The IEEE PSRC D6 benchmark test system.

where Si is the measurement vector at the ith time step and f is the
middle timestep in the extracted window chosen as below:

f = (t f) + d,d ∼ u {−10,10} , (34)

where t f is the fault starting timestep and d is an integer uniformly
selected from the set [−10,10].

6.2 Optimizing the architecture of the
ML-based anomaly detection systems

An important parameter for machine learning-based anomaly
detection systems is the input data length. Because a sliding window
of 10 m, (48 samples, each consisting of 9 measurements) is fed as
input, the corresponding length of the input (and output, which
mirrors the input for reconstruction-based techniques) is 9× 48 =
432. The random search method is adopted for hyperparameter
tuning and the Adam optimizer is used for all the models with the
learning rate set to 0.001. As such, the hyperparameters of the four
reconstruction-based anomaly detection architectures were selected
as follows.

1) Linear autoencoder:Thismodel consists of input/output layers
of size 432 each and a code layer of size 30.The linear activation
function is used for all the neurons.

2) Fully connected autoencoder: This model consists of an
input/output size of 432, a hidden layer of size 196, code layer
of size 40 in both the encoder and decoder parts.

3) 1D convolutional autoencoder:The number of filters, structure
of convolution, max-pooling and upsampling layers, and the
associated hyperparameters are detailed in Table 2.

4) LSTM: A many-to-many unidirectional LSTM network with
one LSTM layer consisting of 20 LSTM units is employed. The
input of the model is a data sequence of 48 time steps with a
vector of 9 measurements in each time step.

TABLE 2 1D convolutional network structure.

Index Layer
type

Output dimensions Parameter

Length Count

1 Input 432 1 —

2 Zero Padding 436 1 pad size = 2

3 Convolution 436 48 filter size = 4

4 max pooling 218 48 window size = 2

5 Convolution 218 96 filter size = 4

6 max pooling 109 96 window size = 2

7 Convolution 109 192 filter size = 4

8 Convolution 109 192 filter size = 4

9 up sampling 218 192 window size = 2

10 Convolution 218 96 filter size = 4

11 up sampling 436 96 window size = 2

12 Convolution 436 48 filter size = 4

13 up sampling 436 1 window size = 2

14 cropping 432 1 size = 432

6.3 Simulation results

The following case studies are considered for the testing of the
proposed method. Precision and recall metrics, which are better
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TABLE 3 Performance of the anomaly detection systems before
adversarial training.

Linear AE Fully-connected AE

Prec Rec F1 Prec Rec F1

0.94 1 0.94 0.985 1 0.99

1D CNN LSTM

Prec Rec F1 Prec Rec F1

1 1 1 0.936 1 0.96

suited for imbalanced datasets, are used to evaluate the performance
of anomaly detection systems.

6.3.1 Model performance before adversarial
training

In order to evaluate the performance of the models described
in Section 6, an attack dataset is created by generating 250 attack
samples from each category as described in Section 3, which
amounts to 1,000 attack samples in total. Table 3 shows the
performance of the models before adversarial training.

For each model, a threshold is selected to maximize the recall
and then maximize the precision when the recall is fixed. Although
the linear autoencoder is a powerful baseline technique, we observe
that, in our problem, it has the weakest performance due to
insufficient learning capacity compared to the other architectures. In
contrast, the CNN demonstrates the best performance, even above
LSTM which is designed for sequence prediction. However, this is
not unexpected (Bai et al., 2018; Zhang et al., 2015) and we observe
that the shift-invariance properly of CNNs helps to achieve the
superior performance, in part, because of the random shifts added
to the dataset as outlined in Equation 34.

6.3.2 Models performance after adversarial
training

We generated 500 adversarial samples using Algorithm 1 and
divided the adversarial data set into non-overlapping training and
test sets of 250 samples each. All four models were able to learn
the adversarial samples; this was tested using the adversarial sample
generalization set for which all four models were able to identify
100 percent of the samples as anomalies. However, as discussed
in Kurakin et al. (2016b), adversarial training may have the effect
of decreasing model performance if the model is not sufficiently
powerful. As such, we also evaluated the performance of the
models on the benign samples after adversarial training and results
are shown in Table 4. Note that all recall values are 100% and A
denotes the adversarial sample generation method.

As observed in the table, there is a dramatic drop in the
performance of the linear autoencoder in the case of PGD and
DeepFool and a slight decrease in LSTMmodel performance in case
of PGD, JSMA and all methods combined. In contrast, the 1D CNN
maintained its stellar performance in case of PGD, DeepFool and
JSMA, and the fully connected autoencoder’s performance slightly
increased after adversarial training except for the DeepFool case.We

TABLE 4 Performance of The Anomaly Detection Systems before and
after adversarial training.

A Model Before After

Prec F1 Prec F1

PGD

Linear AE 88.70% 94% 76.80% 86.8%

Fully connected AE 98.5% 99.2% 99% 99.5%

CNN 100% 100% 100% 100%

LSTM 93.6% 96.6% 92.30% 96%

DeepFool

Linear AE 88.70% 94% 76.8% 86.8%

Fully connected AE 98.5% 99.2% 97.7% 98.8%

CNN 100% 100% 100% 100%

LSTM 93.6% 96.6% 95.1% 97.4%

JSMA

Linear AE 88.70% 94% 88.70% 94%

Fully connected AE 98.5% 99.2% 98.9% 99.4%

CNN 100% 100% 100% 100%

LSTM 93.6% 96.6% 91.8% 95.7%

All Methods

Linear AE 88.70% 94% 88.70% 94%

Fully connected AE 98.5% 99.2% 99% 99.5%

CNN 100% 100% 99% 99.5%

LSTM 93.6% 96.6% 93.1% 96.4%

argue that the slight increase in the performance after adversarial
training can be attributed to the fact that adversarial training can act
as a regularizer (Kurakin et al., 2016b).

6.3.3 Generalization of adversarial training
We study the ability of our adversarial training approach to

generalize against other attacks. This case study helps to pick the
best adversarial sample generation method for adversarial training.
To be more specific, we investigated the generalization effect of
adversarial training against adversarial test sets not used in the
adversarial training process. These test sets are generated using the
methods discussed in IV and results are shown in Table 5 where
B denotes the method used to generate adversarial samples for
adversarial training and C denotes the method used to generate
adversarial samples for the generalization set. The results show
the generalization of the adversarial training against the same
method used in the adversarial training and other methods not
used in the training process. Notably, 0% of adversarial sample sets
are detected with models before adversarial training. Adversarial
training generalizes to unseen samples generated by the same
method detecting 100% of the test set. Moreover, using PGD and
JSMA samples, the new model is also robust against DeepFool-
generated samples. However, using PGD for linear autoencoder and
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TABLE 5 Generalization performance of the adversarial training.

C

B model PGD DeepFool JSMA

PGD

Linear AE 100% 100% 0%

Fully connected AE 100% 100% 100%

CNN 100% 100% 100%

LSTM 100% 100% 0%

DeepFool

Linear AE 100% 100% 0%

Fully connected AE 100% 100% 100%

CNN 100% 100% 100%

LSTM 100% 100% 100%

JSMA

Linear AE 100% 100% 100%

Fully connected AE 100% 100% 100%

CNN 100% 100% 100%

LSTM 100% 100% 100%

All Methods

Linear AE 100% 100% 100%

Fully connected AE 100% 100% 100%

CNN 100% 100% 100%

LSTM 100% 100% 100%

LSTM models does not generalize for JSMA samples, and similar
results are observed when DeepFool is used for adversarial training
of linear autoencoder. JSMA outperforms the others in our problem
by generalizing to the other two methods for all four models. JSMA
emphasis on changing the most effective features to craft adversarial
samples can be a reason to achieve attack samples distribution that
the other methods are unable to achieve. Hence, generalization
achieved through adversarial training using them can result in a
more inclusive decision border.

7 Conclusion

In this paper, we demonstrate, for the first time, how false
data injection and time synchronization attacks can be designed
specifically to target power transformer differential protection. To
address this, reconstruction-based anomaly detection models are
investigated to enhance cybersecurity of smart grids. However,
these models themselves are shown to be vulnerable to cyberattack
and we assert in this paper that security of such models can be
addressed, in part, through adversarial training. Hence, we propose
the first approach for adversarial training of reconstruction-based
anomaly detection models and apply that to the problem of power
transformer differential protection.

To generate adversarial samples, we leverage three different
approaches: PGD, DeepFool, and JSMA. The performance of
the models on non-adversarial datasets are studied before and
after adversarial training. Moreover, we study the abilities of the
models to generalize to unseen adversarial samples generated by
other adversarial sample generation methods. Results demonstrate
that JSMA exhibits the best generalization over all the models
and adversarial samples generated using PGD and DeepFool.
Moreover, after adversarial training, the CNN can maintain its
performance over non-adversarial samples by 100% precision and
recall. According to the results, employing the proposed method
for adversarial training with the CNNmodel architecture combined
with JSMA adversarial sample generation results in a more secure
anomaly detection model compared to the other approaches.
Future work will expand upon our approach to adversarial sample
generation and will address other attacks against anomaly detection
models for smart grid cybersecurity. Also, this research could
be expanded by exploring other adversarial defenses including
robust feature learning. Moreover, Using the results of this research,
including the high performance of JSMA in adversarial sample
generation, can give us hints in order to engineer the features.
Another research direction is to investigate the possibility of feature
engineering in order to propose features that can be used in shallow
or simpler machine learning models in order to detect anomalies.
Also, this approach can be expanded to other types of power system
protection mechanisms beyond PTDP.
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