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The demand for fine-grained perception of electricity usage information in the
new power system is continuously increasing, making it a challenge to address
potential unauthorized data access while ensuring channel security. This paper
addresses privacy in power systems requiring efficient source-load interactions
by introducing a novel data compression synchronous encryption algorithm
within a compressed sensing framework. Our proposed algorithm uses a
ternary Logistic-Tent chaotic system for generating a chaotic measurement
matrix, allowing simultaneous data compression and encryption of user-side
voltage and current data. This mitigates high-frequency sampling overload and
ensures data confidentiality. The implementation of a joint randommodel at both
compression and reconstruction stages eliminates the need for key transmission,
reducing management costs and leakage risks. The proposed algorithm was
validated using the PLAID dataset, demonstrating that the time required for a
single encryption-decryption operation can be reduced by up to 81.99%
compared to the asymmetric RSA algorithm. Additionally, compared to the
symmetric AES algorithm, the proposed method significantly enhances
confidentiality.
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1 Introduction

A significant number of distributed energy resources and load components have been
integrated into the modern power system, resulting in increasingly stringent demands for
accurate perception of electricity usage information on the load side (Schirmer and Mporas,
2023; Peng et al., 2022). However, the recording data of voltage and current on the user side
contains extensive information about loads and electricity consumption. With the rise of
non-intrusive load monitoring methods, this unencrypted private information may be
illegally acquired during the data collection process through eavesdropping. Once such data
is accessed by malicious actors, they can analyze various load profiles, occupancy rates,
lifestyles, and behavioral patterns within a given area, potentially compromising users’
normal lives and property security (Wang et al., 2021). Therefore, safeguarding the privacy
of the vast amounts of electricity usage information generated by smart terminals is of
paramount importance.

Utilizing existing symmetric encryption algorithms such as DES, AES, and 3DES can
efficiently encrypt electricity consumption information in non-intrusive load monitoring
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scenarios. However, there is a risk of leakage and decryption of keys
during distribution and transmission (Alsuwaiedi and Alsuwaiedi,
2023). On the other hand, asymmetric encryption algorithms like
RSA, and Elgamal can avoid the risk of key leakage, but they are
computationally complex, with high key management costs, making
it difficult for resource-constrained terminals in non-intrusive load
monitoring scenarios to achieve and ensure data real-time
(Okeyinka, 2015).

Furthermore, the transmission of electricity consumption
information not only carries the risk of interception (Moon et al.,
2019; Ding et al., 2020) but also incurs substantial communication
costs due to the massive data generated by high-frequency sampling,
especially in communication-constrained power user sides, such as
those using Power Line Communication (PLC) mode. Therefore,
efficient and secure transmission of electricity consumption
information, including current and voltage waveform data, under
terminal resource constraints, is crucial for improving the quality of
electricity services and protecting customer privacy in the context of
new power system requirements (Inayat et al., 2022; Mahmoud
et al., 2021).

As the digitalization of power infrastructure accelerates, the
privacy issues surrounding electricity consumption data are
receiving increasing attention, with the security of the
communication layer being crucial for protecting this data
(Ashraf et al., 2021; Rafique et al., 2020). Regarding real-time
collection of massive power big data, reference (Hasan et al.,
2023) proposes a power user data compression algorithm based
on improved atomic decomposition to reduce the volume of
collected data. Reference (Khalid et al., 2023) proposed a state
estimation based on the median regression function (MRF),
which can accurately estimate the state and evaluate the
measurement results affected by data injection and network
attacks. For secure transmission of massive data, reference
(Al-Kadhim and Al-Raweshidy, 2021) proposes a distributed
AES real-time encryption algorithm for wide-area
measurement systems of smart grids, which offloads AES
blocks to the Storm computing platform to reduce encryption
transmission delays. Reference (Zhai et al., 2022) designed two
privacy-preserving outsourcing algorithms for modular
exponentiation operations involved in multidimensional data
aggregation, which allow these smart meter devices to delegate
complex computing tasks to nearby servers for calculation.
Reference (Meng et al., 2023) proposes a selective encryption
algorithm for powering big data based on a Data Stream Manager
(DSM). While these studies effectively enhance the
confidentiality of electricity consumption data, the deployment
of algorithms requires significant software and hardware
resources and incurs substantial additional costs for key
management.

In the context of non-intrusive load monitoring scenarios,
existing research struggles to strike a balance between reducing
transmission costs and key management expenses while addressing
the dual challenges of key security and efficiency, thereby failing to
meet the secure transmission demands of emerging power system
electricity usage data. Compressive sensing, however, presents a
novel signal-processing technique that rapidly reduces signal
dimensions by observing them through measurement matrices.
Given that signal observations can only be reconstructed through

these measurement matrices, said matrices possess key encryption
attributes, facilitating encryption, decryption, and secure
transmission of sensitive data.

Therefore, this paper addresses the privacy protection needs of
non-intrusive load monitoring (NILM) in the context of the new
power system. We propose a novel algorithm for compressing and
encrypting high-frequency electrical consumption data under
terminal resource constraints. The algorithm enhances data
security and confidentiality through the use of a ternary Logistic-
Tent chaotic system and S-box techniques. Meanwhile, compressed
sensing is employed to reduce the volume of front-end data, thereby
improving the efficiency of data transmission. The main
contributions of this paper are as follows:

1) A compressed sensing-based electricity consumption data
compression and synchronous encryption algorithm is
proposed. The algorithm effectively leverages the sparse
characteristics of voltage and current waveform data,
addressing the data overload problem caused by high-
frequency sampling in residential electricity use. It enables
the efficient and secure transmission of sensitive user data.

2) A joint random model for key generation and management
is constructed based on a ternary Logistic-Tent chaotic
system. Through coordination among three chaotic
systems, the model parameters are automatically updated,
diffused, and isolated, thereby defining a secure boundary
for risk propagation. This greatly expands the key space and
ensures the randomness of model parameters in the high-
dimensional mapping space, thus guaranteeing the high
security of data transmission.

2 Key generation of power
consumption datameasurementmatrix
based on compressed
sensing framework

To solve the problem of massive data caused by high-frequency
sampling of voltage and current recording data of power
consumption information, and balance the security and efficiency
of encryption algorithm, this paper proposes to use a compressed
sensing framework to compress and synchronously encrypt power
consumption data on the user side.

Compressed sensing is a technology that can project high
dimensional signals x into low dimensional space y through
measurement matrix Φ. High dimensional signal must be able to
be converted into sparse signals α, and the observation matrix must
meet the Restricted Isometry Property. The process of projection
transformation can be mathematically expressed by Equation 1:

y � Φx � ΦΨα (1)

Using the measurement matrix Φ to observe the data sparse by
the sparse basisΨ, we can obtain the data after dimension reduction.
If we treat the measurement matrix as a key to hide, we can
encrypt the data.

It is proved in (Palczynska et al., 2020) that current and voltage
recording data has sparsity under a DFT sparse basis. In the
compressed sensing framework, we can use the measurement
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matrix Φ to observe the current and voltage recording signal x and
obtain the observed value y. If we hide the measurement matrix Φ,
we can regard the signal observation as signal encryption, and the
observation value y can be regarded as ciphertext. If we need to
decrypt the data, we still need themeasurement matrixΦ. Therefore,
compressed sensing can be regarded as a symmetric encryption
algorithm. The power consumption information synchronous
compression encryption process is shown in Figure 1.

The compressed sensing measurement matrix has a high
selection space, which can increase the keyspace when used as a
key. However, if the traditional deterministic measurement matrix is
directly used as the key, there is still a risk of being decoded.
Therefore, the power consumption information compression
synchronous encryption scheme proposed in this paper uses the
uncertainty measurement matrix as the key to ensure that each
encryption is accompanied by a unique key.

From the above analysis, it can be seen that the
measurement matrix Φ is the core of the compression
synchronous encryption algorithm. If the current and voltage
recording data is K sparse and the measurement matrix meets
the RIP condition, the sparse coefficient can be accurately
reconstructed from the observed value y. RIP condition
definition is shown in Equation 2.

1 − δK( ) α‖ ‖2 ≤ Φα‖ ‖2 ≤ 1 + δK( ) α‖ ‖2 (2)
Research (Puthal et al., 2019) shows that the chaotic

measurement matrix meets the RIP condition of compressed
sensing and can be used for signal observation and
reconstruction. Therefore, this paper selects the logistic tent
chaotic system to generate the chaotic measurement matrix as
the key to electricity consumption information of residents and
enterprises encryption. Its mathematical model is shown in (3).

xn+1 �
μxn 1 − xn( ) + xn 4 − μ( )/2[ ]
mod 1 xn < 0.5
μxn 1 − xn( ) + 1 − xn( ) 4 − μ( )/2[ ]
mod 1 xn ≥ 0.5

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (3)

where, the given initial value x0∈(0, 1) and control parameters
μ∈(0,4). Logistic Tent chaotic system is a composite system of
logistic and tent systems. With the control parameters μ The
bifurcation diagram of its mapping is shown in Figure 2. It can be
seen that the logistic tent chaotic system has a larger mapping
space than the logistic or tent chaotic system. Therefore, using
the logistic tent chaotic system to generate the uncertainty
measurement matrix can not only realize its randomness by
changing the control parameters and initial values but also
further expand the security boundary of the key space and
reduce the risk of key cracking.

FIGURE 1
Compression and encryption process of current/voltage
recording signal.

FIGURE 2
Bifurcation diagram of Logistic-Tent chaotic system.
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3 Compression and encryption of
power consumption information based
on a joint random model

As mentioned above, based on the compressed sensing
framework, this paper uses the logistic tent chaotic system to
generate the uncertainty measurement matrix as the key to
encrypt the user-side power consumption information, which
improves security. The joint random model synchronous
operation is realized at the compression sampling end and
reconstruction end to avoid key transmission and reduce the key
management cost and communication cost of the intelligent
terminal. It also effectively eliminates the risk of leakage in the

key transmission process and improves the confidentiality of the
key. The working principle of the joint stochastic model is shown
in Figure 3.

3.1 Joint stochastic model initialization

Operation 1 (Logistic Tent chaotic sequence generation
operation) For the given initial value x0 and control parameter μ,
a Logistic Tent chaotic sequence l with length len is generated
according to Equation 3, and the generation process is shown in
Equation 4:

l � LOGIS x0, μ, n � len( ) � x1, x2, x3/xn{ } (4)

FIGURE 3
Working principle of a joint stochastic model.
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Operation 2 (nonlinear element group element generation
operation) For the given initial value x0 and control parameter μ,
an element sequence L with length d2 is generated, and the L
expression is shown in Equation 5:

L � ELEMENT x0, μ, d2( ) (5)

ELEMENT (x0, μ, d2) is the element generation operation. The
specific process is as follows:

ELEMENT (x0, μ, d2) is the generation operation of nonlinear
element group elements. The specific process is as follows:

1) The state space of Logistic Tent chaotic system [0, 1] is equally
divided into d2 subspaces, which are expressed as [0, 1/d2), [1/
d2, 2/d2). . .[(d2-1)/d2, 1], and each interval is recorded as Ti,
Ti = [(i-1)/d2, i/d2], and the identifier Li = i is defined.

2) Using the control parameter μ and according to the initial
value x0, m-cycle iteration is carried out first to obtain L =
LOGIS(x0, μ, n =m), to avoid the influence of the initial value,
wherem can be set according to the safety level. The higher the
safety level, the greater the setting of m. Then select a new
initial value of x0 = L [m], j = 1, Z = [](empty set).

3) Calculate x′ = LOGIS(x0, μ, n = 1), judge the situation of the
subspace where x′ is located. If x′∈Ti, then y = Li.

4) Judge whether j is greater than d2. If it is greater than d2,
proceed to step 6, otherwise proceed to step 5.

5) y = (y mod d2) + 1, if y∈Z, then x0 = x′, return to step 3;
Otherwise, Z [j] = y, j = j + 1, x0 = x′, return to step 3;

6) Let L = Z, then L is the sequence of elements, return L, and
operation two ends.

Operation 3 (matrix filling operation) Through the element
sequence L, a matrix A of size d × d is generated. The formation
process is shown in Equation 6:

A � FILL L, d, A( )
0A a[ ] b[ ] � L i[ ]

0
while imod d ≠ 0〈 a � i − imod d( )/d + 1

b � imod d

while imod d � 0〈 a � i/d
b � d

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(6)

Where A [a][b] is the element in row a and column b.
According to the above three operation definitions, the d × d

nonlinear element groups A1, A2 . . . Ak can be initialized by the
preset x01, x

0
2 . . . x

0
k and the control parameters μ1, μ2 . . . μk

according to Equation 7.

Ak � FILL ELEMENT x0
k, μk, d

2( ), d, Ak( ) (7)

The generated group is a nonlinear element, which can
effectively resist differential analysis and linear cryptanalysis, and
can effectively improve the robustness and security of constructing
joint stochastic models.

3.2 Pseudo key pre parameter and mapping
parameter generation

This section generates the pre parameters and mapping
parameters of the pseudo key, realizes the dynamic update of the

joint random model, and then completes the dynamic update of the
measurement matrix to improve the security of the
encryption algorithm.

On the intelligent terminal side, first calculate the Hash-256
value of the variable length string T, and define the operation process
as h = HASH(T). Then, the string h is segmented to obtain
H1~H18 for subsequent parameter generation.

Perform bitwise operation on the split Hash-256 value Hi, and
first obtain four 16-bit binary numbers B1, B2, B3, B4:

Bi � BIN Hi( ) (8)

Shown as Equation 8, BIN(Hi) is an operation that converts the
binary string Hi into a binary number.

Then the pre parameters β1 and β2 are obtained according to
Equation 9.

β1 � DEC B1 ⊕ B2 ⊕ B3 ⊕ B4( ) + 1[ ]/65537
β2 � DEC BIN H5

′( )( ) + 1
{ (9)

Where DEC(Bi) is the operation of converting the binary
number Bi into a decimal number. H5

′ is the (67-r)th to 66th
place of H5.

When the string T is randomly selected and the length is
variable, the above operation ensures the pre parameter β2 has
random floating property, and the nonlinear element group
generated from it has good anti-analysis performance.

Finally, according to β2, (p, q) and equation
βf � Aβ2[p][q]/(d2 + 1), we can calculate the mapping
parameters of random frames.

Therefore, it can be seen that the pre parameters of the joint
stochastic model β1, β2 and mapping parameters βf are generated by
Logistic-Tent chaotic system. Even if the transmitted pseudo key (p,
q) is decoded, the pre parameters and mapping parameters will not
be leaked, to ensure the high security of the real
measurement matrix key.

The scrambling parameter β4 is generated by Equation 10.

β4′ � BIN H7( ) ⊕ BIN H8( ) ⊕
BIN H9( ) ⊕ BIN H10( )
β4 � e DEC β′4( )+1[ ]/65537 − 1( )/ e − 1( )

⎧⎪⎨⎪⎩ (10)

3.3 Dynamic update of a joint
stochastic model

The nonlinear mapping feature based on a logistic tent
chaotic system improves the ability of the encryption
algorithm to resist chosen plaintext attack (CPA) and known-
plaintext attack (KPA). However, if a large number of plaintext-
ciphertext pairs are leaked, it is still possible to analyze and
decode, which will inevitably affect the confidentiality of the real
key. To reduce the probability of being decoded, this paper
introduces the third logistic tent chaotic system into the
model for the dynamic update of the joint random model, that
is, when the power consumption information is encrypted every
time, the chaotic system is used to update the nonlinear element
group immediately, maintain the dynamic change, and give the
key timeliness at the same time.
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This process is as follows: first, generate the scrambling
parameter β4 through Equation 10, then calculate and update
parameter β5 according to Equation 11.

β5x � BIN H11( ) ⊕ BIN H13( ) ⊕ BIN H15( ) ⊕ BIN H17( )
β5y � BIN H12( ) ⊕ BIN H14( ) ⊕ BIN H16( ) ⊕ BIN H18( )
β5′ � DEC β5x( ) × DEC β5y( )
β5 � lPer β5′[ ]/65537

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(11)

After obtaining the updated parameter β5, a new element group
based on the Bernoulli matrix is generated by using the scrambling
parameter β4 and the control parameters μS and μPer, and the
existing β 2-th element group is replaced and updated. The
specific process is shown in Equations 12, 13.

The local update strategy used in this paper can maintain the
dynamic change of the element group while minimizing the
computational overhead. Confusion of nonlinear element group
by the Bernoulli matrix can improve the confidentiality. Figure 4
shows the hardware implementation structure of compression
synchronous encryption.

l′A � INDEX LOGIS β4, μPer, n � d2( )( )
lA � l′A i[ ]mod 2 � 10lA i[ ] � 1

l′A i[ ]mod 2 � 00lA i[ ] � −1{
⎧⎪⎪⎨⎪⎪⎩ (12)

L′
A � ELEMENT β5, μA, d

2( )
LA � INDEX L′

A ⊗ lA( )
Aβ2 � A′ � FILL LA, d, A′( )

⎧⎪⎪⎨⎪⎪⎩ (13)

4 Synchronous decryption of power
consumption information
reconstruction

The compressed sensing synchronous encryption proposed in
this paper is essentially a symmetric encryption algorithm, but this
algorithm is different from the traditional symmetric encryption
algorithm. This algorithm deploys the same joint random model at
the compression sampling terminal and the reconstruction terminal,
and only performs a single exchange of pseudo keys. The
reconstruction end can complete the reconstruction of the key
under the dynamic synchronization of the joint random model,
and then decrypt and recover the original signal through the
reconstruction algorithm at the same time.

After receiving the pseudo key (p, q) and T, the reconstruction
end regenerates β1, β2, β3, β4, β5, βf in the way of sections 2.1˜2.4.
Then, the measurement matrix Φ9 is reconstructed according to
Equation 14.

lPer′ � INDEX LOGIS β4, μPer, n � M × N( )( )
LPer
′ � lPer′ i[ ]mod 2 � 10LPer

′ i[ ] � 1
lPer′ i[ ]mod 2 � 00LPer

′ i[ ] � −1{
l′Φ � LOGIS β3, μΦ, n � M × N( )
Φ′ � FILL l′Φ ⊗ LPer

′, N,Φ′( )

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(14)

After the reconstruction of the observation matrix Φ9 is
completed, the terminal can reconstruct the original signal using
the encrypted data y and the sparse basisΨ sent by the sampling end
according to Equation 15.

~α � arg min α‖ ‖0 s.t y � Φ′Ψα (15)

FIGURE 4
Hardware implementation of compression synchronization encryption.
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The aforementioned expression necessitates exhaustive
exploration of all potential outcomes to minimize the l0 norm, a
task known to be NP-hard. Nonetheless, given that the measurement
matrixΦ9 satisfies the Restricted Isometry Property (RIP), Equation
15 can be reformulated into an equivalent convex optimization
problem based on the l1 norm, as demonstrated in Equation 16.

~α � argmin α‖ ‖1s.ty � Φ′Ψα (16)

Multiple algorithms exist for solving sparse coefficients. In this
paper, the generalized orthogonal matching pursuit (gOMP)
algorithm is used for this purpose. Following the derivation of
the optimal solution of sparse coefficients using Equation 16, the
inverse transformation x′ � Ψ~α is carried out to retrieve the
decrypted current and voltage recording data.

Furthermore, the comprehensive encryption and decryption
process of the synchronous encryption algorithm, tailored for
compressing electricity consumption information of both
residents and enterprises, is depicted in Figure 5.

5 Results and discussion

This section takes the PLAID household electricity data set as an
example and analyzes and verifies the performance of the algorithm

from four aspects: the feasibility of the electricity information
compression synchronous encryption algorithm based on the
compressed sensing framework, the key sensitivity, the
encryption and decryption efficiency, and the anti-invasive
analysis of the compressed and encrypted electricity data. The
PLAID data set contains the current and voltage measurements
of 11 different electrical appliances in more than 60 households in
Pittsburgh, Pennsylvania, United States. The sampling frequency
during data collection is 30 kHz, including a total of 1074 groups of
samples. The simulation was conducted on a computer equipped
with an Intel Core i7-13700KF processor, 12GB of RAM, and an
NVIDIA RTX 4090 graphics card, running the Ubuntu 22.04.3 LTS
operating system.

5.1 Algorithm feasibility

The operational dynamics and state transitions of various
electrical devices on the user side often manifest substantial
fluctuations and diverse current change patterns, while
corresponding voltage fluctuations typically exhibit limited
amplitude and a singular mode of change. Consequently, a
comprehensive analysis of current recording data allows for the
extraction of intricate and detailed power privacy information. To

FIGURE 5
Power consumption information compression synchronous encryption and decryption algorithm flow.
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assess the practical viability of the proposed algorithm, this section
leverages the PLAID dataset. Specifically, three distinctive current
fluctuations associated with different electrical equipment—namely,
current attenuation, current distortion, and current mutation—are
selected. The reconstruction is performed using the g-OMP
algorithm, and a comparative analysis is conducted with other
algorithms integrated within the compressed sensing framework.
These algorithms encompass the encryption algorithm based on the
Bernoulli matrix (BM-CSE), the encryption algorithm based on a
sparse random matrix (SRM-CSE), the encryption algorithm based
on the partial Hadamard matrix (PHM-CSE), and the encryption
algorithm based on Gaussian matrix (GM-CSE).

Firstly, the experimental evaluation focuses on the encryption
and decryption of current fluctuation data under various
scenarios with a compression ratio (CR) set at 0.3. The
compression ratio (CR), a pivotal parameter indicating the
extent of data compression, is defined in Equation 17. The
assessment provides insights into the algorithm’s performance
across diverse operational conditions, contributing to a thorough

understanding of its applicability and effectiveness in real-world
deployment scenarios.

CR � y/x (17)

Where y represents the length of the signal observation value, x
represents the length of the original signal, and the reconstruction
result is shown in Figure 6.

According to the results in Figure 6, when CR = 0.3, the
reconstruction effect of this algorithm for the three current
fluctuation signals is better than the other four comparison
algorithms, and the decrypted waveform is consistent with the
original signal. After normalizing the current, the mean square
error of the decryption result of the current attenuation signal in
this algorithm is MSE = 2.25 × 10−3, mean square error of decryption
result of current distortion signal MSE = 1.53 × 10−3, mean square
error of decryption result of current mutation signal MSE = 1.86 ×
10−3, which ensures that the signal will not be distorted after
compression sampling encryption and reconstruction decryption.

Furthermore, Figure 7 shows the MSE of the original signal and
the reconstructed decrypted signal under different compression
ratios after data normalization.

According to the experimental results, it is observed that as the
depth of compression increases, i.e., the compression ratio (CR)
decreases, the Mean Squared Error (MSE) gradually increases. Even
with a depth compression scenario where CR = 0.3, the average
deviation range of the current disturbance signal is only 2.7%.

When the compression ratio exceeds 0.5, the average deviation
of the current disturbance signal is below 1%. The error still falls
within the 5% error range specified by the Chinese national standard
GB/T 19862-2016 “General Requirements for Power Quality
Monitoring Equipment” (GB/T 19862, 2016), which adequately
meets the accuracy requirements of non-invasive real-time
monitoring data for residents and enterprises.

Simultaneously, to compare the comprehensive performance of
the proposed algorithm, three types of current fluctuation signals are
still selected. The performance differences of the proposed algorithm
in compression, synchronous encryption, and reconstruction
decryption processes are compared with other encryption
algorithms using BM-CSE, SRM-CSE, PHM-CSE, and GM-CSE
algorithms under different compression ratios. Table 1 presents the
decryption accuracy of different algorithms at CR = 0.1.

From the experimental results, it is evident that compared to the
BM-CSE, SRM-CSE, PHM-CSE, and GM-CSE algorithms, the
proposed algorithm demonstrates superior decryption accuracy
for the three different signals. Under the condition of limited
signal observation values, the decryption error of this algorithm
can be reduced by up to 54.5% compared to other algorithms,
making it particularly suitable for deployment in resource-
constrained scenarios.

5.2 Comparison of reconstruction results

To clarify the research contributions and technological
innovations of this paper, several mainstream power data
encryption techniques in the current field, along with their
limitations, are compared. As shown in Table 2, although these

FIGURE 6
Comparison of reconstruction effects of different algorithms. (A)
Current attenuation signal. (B) Current distortion signal. (C) Current
mutation signal.
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techniques each have advantages in data security, they fall short in
terms of data reconstruction performance, resource efficiency, and
computational complexity. The proposed solution in this paper
integrates compressed sensing and chaotic systems, aiming to
overcome these limitations and provide a novel approach to
power data processing that is both secure and achieves a high
data reconstruction rate. Two commonly used comparative
metrics in these fields are first defined:

The Peak Signal-to-Noise Ratio (PSNR) is a commonly used
metric for assessing the quality of image and signal reconstruction. It
is defined based on the Mean Squared Error (MSE, defined by
Equation 18) between the original signal x and the reconstructed
signal x̂.

MSE � 1
n
∑n
i�1

x i[ ] − x̂ i[ ]( )2 (18)

Here, n is the length of the signal, and x [i] and x̂[i] represent
the values of the original signal and the reconstructed
signal at position i, respectively. The PSNR is defined by
Equation 19:

PSNR � 10 · log10
MAX 2

x

MSE
( ) (19)

Here, MAXx is the maximum value of the original signal, which
is normalized to the range [0, 1], with MAXx = 1. A higher PSNR
indicates smaller error and better quality of signal reconstruction.

In this context, M represents the number of rows in the
measurement matrix, N denotes the dimensionality of the signal,
K indicates the sparsity of the signal, and q refers to the number of
non-zero elements in each row of the measurement matrix for the
corresponding algorithm.

5.3 Comparison of reconstruction accuracy
and efficiency of different algorithms

Reconstruction algorithms are crucial to ensuring the accurate
reconstruction of compressed sensing observation data. Currently,
reconstruction algorithms are mainly divided into greedy algorithms
and convex optimization algorithms. Compared to greedy algorithms,
convex optimization algorithms have higher computational complexity
and lower time efficiency, making them challenging to apply in NILM
(Non-Intrusive Load Monitoring) scenarios, which require real-time
data processing. Due to their good accuracy and efficiency, greedy
algorithms have become the preferred choice for compressed sensing
reconstruction in NILM contexts. However, there are many types of
greedy algorithms, each with certain differences. The characteristics of
common greedy algorithms are summarized below:

FIGURE 7
Signal decryption effect under different CR.

TABLE 1 The reconstruction effect of this scheme is compared with other schemes.

Current attenuation/10−3 Current distortion/10−3 Current mutation/10−3

BM-CSE 9.167 144.606 100.809

SRM-CSE 11.506 217.771 73.321

PHM-CSE 15.332 167.135 61.221

GM-CSE 10.437 115.842 87.844

Proposed method 8.308 110.994 45.793

TABLE 2 Comparison of existing related algorithms.

Research Technology/Algorithm PSNR
(dB)

Measurements for recovery
guarantee

Computational cost per
encryption

Cho and Yu (2020) Security-compressed sensing based on sparse
matrices

28.965 O(K logN
K) qM + Nlog2N

Cambareri et al.
(2015)

Multi-class encrypted attribute compressed
sensing algorithm

31.594 O(K logN
K) M2+N2

Wang et al. (2019) Parallel compressed sensing image security
scheme

33.4203 O(N logN
K) MN

Ours Data compression and synchronous
encryption

34.2101 Ω(K log2 K log3 N) MN
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Reconstruction accuracy and execution efficiency are two key
factors that must be considered in reconstruction algorithms.
Therefore, in this paper, voltage, current, and power signals are
used as examples. Multiple sets of controls are established, where
the same observation matrix, sparse basis, and compression ratio
(Compression Ratio, CR) are applied to test the reconstruction
algorithms shown in Table 3. The compression ratio is a
parameter that represents the degree of data compression, and
is defined as: CR = y/x, where y represents the length of the signal
observation vector, and x represents the length of the original
signal. Based on the tests, the average reconstruction error (error)
and execution time (time) for each reconstruction algorithm are
obtained. Using the error and time values of the OMP algorithm
as reference, the error and time values of the other algorithms are
calculated for comparison, as shown in Figure 8.

As shown in the Figure 8 and Table 4, compared to the OMP
algorithm, the ROMP, SAMP, and gOMP algorithms show
improvements in both execution time and reconstruction
accuracy. Although the execution efficiency of the gOMP
algorithm is slightly lower than that of the SAMP algorithm, its
reconstruction accuracy is much higher. Additionally, the SAMP
algorithm requires a more sophisticated sparse optimization
strategy to handle the complex and variable monitoring
conditions, whereas the gOMP algorithm does not face this
issue. Therefore, in this paper, the gOMP algorithm is chosen

as the reconstruction algorithm for compressed observations of
NILM real-time monitoring data.

In this study, the Generalized Orthogonal Matching Pursuit
(gOMP) algorithm is used for signal reconstruction. A performance
comparison is made with several other algorithms. If the residual
between the recovered signal x̂ and the original signal x is less than
1e-6, the reconstruction is considered successful.

The OMP algorithm shows a rapid decline in performance,
indicating that as sparsity increases, its recovery success rate quickly
decreases. ROMP performs similarly to OMP, but slightly better. SP
outperforms both OMP and ROMP, maintaining relatively high
performance even at moderate sparsity levels. The SAMP algorithm
demonstrates a higher recovery success rate, maintaining good
recovery performance even at higher sparsity levels. gOMP
performs the best, maintaining a high recovery success rate even
with high sparsity. This suggests that the gOMP algorithm has a
significant advantage in handling highly sparse signals.

5.4 Key sensitivity analysis

A robust encryption algorithm should exhibit high sensitivity to
the encryption key to thwart malicious decryption attempts using
similar keys. In this paper, the proposed algorithm leverages a
pseudo key and a chaotic system to establish a joint random
model for generating the authentic key. The chaotic system,
known for its strong sensitivity to initial values, ensures that even
minor alterations in the pseudo key and key parameters result in
propagated differences within the measurement matrix. This leads
to amplification, ultimately yielding a completely distinct key and
consequent decryption failure.

To assess the key sensitivity of the algorithm, three
representative current fluctuation signals from the plaid power
dataset are utilized. Specifically, when the compression ratio (CR)
is set to 0.5, the data undergoes encryption, followed by
decryption using both the original key and a tampered key
with a single-bit modification. The experimental outcomes are
illustrated in Figure 9.

It can be seen from Figure 9 that even if only 1 bit of the key is
changed, the decrypted signal will become a noise signal, and its
MSE reaches 0.61. It is completely impossible to obtain any useful
information about the original signal, which verifies that the
algorithm in this paper has high key sensitivity.

TABLE 3 Comparison of common greedy algorithms.

Algorithms Characteristics

Orthogonal Matching Pursuit (OMP) Improvements to the MP algorithm avoid duplication of atoms

Regularized OMP (ROMP) Improvements to the OMP algorithm introduce regularization ideas, and single or multiple atoms can be selected in a single
iteration

Sparse Adaptive Matching Pursuit (SAMP) Improvements to the OMP algorithm introduce regularization ideas, and single or multiple atoms can be selected in a single
iteration

Subspace Pursuit (SP) Introduce the backtracking idea, remove unreliable atoms in each iteration, and select multiple atoms

Generalized Orthogonal Matching Pursuit
(gOMP)

Improvements to the OMP algorithm, select multiple atoms in a single iteration

FIGURE 8
Comparison of reconstruction accuracy and efficiency of
different algorithms.
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5.5 Encryption efficiency

Effectiveness is another important requirement for non-invasive
load monitoring of power consumption information, so the
efficiency of the algorithm needs to be considered when
compressing and encrypting data. Select current and voltage
recording data of different lengths here, test the time required to
complete one encryption and decryption when CR = 0.5, and
compare it with RSA and AES encryption algorithms. The results
are shown in Figure 10.

As depicted in Figure 10, the encryption and decryption time
required by the proposed algorithm for a given signal falls
between that of the RSA and AES algorithms. Notably,
compared to the RSA algorithm, the proposed algorithm
achieves a maximum time reduction of 81.99%. Despite
exhibiting slightly longer encryption and decryption
durations compared to the AES algorithm, the proposed
algorithm compensates by offering enhanced key space and
heightened confidentiality, with only a marginal increase
in time overhead. Moreover, as signal length increases
linearly, the encryption and decryption time of the proposed
algorithm experiences only modest growth. In contrast, the
encryption and decryption time of the RSA and AES
algorithms demonstrates a direct correlation with signal
length. For instance, when transitioning from a signal length
of 512 bytes–1024 bytes, the encryption and decryption time of
the proposed algorithm increases by 55.65%, whereas the
corresponding increases for RSA and AES algorithms are
110% and 84.13%, respectively. This divergence arises from
the fixed length of data encrypted by RSA and AES, thereby
making their encryption and decryption times contingent upon
the number of encryptions performed. Conversely, the variable

data length encrypted by the proposed algorithm results in the
majority of time consumption being attributed to the
reconstruction phase, a process less susceptible to fluctuations
in the data length.

A detailed examination of the experimental outcomes
presented in Figure 10 reveals noteworthy insights that the
symmetric encryption algorithm AES exhibits equivalent
encryption and decryption times, while the asymmetric
encryption algorithm RSA predominantly allocates time
during the encryption stage. In contrast, the compression
encryption time of the algorithm proposed in this paper
significantly surpasses the reconstruction decryption time.
Specifically, when the signal length is 1024 bytes, the
encryption time constitutes merely 13.41% of the decryption
time. This algorithm demonstrates an asymmetric demand
for encryption and decryption computing resources, rendering
it particularly well-suited for the intricate operational conditions
of power grid systems. To enhance operational efficiency, the
field side implements a streamlined approach by employing a
lightweight acquisition device coupled with a potent server
endowed with robust computing capabilities. This strategic
choice aligns with the algorithm’s resource utilization patterns,
accommodating the distinct computational demands associated
with encryption and decryption processes, as opposed to the
more uniform resource requirements of traditional RSA and
AES algorithms.

6 Conclusion

Aiming at the actual demand of load identification in the new
power system source load interaction, this paper introduces a novel

TABLE 4 Performance of different algorithms at different sparsity levels.

Sparsity level K OMP(%) ROMP(%) SP(%) SAMP(%) gOMP(%)

5 100 100 100 100 100

10 98 99 100 100 100

15 95 97 99 100 100

20 90 92 98 99 99

25 85 87 95 98 98

30 77 80 93 95 96

35 68 72 89 92 94

40 58 61 84 87 90

45 47 50 76 82 85

50 35 38 68 74 79

55 24 27 60 65 70

60 15 17 50 56 61

65 8 10 39 44 51

70 3 5 29 35 40
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algorithm for compressing and encrypting data, tailored for the
high-frequency acquisition of voltage and current data about
residential and enterprise power consumption. This algorithm is

designed to operate efficiently within the constraints of limited
terminal resources while safeguarding data confidentiality. The
proposed approach seamlessly integrates principles from

FIGURE 9
Comparison diagram before and after signal decryption. (A) Current attenuation signal. (B) Current distortion signal. (C) Current mutation signal.
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compressed sensing and chaotic encryption techniques.
Leveraging the logistic tent chaotic system and nonlinear
element group, it establishes a coherent random model to
generate a chaotic measurement matrix. By ensuring
compressed sampling, the algorithm significantly expands the
key space, thereby enhancing resistance against differential
analysis. Moreover, a synchronized operation is implemented
between the sending and receiving ends of data compression
sampling, utilizing a joint random model. This facilitates the
transmission of pseudo keys exclusively, mitigating the risk of
real key leakage and thereby enhancing the confidentiality of the
keys and the overall security of residential electricity data.
Empirical validation using real-world data from the PLAID
household electricity dataset demonstrates the heightened
sensitivity of the proposed algorithm to cryptographic attacks
such as CPA and KPA. Furthermore, the algorithm exhibits
favorable feasibility and resistance against illicit analysis. In
comparison to the RSA algorithm, this approach demonstrates
superior efficiency in encryption and decryption processes,
characterized by significant computational asymmetry. This
attribute renders it particularly suitable for scenarios
characterized by limited computational capacity at the front-
end terminal and robust service computing architectures at the
back-end master station, as encountered in wide-area non-invasive
load monitoring applications. Therefore, this algorithm can well
meet the security and real-time requirements of data in the new
power system environment, and ensure the privacy and security of
power users.
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FIGURE 10
Comparison of encryption efficiency of different encryption algorithms.

Frontiers in Energy Research frontiersin.org13

Zhao et al. 10.3389/fenrg.2024.1444505

https://github.com/jingkungao/PLAID
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1444505


References

Al-Kadhim, H.M., and Al-Raweshidy, H. S. (2021). Energy efficient data compression
in cloud based IoT. IEEE Sens. J. 21 (10), 12212–12219. doi:10.1109/jsen.2021.3064611

Alsuwaiedi, H. K. A., and Alsuwaiedi, A. M. S. (2023). A new modified DES algorithm
based on the development of binary encryption functions. J. King Saud. Univ.-Comput.
Inf. Sci. 35 (8), 101716. doi:10.1016/j.jksuci.2023.101716

Ashraf, S., Shawon, M. H., Khalid, H. M., andMuyeen, S. M. (2021). Denial-of-Service
attack on IEC 61850-based substation automation system: a crucial cyber threat towards
smart substation pathways. Sensors 21 (19), 6415. doi:10.3390/s21196415

Cambareri, V., Mangia, M., Pareschi, F., Rovatti, R., and Setti, G. (2015). Low-
complexity multiclass encryption by compressed sensing. IEEE Trans. Signal Process. 63
(9), 1–2195, May 1. doi:10.1109/tsp.2015.2407315

Cho, W., and Yu, N. Y. (2020). Secure and efficient compressed sensing-based
encryption with sparse matrices. IEEE Trans. Inf. Forensic Secur. 15, 1999–2011.
doi:10.1109/tifs.2019.2953383

Ding, Y., Wang, B. Y., Wang, Y. J., Zhang, K., and Wang, H. Y. (2020). Secure
metering data aggregation with batch verification in industrial smart grid. IEEE Trans.
Ind. Inf. 16 (10), 6607–6616. doi:10.1109/tii.2020.2965578

GB/T 19862-2016 General requirements for power quality monitoring equipment, GB/
T 19862-2016, 2016.

Hasan, M. K., Habib, A. A., Shukur, Z., Ibrahim, F., Islam, S., and Razzaque, M. A.
(2023). Review on cyber-physical and cyber-security system in smart grid: standards,
protocols, constraints, and recommendations. J. Netw. Comput. Appl. 209 (Jan), 103540.
doi:10.1016/j.jnca.2022.103540

Inayat, U., Zia, M. F., Mahmood, S., Khalid, H. M., and Benbouzid, M. (2022).
Learning-based methods for cyber attacks detection in IoT systems: a survey on
methods, analysis, and future prospects. Electronics 11 (9), 1502. doi:10.3390/
electronics11091502

Khalid, H. M., Flitti, F., Mahmoud, M. S., Hamdan, M. M., Muyeen, S. M., and Dong,
Z. Y. (2023). Wide area monitoring system operations in modern power grids: a median
regression function-based state estimation approach towards cyber attacks. Sustain.
Energy Grids Netw. 34 (Jun), 101009. doi:10.1016/j.segan.2023.101009

Mahmoud, M. S., Khalid, H. M., and Hamdan, M. M. (2021). Cyberphysical
infrastructures in power systems: architectures and vulnerabilities[M]. Academic Press.

Meng, S. P., Li, C. D., Peng, W., and Tian, C. L. (2023). Empirical mode
decomposition-based multi-scale spectral graph convolution network for abnormal
electricity consumption detection. Neural comput. Appl. 35 (13), 9865–9881. doi:10.
1007/s00521-023-08222-8

Moon, J., Lee, S. H., Lee, H., and Lee, I. (2019). Proactive eavesdropping with jamming
and eavesdropping mode selection. IEEE Trans. Wirel. Commun. 18 (7), 3726–3738.
doi:10.1109/twc.2019.2918452

Okeyinka, A. E. (2015). “Computational speeds analysis of RSA and ElGamal
algorithms on text data,” in Proceedings of the World Congress on Engineering and
Computer Science I, 115–118. (WCECS 2015).

Palczynska, B., Masnicki, R., and Mindykowski, J. (2020). Compressive sensing
approach to harmonics detection in the ship electrical network. Sensors 20 (9),
2744. doi:10.3390/s20092744

Peng, B., Pan, Z., Yu, T., Qiu, X., Su, X., and Chen, Z. (2022). Graph data modeling
and graph representation learning methods and their application in non-intrusive load
monitoring problem. Proc. CSEE 42 (47), 6260–6273.

Puthal, D., Wu, X. D., Surya, N., Ranjan, R., and Chen, J. J. (2019). SEEN: a selective
encryption method to ensure confidentiality for big sensing data streams. IEEE Trans.
Big Data 5 (3), 379–392. doi:10.1109/tbdata.2017.2702172

Rafique, Z., Khalid, H. M., and Muyeen, S. M. (2020). Communication systems in
distributed generation: a bibliographical review and frameworks. IEEE Access 8,
207226–207239. doi:10.1109/access.2020.3037196

Schirmer, P. A., andMporas, I. (2023). Non-Intrusive load monitoring: a review. IEEE
Trans. Smart Grid 14 (11), 769–784. doi:10.1109/tsg.2022.3189598

Wang, H., Xiao, D., Li, M., Xiang, Y. P., and Li, X. Y. (2019). A visually secure image
encryption scheme based on parallel compressive sensing. Signal process. 155, 218–232.
doi:10.1016/j.sigpro.2018.10.001

Wang, H. X., Zhang, J. S., Lu, C. B., and Wu, C. Y. (2021). Privacy preserving in non-
intrusive load monitoring: a differential privacy perspective. IEEE Trans. Smart Grid 12
(3), 2529–2543. doi:10.1109/tsg.2020.3038757

Zhai, F., Yang, T., Zhao, B., and Chen, H. (2022). Privacy-preserving outsourcing
algorithms for multidimensional data encryption in smart grids. Sensors 22 (12), 4365.
doi:10.3390/s22124365

Frontiers in Energy Research frontiersin.org14

Zhao et al. 10.3389/fenrg.2024.1444505

https://doi.org/10.1109/jsen.2021.3064611
https://doi.org/10.1016/j.jksuci.2023.101716
https://doi.org/10.3390/s21196415
https://doi.org/10.1109/tsp.2015.2407315
https://doi.org/10.1109/tifs.2019.2953383
https://doi.org/10.1109/tii.2020.2965578
https://doi.org/10.1016/j.jnca.2022.103540
https://doi.org/10.3390/electronics11091502
https://doi.org/10.3390/electronics11091502
https://doi.org/10.1016/j.segan.2023.101009
https://doi.org/10.1007/s00521-023-08222-8
https://doi.org/10.1007/s00521-023-08222-8
https://doi.org/10.1109/twc.2019.2918452
https://doi.org/10.3390/s20092744
https://doi.org/10.1109/tbdata.2017.2702172
https://doi.org/10.1109/access.2020.3037196
https://doi.org/10.1109/tsg.2022.3189598
https://doi.org/10.1016/j.sigpro.2018.10.001
https://doi.org/10.1109/tsg.2020.3038757
https://doi.org/10.3390/s22124365
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1444505

	A synchronous compression and encryption method for massive electricity consumption data privacy preserving
	1 Introduction
	2 Key generation of power consumption data measurement matrix based on compressed sensing framework
	3 Compression and encryption of power consumption information based on a joint random model
	3.1 Joint stochastic model initialization
	3.2 Pseudo key pre parameter and mapping parameter generation
	3.3 Dynamic update of a joint stochastic model

	4 Synchronous decryption of power consumption information reconstruction
	5 Results and discussion
	5.1 Algorithm feasibility
	5.2 Comparison of reconstruction results
	5.3 Comparison of reconstruction accuracy and efficiency of different algorithms
	5.4 Key sensitivity analysis
	5.5 Encryption efficiency

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	References


