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Although the data-driven static voltage stability problems have been widely
studied, most of the classical algorithms focus more on improving the accuracy
of the systemprediction, ignoring the error classification errors generated during
the prediction process. Furthermore, current research ignores the utilization of
data-driven voltage stability assessment of energy storage systems. Therefore,
this paper proposes a static voltage stability assessmentmethod for photovoltaic
energy storage systems based on considering the error classification constraint
algorithm using Neyman-Pearson umbrella algorithms. Firstly, the Spearman
Correlation Coefficient is employed in the feature selection phase. Secondly,
an updated voltage stability assessment (VSA) model is proposed. Compared
with the existing data-driven prediction of system static voltage stability in the
literature, it can realize voltage stability assessment more quickly. Furthermore,
on the basis of rapid voltage stability assessment, the umbrella NP classifier
can also effectively limit the first-class error and attenuate the effect of error
classification by mirroring the control of the number of cycle splits and the type
I classification error threshold. Finally, the simulation and experimental results
show that the effectiveness and robustness of the scheme proposed in this paper
in grid-connected photovoltaic energy farms.

KEYWORDS

voltage stability assessment (VSA), type I classification error, NPU algorithm, Spearman
correlation coefficient, photovoltaic energy storage systems

1 Introduction

Currently, photovoltaic (PV) power generation is becoming more and more popular
due to the integration of modern power systems, thus realizing zero fuel cost, minimum
operating cost and zero pollution (Kumar et al., 2019). Meanwhile, there is no doubt that
its integration with the distribution grid may lead to greater operational loads on the power
system, causing the power system to operate closer to its stabilization thresholds, resulting
in severe static voltage instability problems, which can lead to economic losses and adverse
social consequences Rui et al., 2020a; Wang et al., 2024). Therefore, plenty of researchers
have been investigating the reliability assessment of static voltage stability (VSA), which
is essential for the assurance and stability of power systems (Ghahremani et al., 2019; Ni
and Paul, 2019). Meanwhile, in recent years, the development of Wide Area Measurement
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Systems (WAMS) and PhaseMeasurement Units (PMU) technology
has provided strong data support for AI technology in power
systems, which provides a new research path for power system
researchers to solve the problem of analyzing and evaluating static
voltage stability. Although there have been many research have paid
attentions on these issues, they are still unable to provide some
static voltage stability assessment schemes for grid-connected PV
energy storage systems. To fill this gap, this paper proposes a static
voltage stability assessment method considering error classification
constraints facing photovoltaic energy storage plants.

On one hand, traditional techniques for studying static voltage
stability involve singular value decomposition (Zhang et al., 2019b),
continuous current flow (CPF) (Liu et al., 2016) and sensitivity
analysis (Wang et al., 2016). Based on the idea of continuous
current flow (CPF), several different types of methods are included,
such as CPFLOW (Chiang et al., 1995) and Ajjarapu-Christy
(Ajjarapu and Christy, 1992). The assessment of static voltage
stability is an important component of power system security with
inherent issues of complexity, nonlinearity, uncertainty, and online
monitoring requirements. With the rapid development of Wide
Area Measurement Systems (WAMS) obtained in synchronized
Phase Measurement Units (PMUs), a large amount of data about
the system operation is accumulated in a relatively short period
of time and is rapidly updated on this basis. Conventional time-
domain simulation methods are limited by data processing speed
and computational accuracy; they are usually not suitable for online
applications (Zheng et al., 2013) and cannot handle high-resolution
synchronous phase data from PMUs. Therefore data-driven static
voltage stability assessment based on data has been widely studied
for online monitoring and rapid assessment of voltage steady state
of complex systems Some data mining tools have been used for
on-line voltage stability estimation, such as decision trees (DTs)
(Zhu et al., 2016; Zhu et al., 2017a; Zhu et al., 2017b), support vector
ma-chines (SVMs) (Yang et al., 2018), random forests (RFs) (Pinzn
and Colom, 2019) and stochastic artificial neural networks (ANN),
introduced into VSAs in the form of extreme learning machines
(ELMs) (Zhang et al., 2019a) or randomvector function link (RVFL)
units (Ren et al., 2020). Literature (Su and Liu, 2018) designed
an enhanced online random forest model, which is effective and
fast in assessing static voltage stability. Literature (Fan et al., 2015)
proposed a Relational Exploration (RE)-based scheme for power
system voltage stability assessment to address the problem of
ranking relationships between test-based andmodeled variables and
relative voltage stabilitymargins. In order tomake the classifiermore
accurate and efficient, literature (Khamis et al., 2018) proposed an
integrated classifier consisting of an extreme learning machine with
optimal parameters. Literature (He et al., 2013) utilizes an adaptive
integrated decision tree learningmethod to construct a classification
with better stability performance. In the literature (Cai and Hill,
2022), a long-term VSA real-time continuous monitoring system
using a sliding three dimensional convolutional neural network
(3D-CNN) is proposed. In the literature (Ryan et al., 2021), a data-
driven grid-supporting control system for battery energy storage
systems, which requires no changes to the inverters inner real and
reactive power control loops compared with a conventional grid-
supporting inverter, is proposed. Literature (Su and Hong, 2021),
an online probabilistic Extreme LearningMachine (ELM) algorithm
based on the power transformation technique was established

to be developed. In this literature (Xia et al., 2021), cumulant-
based maximum entropy method (CMEM) combined with Nataf
Transform (NT) is proposed to analyze the steady-state voltage
stability problem considering correlations and uncertainties of
power injections and consumptions. Therefore, data-driven voltage
stability assessment has been widely utilized to assess the stability of
power systems.

Meanwhile, all of the above data-driven based work assumes
that the dataset required for learning can be generated by
system simulation as needed. Throughout the training process,
the data-driven VSA model adapts to each individual sample
without introducing any bias (Zhu et al., 2017a). However, the
number of examples showing voltage instability problems is much
lower than the number of examples showing voltage stabilization
problems, since contemporary power grids usually remain in a
stable operating condition most of the time. It tends to establish
classification rules that are biased in favor of the stable model
due to its superior representativeness. Literature (Wang et al., 2016)
categorizes classification errors into two types of problems and
proposes a data mining algorithm Core Vector Machine (CVM)
based on big data of Phase Measurement Units (PMUs) to solve the
problem. It includes the first type of error that judges an unstable
state as a stable state and the second type of error that judges a
stable state as an unstable state. When the algorithm is utilized
to classify new manuals, this bias inevitably leads to more or less
classification errors.

Thus, This paper introduces a novel method for static voltage
stability assessment tailored to photovoltaic energy storage systems,
addressing specific constraints related to error classification.The key
advantages of this approach are outlined as follows:

1) Development of a Static Voltage Stability Assessment Model:
This model is specifically designed for grid-connected
photovoltaic energy storage systems. It enhances the efficiency
of detecting voltage instability conditions compared to
current methods.

2) Enhanced Adaptability and Error Reduction: The method
focuses on minimizing type I errors in real-time Voltage
Stability Assessment (VSA). It establishes a historical
operational database comprising Voltage Stability Indices
(VSIs) and operational variables. By employing the Spearman
Correlation Coefficient, significant operational variables are
identified, reducing data dimensionality in high-dimensional
datasets.TheNPU algorithm leverages this dataset to guide the
VSA model, allowing various types of Non-Parametric Units
(NPUs) to produce real-time VSA results based on incoming
PMU data. This approach forms the basis for an efficient real-
time system to monitor potential voltage destabilization in PV
energy storage plants.

3) The data-driven data-based static voltage stability assessment
scheme for photovoltaic (PV) energy storage systems proposed
in this paper has good robustness. It is verified that the
scheme is robust even in the face of significant changes in the
operating conditions of the power system (data loss, system
node failures, etc.).

The theoretical foundation is discussed in Section 2, followed
by the proposal of a data-driven VSA strategy specifically
tailored for PV energy storage plants in Section 3. Section 4

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1443677
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#articles


Ye et al. 10.3389/fenrg.2024.1443677

validates the effectiveness of this strategy through simulations and
experiments, while Section 5 provides a comprehensive summary
of the paper’s findings.

2 Problem statement and supporting
mathematical methods

2.1 Voltage stability index (VSI)

The long-term sustainable active power transmission capacity
is a crucial factor for power system operators to consider. This
margin can be defined using the P-V curve. In accordance with
the Continuation Power Flow (CPF) examination, while the power
factor remains constant, and the load active power incrementally
rises (Wang et al., 2021). The operational state commences at
the starting position and proceeds along the P-V curve in the
direction of the voltage instability point. The voltage reaches
the stabilizing boundary at point c, and the Jacobi matrix
becomes singular at point c. When the load’s active power keeps
rising, the voltage will instability, hidden resulting in voltage
collapse within the system. So, the SVA margin is, to some
degree, reflected in the gap between current active power and
maximum active power, and the VSI can be calculated using the
following Equation 1.

Where Pi and Pmax depict the existing active power
consumption and the peak active power demand, correspondingly.
The VSI falls within the range of 0–1, signifying the safety status of
voltage stability.

Power system static voltage stability is mainly influenced by the
active and reactive power of the nodes in the system, and the core
of its stability lies in whether the system is power balanced or not.
The explanation of system voltage stabilization and collapse static
mechanism is to explain the nature of voltage collapse and the causes
of voltage collapse from static analysis theory (Rui et al., 2020b). At
present, the static mechanism analysis of voltage collapse mainly
includes PV curve analysis, QV curve analysis, reactive power
balance analysis, etc. An example of PV curve is shown in Figure 1.

As depicted in Figure 1, when Pi is smaller than Pm, the
system is considered safe. Similarly, the VSI is surpasses than
η. A suitable VSI limit is established by defining a limit value
to distinctly differentiate voltage stable conditions. As a result,
the calculation formula for η is provided in Equation 2, and the
categorization designation for voltage safety can be determined
based on VSI.

Pmax − Pi
Pmax
× 100% (1)

η =
Pmax − Pm

Pmax
× 100% (2)

2.2 VSA classification problem

As depicted in Table 1, based on the VSA categorization
scenarios, a chaos matrix is employed to categorize them under four
distinct groups represents the number of samples predicted as class

FIGURE 1
P–V curve.

TABLE 1 Confusion matrix.

Classification Unstable (0) Stable (1)

Actual

Unstable (0) F00 F10

Stable (1) F01 F11

i that really belong to class j. In this context, an unstable condition is
denoted by “0,” while a stable condition is denoted as “1.” Hence, the
complete classification accuracy (CA) can be determined as follows
Equation 3. Within the framework of VSA, it is essential to take
into account both the first type mistake and the whole classification
accuracy. The risk of the first type error (FE) is defined in
formula 4:

CA =
F11 + F00

F11 + F10 + F00 + F01
(3)

FE =
F10

F10 + F00
(4)

Furthermore, to fully demonstrate the efficiency of the suggested
approach about categorization properties, the FM is employed in
the property’s evaluation test. The FM computes the harmonic
average between Recall(R) and Accuracy(A), providing a more
objective assessment of the ability to identify unstable samples
compared to overall accuracy. Accuracy, FM, and Recall are defined
byEquations 5–7, separately. A greater FM score indicates superior
classification performance.

A =
F11

F11 + F01
(5)

R =
F11

F11 + F10
(6)

FM = 2×A×R
A+R

(7)
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2.3 Spearman correlation coefficient

Traditional statistical correlation coefficients include Pearson
product-difference correlation coefficient, Spearman rank
correlation coefficient, and Kendall rank correlation coefficient.
In this paper, Spearman correlation coefficient is used for
feature selection to reduce the dimension of the original
dataset. As one of the three statistical correlation coefficients,
Spearman correlation coefficient is obtained based on the
relative magnitude of the rank and the observations, which is
a more general nonparametric method compared to Pearson,
which still maintains good performance on nonlinear data
and is less sensitive to outliers, and therefore has better
tolerance.

Spearman correlation coefficient utilizes the magnitude
of the rank order of two variables for linear correlation
analysis, and uses the monotonicity of the function to
estimate the correlation between the indicators R(X)
and R(Y). The Spearman correlation coefficient can be
computed by formula 8.

ρ =
1
n
∑n

i=1
(R(xi) −R (x)) ⋅ (R(yi) −R (y))

√( 1
n
∑n

i=1
(R(xi) −R (x))

2
) ⋅ ( 1

n
∑n

i=1
(R(yi) −R (y))

2
)

(8)

In this formula, ρ is calculated from the ranked set R(x)
and R(y), R(Xi) and R(yi) are elements of the ranked set R(x)
and R(y), R(x) and R(y) is the average of the ranked set R(x)
and R(y) associated characteristics are as follows: 1) ρ ≥ 0.80
indicates that there is extremely strong correlation between R(x) and
R(y). 2) 0.61 < ρ < 0.80 indicates that there is strong correlation
between R(x) and R(y). 3) 0.41<ρ <0.60 indicates that there
is moderately relevant between R(x) and R(y). 4) 0.21< ρ<0.40
indicates that there is weak correlation between R(x) and R(y). 4)
ρ ≤0.20 indicates that there is extremely weak correlation between
R(x) and R(y).

2.4 Umbrella NP algorithm

Suppose a set of samples labeled as 0 is partitioned into two
equal-sized groups, each with a size of n. The first group, along
with some samples labeled as 1, is utilized to instruct a foundational
classifier within a training dataset. Then, a test dataset comprising
the other category of samples labeled as 0 is used to assess the
performance of classifier, the associated categorization scores can be
represented as T1>T2>…>Tn. So, when categorizing a novel sample
by Tk,the likelihood of a sample labeled as 0 being classified as 1 can
be constrained by Equation 9.

P[F(φk) α] ≤
n

∑
j=k
(n
j
)(1− α)jαn−j (9)

where F(φk) represents the type I error odd, and the odds is referred
to as the “breach rate” of φk.The P[F(φk) > α] can be referred to as
the upper limit of the “violation rate” and is denoted as ν(k).

The value of decreases as k increases, and k is determined by the
followingEquation 10:

k =min {k ∈ {1,…,n} :v {k} ≤ δ} (10)

where δ is the upper bound of ν(k). Equation 11 implies that k ought
to be minimized while maintain in ν(k) ≤ δ.

Therefore, the effective implementation of the limitation on the
type I error involves setting the error threshold α according to
specific needs.

The umbrella algorithm based on the NP criterion can enhance
the effectiveness of various traditional data-driven techniques,
including RF, non-parametric naive Bayes (NNB), adaptive boosting
(ADA), penalized logistic regression (Penlog), and support vector
machine (SVM).

The samples labeled as 0 are repeatedly divided M times in a
random and uniform manner. Subsequently, M sub-classifiers are
created for every category of NPU classifier φik using these samples.
Ultimately, the NPU classifier can be acquired using the selection
process of the classifiers, as described in the following Equation 11:

ϕb = I(
1
N

N

∑
i=1

ϕik ≥
1
2
)← (11)

In Figure 2, considering the lack of traditional statistical tools
in reducing class I errors, this paper uses the umbrella algorithm
based on NP theory to construct the classifier. The algorithm can
well control the first type of error threshold for each NP classifier.

3 A comprehensive date-driven
methods for VSA

This study introduces a comprehensive data-driven approach
for VSA, illustrated in Figure 3. This includes a VSA model and
a feature value selection process. To begin, a historical PMU data
collection is used to create starting database comprising operational
parameters and the VSI. Subsequently, the Eigenvalue selection
process is employed to select essential variables, forming the offline
data. Subsequently, the NPU-based VSA model is trained with this
dataset. The model can provide timely results when receiving data
fromWAMS in real time.

Additionally, a strategy for updating the model is put into
action to enhance the VSA model’s ability to adapt to different
factors impacting system operation. In conclusion, this approach
encompasses feature selection, model training and updating, online
assessment.

3.1 Database generation

Creation of the database represents the initial and foundational
step in developing the VSA model. This starting database ought to
contain a wealth of operational data from power systems. Utilizing
simulations derived from historical PMU data, many specimens can
be generated through the CPF.These specimens encompass a variety
of operational variables along with the Voltage Stability Index (VSI).
Subsequently, each sample’s classification label can be determined
using the threshold η for VSI.

However, relying solely on historical data is often insufficient,
as it may not capture all potential operating behaviors of power
systems. Therefore, in the process of generating the database, it
is crucial to incorporate reasonable fluctuations to encompass
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FIGURE 2
NPU algorithm.

FIGURE 3
A comprehensive date-driven methods for VSA.

a wider range of potential system operational behaviors, thus
enhancing the richness of the database. To ensure that the simulation
scenariosmore closely resemble the real power system environment,
the starting load bus power factor is intentionally randomized
for all load buses during the system initialization in simulation
phase. Ensure that the raw power factor of each load bus is vary.
Both active and inactive power of the bus grow proportionally
as the load increases. In theory, with the expansion of data
generation, the power factor per bus will increase steadily. This
allows for the simulation of various power factor scenarios within
the sample space received through simulations, ensuring that the
VSA data employed for training covers a wide range of power
factor scenarios.

3.2 Feature value selection

With the increasing complexity of the power system, the
complexity of the initial dataset is increasing, which has a serious
impact on the prediction efficiency of the VSA. Therefore, feature
selection based on Spearman correlation coefficient is used to
identify key variables that are significantly correlatedwithVSI before
model training. Utilizing the database, the Spearman correlation
coefficient examines the relationship between the voltage stability
index (VSI) and the variables, providing a correlation ρ. Identify the

basic feature set by adjusting the ρ threshold value to ≥0.60. This
process effectively reduces the dimensionality of the dataset. In this
way, an offline dataset is generated that includes samples with basic
attributes and vectors representing categorical labels.

3.3 Model training and updating

The offline dataset is then used to train the model and
establish the mapping relationship. Additionally, the Area Under
the Curve (AUC) and the Receiver Operating Characteristic (ROC)
curve are employed to assess the classification performance of the
NPU classifiers and identify those with superior performance. The
horizontal axis of the ROC curve represents the true positive sample
rate (TPR) and the vertical axis represents the false positive sample
rate (FPR), and the true sample rate and false positive sample rate are
calculated as shown in Equations 12, 13. This helps in the selection
of the final VSA model. The AUC is a metric that quantifies the area
under the ROC curve, with values ranging from 0 to 1. Superior
classifier performance is indicated by a grater AUC value. In this
study, the ROC curve is utilized to evaluate the performance of the
NPU algorithm, enabling the selection of specific NPU classifiers for
VSA based on their classification performance (Liu et al., 2023).

TPR =
F00

F00 + F10
(12)
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FPR =
F01

F01 + F11
(13)

In real-world scenarios, the operational conditions of the
power system can experience continual fluctuations due to various
potential factors. Consequently, a VSA model trained solely on
offline data may experience a decline in classification accuracy
when faced with the changing operating conditions. The process of
updating the model is outlined as follows.

When the modified operating state has already been
incorporated. The pertinent NPU classifiers generated during the
offline training stage will supplant the existing classifiers within
the VSA model.

Should the modified operational states not be present in the
offline database, new data samples will be generated for the
training of a new NPU-based VSA model. Furthermore, the revised
operational states are merged with the previously acquired model
within the offline database. Within the database, models and
operational conditions continue to accumulate, the likelihood of
suffering unfamiliar operating stage will progressively diminish. By
implementing the model updating strategy, the pro-posed scheme’s
capability to generalize and adapt to changing operating conditions
can be enhanced.

3.4 Online assessment

During the real-time data driven VSA phase, data can be
collected using PMUs. The data driven VSA model VSA model
will swiftly deliver VSA results after receiving real-time data
from the PMU.

4 Simulation results

In this section voltage stability prediction on PV-ESS and grid-
integrated systems is used to illustrate the effectiveness and good
robustness of the proposed voltage stability prediction scheme
considering error constraints for voltage stability prediction of PV
energy storage systems.

In this research, simulations are carried out to perform
automated data collection through Python programs. The power
stochastic allocation among loads and genera-tors fluctuates
between 70% and 110% to enhance the original database.
It should be noted that during the screening process of the
generated data, check that the voltage at each bus in the
system does not violate the specified thresholds, reactive and
active power per generator and power transmitted per transfer
line. Ultimately, a total of 3,746 specimens were generated
through a range of CPF, each of which contained 407 original
variables.

4.1 VSA test

The NPU algorithm comprises 5 NPU classifiers. The purpose
of this assessment is to pinpoint the best three performing NPU
classifiers. Furthermore, the circular splitting times is set to 3 and
the type I error limit is established at 0.006.

Table 2 presents U, representing the region beneath the
upper closed curve, and L, representing the region below the
lower closed curve. In Figure 4, the horizontal axis depicts
the rate of false positives, which is synonymous with the
type I error risk, while the vertical shaft represents accuracy.
Therefore, when a classifier’s ROC curve is positioned nearer
to the corner, it demonstrates superior performance regarding
precision and FD restriction. Figure 4 indicates that all 4
NPU classifiers have ROC bands situated at the upper-left,
with NPU-ADA, NPU-Penlog, and NPU-RF being particularly
close to the upper-left corner. Similarly, it is obvious from the
values of U and L in Table 2 that the performance of NPU-
RF, NPU-Penlog, and NPU-ADA outperforms other classifiers.
Therefore, we will consider NPU-RF, NPU-Penlog, and NPU-
ADA as options and validate the effectiveness of the proposed
VSA approach.

Table 3 displays the CA, FE, and FM for the chosen NPU
classifiers in the context of the system. Notably, the NPU classifier
can effectively control FM and CA values above 97.5% and FE
values be less than 0.1%. It should be especially noted here that,
to emphasize the excellent performance of the NPU method in
limiting the first type of error classification error as objectively as
possible, several of the basic classifiers chosen for the simulation
experiments are more mature and popular AI algorithms. It
may be better if more advanced machine learning algorithms
are used to limit the error classification. Therefore, the scheme
proposed in this article shows gratifying VSA results in a 23-
bus system.

4.2 Comparison of performance with
conventional classifiers

The proposed integrated scheme based on the NPU models is
compared against traditional data-drivenmethods such as RF, ADA,
and Penlog. Furthermore, to high-light the superior performance
of NPU classifiers in minimizing the type I error, this study
introduces CS learning and Decision Tree C4.5 algorithm. The
comparative results are presented in Table 3. As can be seen
from Table 3, Penlog does not perform as well as RF and ADA
in the CA, FE, and FM values without the action of the NPU
method and the CS method. After optimization with the NPU
method and the CS method, Penlog outperforms the performance
of unoptimized RF and ADA in terms of FE values in the 23-
bus system, which demonstrates that both the NPU and CS
methods are effective in limiting the Type I errors. Nevertheless,
the CA and FM of CS-Penlog and NPU-Penlog are smaller than
ADA and RF, which may be because the type II error causes
a drop in accuracy, leading to the situation in Table. Based on
the FE values, it shows that both the NPU method and the CS
method can reduce the risk of Type I errors well, but the NPU
method performs better than the CS method in limiting Type I
errors. Comparing the RF algorithm without NPU optimization,
its CA, FE and FM performs worse than the Decision Tree C4.5
algorithm. However, after the introduction of the NPU method
of optimization, NPU-RF outperforms the decision tree model in
both CA, FE and FM. From Table 3, it can be visualized that the
FE of CS-ADA and CS-RF is higher than that of NPU-Penlog
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TABLE 2 AUC values with Different Tools.

Tool NPU-RF NPU-ADA NPU-SVMS NPU-penlog NPU-NNB

AUC( × 102)

UPPER 99.99 99.96 8.95 99.94 95.69

LOWER 98.93 98.90 96.64 98.97 93.11

FIGURE 4
ROC curves for different NPU models.

TABLE 3 VSA performance of different classifiers.

Result (%) CA FE FM

Tool

NPU-RF 99.71 0.04 99.63

NPU-ADA 99.47 0.05 99.19

NPU-Penlog 97.72 0.08 97.20

CS-RF 99.66 0.13 99.17

CS-ADA 99.56 0.14 98.80

CS-Penlog 97.21 0.17 97.11

RF 99.60 0.25 98.78

ADA 99.23 0.37 98.19

Penlog 97.50 0.46 96.24

C4.5 99.81 0.11 99.20

in the system. Overall, the mechanism consistently outperforms
the CS method and C4.5 algorithm in reducing the risk of
Type I errors.

TABLE 4 First type error risks of various missing data levels.

FE (%) 10% 20% 30%

Method

NPU-RF 0.06 0.07 0.09

NPU-ADA 0.07 0.07 0.10

NPU-Penlog 0.09 0.10 0.12

RF 0.25 0.30 0.42

ADA 0.43 0.77 1.24

Penlog 0.67 0.96 1.46

4.3 Impact of data loss on VSA
performance

Most current VSA programs assume no loss of PMU data
integrity. Nevertheless, in practical operations, factors such as
equipment damage, physical faults in communication devices, and
equipment maintenance can lead to data gaps. To demonstrate the
NPU algorithm’s ability to handlemissing data, tests were conducted
at data loss levels of 10%, 20%, and 30%. The results for the Type I
error risk are presented in Table 4. From the results in Table 4, it can
be observed that the Type I error risk increases with higher levels
of data loss. In fact, the effect of data loss on RF is not significant,
while ADA is more affected. Due to limitations in the algorithm’s
performance, Penlog’s classification accuracy significantly declines
when there is substantial data loss. With the excellence of the NPU
algorithm, though the rate of Type I error inevitably increases to a
certain extentwith the percentage of data loss, this trend is effectively
controlled. This demonstrates the strong adaptability of the NPU
classifier in coping with the loss of PMU data.

4.4 Unstable sample test

In order to demonstrate the immunity of the VSA scheme to
the PV energy storage system, this paper also considers some other
influencing factors, for example, the change of the system topology
and the fluctuation of the power distribution between the generator
and the load, which generate new samples in the system. It is
worth noting that the data generated under the original topology
should be used to train the model, and then the data under the
new topology should be utilized to implement tests to verify the
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FIGURE 5
Type I error margin effects on VSA performance.

FIGURE 6
Distribution fluctuation test results.

robustness of the VSA model. The CA, FE values of the VSA model
for different topologies are shown in Figure 5. Also, the power
distribution fluctuation results between generator/load are shown
in Figure 6.

As shown in Figure 5, when the number of faults in the system
increases from 1 to 3, the CA values of the various types of NPU
classifiers in the system decrease to some extent. This is due to the

fact that the topology change ultimately leads to a certain degree of
change in the operating conditions of the 23-bus system.However, in
general the method simultaneously still maintains a high CA value.
According to the data, the FE values of these NPU classifiers stay
within the same magnitude after the topology change in the 23-bus
system, which demonstrates that the NPU classifiers are still more
effective in limiting the first type of errors when the topology of the
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TABLE 5 Experimental Results for the first type of Error margin.

CA/FE (%) NPU-RF NPU-ADA NPU-penlog

Type I error thresholds

0.003 99.58/0.03 98.37/0.04 95.38/0.08

0.005 99.73/0.05 99.47/0.06 97.73/0.09

0.007 99.75/0.13 99.67/0.17 97.77/0.25

0.009 99.78/0.14 99.65/0.18 97.80/0.26

0.011 99.65/0.19 99.67/0.25 97.84/0.35

23-bus system is changed.This shows that this VSAmodel has good
robustness in coping with topology changes.

Based on the data in Figure 6, it is possible to know the changes
in the values of CA and FE for the three NPU classifiers when the
range of power fluctuation between generator/load is increased from
10% to 40%. From the values of CA and FE, it is known that the
NPU classifier-based VSA model performs tends to decrease as the
fluctuation range increases. This is due to the power fluctuation
between the generator/loadwhich leads to a significant change in the
operating conditions of the system operation. However, as with the
effect on the VSA model when changing the topology, the accuracy
of the NPU classifier and its performance with respect to the first
type of error limitation remains at an order of magnitude set. This
demonstrates the good robustness of this VSA model in coping
with changes in the system running conditions under conditions of
fluctuating power distribution.

4.5 Effect of type I error thresholds on VSA
model performance

The data-driven integration scheme proposed in this paper can
limit the Class I error rate to an acceptable range by changing the
Class I error threshold α. In order to investigate the effect of the
type I error threshold on the classification performance of VSA.The
following operations were also done. For this system, α was set to
0.003, 0.005, 0.007, 0.009, and 0.011 in test, and the circular splitting
time M of the system was still set to 3. The experimental results of
the values of FE and CA are shown in Table 5. The results show
that when α is in a certain range, the first type of error rate of the
VSA substantial reduction with the decrease of α, while maintaining
a high overall accuracy. Therefore, it can be concluded that there
is a correlation between type I error rate and system accuracy.
In production practice, the system accuracy can be improved by
effectively limiting and adjusting the type I error according to the
requirements.

4.6 Impact of circular splitting times

The research in this article uses an integrated data-driven
approach to construct subclassifies for each class of classifiers.

TABLE 6 Test results for Circular splits time.

FE/CA (%) NPU-RF NPU-ADA NPU-penlog

M

1 0.10/99.52 0.10/99.31 0.17/97.68

3 0.04/99.71 0.05/99.47 0.05/97.72

5 0.03/99.76 0.03/99.64 0.04/97.97

7 0.01/99.89 0.01/99.75 0.03/98.18

The cyclic segmentation model was used during training. In order
to investigate the effect of the number of cyclic splits on the
performance of the VSA model, the number of cyclic splits M of
the training set was set to 1, 3, 5, and 7 for each of the next tests.
The statistical results of the type I error rate of the bus system and
CA index are shown in Table 6. From the information in the Table,
it can be easily known that the first type of error rate gradually
decline and stabilizes as the number of cyclic splits M increases, and
the accuracy of the program has gradually improved. Therefore, in
practical applications, different classification performances can be
realized by adjusting the value of M. In addition, the introduction
of the cyclic splitting pattern has a better effect on improving the
accuracy and generalizability of the VSA model.

5 Conclusion

The conventional data-driven voltage stability prediction
scheme has focused on improving the accuracy of predictions
in general systems, and it neglect to consider the fact that
misclassification in power system operation can have a different
impact as well as in the prediction of voltage stability for energy
storage systems. As a result, an integrated algorithm considering
error classification constraints has been proposed in this paper to
provide voltage stability prediction scheme for PV energy storage
systems. The approach includes a feature selection phase and an
NPU-based VSA model development phase. First, a Spearman-
based feature selection process identifies the key operational
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variables. Second, the scheme constructs a VSA model based on the
NPU algorithm, which effectively controls type I errors and ensures
reliable VSA results.

Finally, the data-driven scheme proposed in this paper is
verified on a bus 23 system, the simulation and experiments show
that the data-driven tool proposed in this paper has a better
accuracy than the traditional data-driven one and can well limit
the generation of class I error. The effects of missing data, node
failures and other factors on the data-driven scheme proposed in
this paper are also verified, which proves that the scheme has
good robustness.
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