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Against the backdrop of smart grid development, the electric power system
demands higher accuracy and comprehensiveness in fault analysis. Establishing a
digital twin platform for multiple equipment faults represents the future direction
of power system development. Presently, while many researchers employ
artificial intelligence algorithms to diagnose faults in key equipment such as
transmission lines and transformers, intelligent diagnostic methods for busbar
faults remain insufficient. Therefore, this paper proposes a busbar fault diagnosis
method based on multi-source information fusion. Initially, the diagnostic
method for busbar faults is explored, conducting both time-domain and
frequency-domain analyses on simulated fault data. The data of this model
are optimized using Dempster-Shafer evidence theory to enhance algorithm
training speed. Subsequently, BP neural network training is implemented. Finally,
validation testing of fault data demonstrates a fault recognition accuracy of 99.1%
for this method. Experimental results illustrate the method’s feasibility and low
computational costs, thereby advancing the development of digital twin
platforms for power system fault diagnosis.
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1 Introduction

With the ongoing advancement of smart grids, the electric power system is placing
greater emphasis on the density, variety, and accuracy of information (Kezunovic, 2011;
Palensky and Kupzog, 2013). In contemporary power systems, fault diagnosis has become
paramount, necessitating concurrent analysis of fault types at multiple grid locations for
unified assessment and planning. In this regard, digital twin platforms have emerged as
pivotal tools (Abo-Khalil, 2023; Sifat et al., 2024). By employing artificial intelligence
algorithms for fault analysis, digital twin platforms help mitigate the subjectivity inherent in
traditional expert analyses, enabling centralized processing of multiple fault datasets, thus
enhancing both the speed and precision of fault diagnosis. Nonetheless, the establishment of
an effective digital twin platform necessitates the comprehensive integration of fault
information from various system components (Wagner et al., 2024).

Within the electric power system, busbars stand out as one of the most critical
components (Jankovski et al., 2023), tasked with the crucial functions of power
collection and distribution. Their uninterrupted operation directly influences the
reliability and safety of the entire power grid. Therefore, timely detection of busbar
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faults and the prompt identification of fault types are imperative for
maintenance. Busbar faults can stem from a multitude of causes,
including short circuits, insulation degradation, equipment
malfunctions, animal interference, and operational errors (Zou
et al., 2018). When a busbar fault occurs, swift intervention is
indispensable to uphold the security of the power system. Despite
the diverse origins of busbar faults, expedited recognition of the fault
type remains the primary focus in fault analysis. Utilizing intelligent
algorithms to diagnose bus faults is crucial. With the development of
smart grids, the intelligentization of fault diagnosis has become
necessary. As a key component of the power grid, the ability to
intelligently diagnose faults in buses can significantly enhance the
safety factor of the grid and meet the needs of smart grid
development.

Currently, the mainstream method for busbar protection is
through current differential protection (Song et al., 2020), which
can disconnect the faulty line when a fault occurs, maintaining the
operation of the power grid under fault conditions until
maintenance personnel conduct repairs. However, conventional
relay protection methods alone cannot effectively determine the
cause of faults, and repair personnel still need to independently
identify the type and cause of the fault. The advancement of
numerical techniques has provided new solutions for busbar
protection, thereby improving the operational stability of the
power system (Hughes and Legrand, 2001). Feser et al. (1991)
introduced a numerical-based approach utilizing artificial neural
networks to recover original signals from saturated CT current
signals, preventing misoperations during external faults.
Nevertheless, CT errors and ratio mismatches may still lead to
misoperations, limiting the development of busbar protection.

To address issues with time-domain analysis, frequency-
domain analysis techniques have been widely adopted in fault
diagnosis due to their efficient and accurate handling of transient
current and voltage analyses (Ahmed et al., 2023; Dang et al.,
2023). Gafoor and Rao (2011) investigated the application of
wavelet transforms in busbar fault detection, successfully
distinguishing between busbar faults and external faults. Their
research effectively tested various types of external and internal
faults, overcoming issues like CT errors associated with
traditional differential protection. However, these methods
only offer improvements within either the time or frequency
domain, still facing challenges in different operational scenarios.
Hence, adopting a diagnostic approach combining multiple
protection schemes is necessary (Jimenez-Aparicio et al.,
2023), analyzing busbar operations from various perspectives
to comprehensively enhance the stability of busbar protection.

On the flip side, artificial intelligence technologies such as neural
networks (Xu et al., 2017; Zhu et al., 2022) and deep learning (Feng
and Zhao, 2022; Ahmed I. et al., 2023) have made significant strides
in the realm of fault diagnosis. Their robust data analysis capabilities
enable them to effectively adapt to the intricate nature of power
system faults and drive the establishment of digital twin platforms
for modern power system fault analysis. For instance, Moldovan and
Buzdugan (2023) applied artificial neural networks to enhance fault
diagnosis efficiency in distribution systems by pinpointing fault
types and locations within cables. Similarly, Li et al. (2020) leveraged
BP neural networks to diagnose rolling bearing faults, conducting
analyses based on both time-domain and frequency-domain data.

In light of these advancements, this paper proposes a novel
busbar fault diagnosis method based on neural networks and
electrical signals. This method integrates time-domain and
frequency-domain analyses to extract fault waveforms
efficiently. By employing DS evidence theory to assign
credibility values to collected fault features, the accuracy and
efficiency of diagnosis are further augmented. Subsequently,
through the integration of signal data from different categories
and subsequent neural network training, a robust busbar fault
diagnosis model is constructed. This model effectively enhances
the accuracy and stability of busbar fault diagnosis. This research
addresses the deficiencies in analyzing busbar faults using
intelligent algorithms in modern power systems, aligning with
the evolving landscape of smart grids.

2 Principle of busbar fault diagnosis

Currently, in diagnosing busbar faults, it is imperative to
establish a robust monitoring system for real-time surveillance of
busbars and associated equipment within the power grid.
Subsequently, the collected data undergoes analysis and
processing, either manually or through algorithms. By
juxtaposing characteristic parameters under normal operational
conditions, anomalies are discerned to ascertain the occurrence
of a busbar fault. In the identification and analysis phase, prior
researchers predominantly relied on parameters such as differential
currents and voltages at pivotal locations within the busbar system
for fault analysis. Hence, this section aims to dissect the
conventional busbar fault analysis paradigm and devise a
differential protection model for a dual-busbar system, as
depicted in Figure 1. By scrutinizing prevalent large and small
differential protection mechanisms in contemporary power grids,
we can attain a more holistic comprehension of the principles,
attributes, and application scenarios of such protection schemes,
thereby furnishing a more robust assurance for the secure and
steadfast operation of power systems.

Large differential protection involves a differential circuit that
includes all branch currents except those from the busbar tie switch
and the sectionalizing switch. This allows for determining whether a
fault has occurred inside or outside the protected zone. As illustrated
by the blue outline in Figure 1, the expression for the large
differential current in busbar differential protection is Equation 1:

Id � I1 + I2 + I3 + I4 + I5 + I6 + I7 + I8 (1)
The function of busbar small differential protection is to

determine the specific location of the busbar fault and to identify
the type of busbar fault. Its main components include the sum of all
branch currents of the busbar itself and the current on the busbar tie
switch, as shown by the red and green outlines in Figure 1. The small
differential current expressions for different busbars are Equations
2, 3:

Id1 � I1 + I2 + I3 + I4 + IML (2)
Id2 � I5 + I6 + I7 + I8 − IML (3)

Based on the above differential protection setup, when a ground
fault occurs on Busbar 1, according to Kirchhoff’s law, we have:
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Id1 + Ignd � 0

and there is no fault on Busbar 2, so Id2 remains 0. Therefore, by
analyzing the small busbar differential current, it is possible to detect
faults on the busbar and determine the fault type. Additionally,
voltage transformers are installed on Busbar 1 and Busbar 2 to
collect voltage waveforms from each busbar, aiding in the analysis of
busbar fault types.

Based on the differential current analysis method, real-time

monitoring and analysis of voltage and current data collected

from critical locations can promptly detect faults and determine

their types and occurrence times.
Based on the above theoretical analysis, set parameters using

MATLAB programming and establish a double-busbar system
with Simulink. For ease of analysis, each busbar is equipped
with two outgoing lines. The simulation model of the double-
busbar fault diagnosis system is shown in Figure 2. Using this

model, it is possible to obtain internal faults, such as three-phase
short circuit faults and single-phase ground faults; external faults,
and dead zone faults, effectively assisting in the analysis of bus fault
characteristics.

For example, in the case of a common single-phase ground fault
on a busbar, when the fault occurs, the large differential current of
the dual-busbar system is first calculated. The waveform, shown in
Figure 3A, indicates that the busbar fault occurs within the zone,
specifically on phase A of the busbar 1. Next, using Equation 2, the
small differential current for Busbar 1 is calculated, revealing a
differential current on phase A of Busbar 1. Simultaneously, data
from the voltage transformer of Busbar 1 indicates that the voltage of
phase A drops to around 0 V at 0.04 s. Consequently, it can be
concluded that a ground fault occurred on phase A of Busbar 1 at
0.04 s. By analyzing the three-phase differential currents and voltage
waveforms, it is possible to effectively identify the fault type and the
fault time for busbar faults.

FIGURE 1
Dual-busbar system differential protection diagram (single-phase example).

FIGURE 2
Simulink-established double-busbar fault waveform analysis model.
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On the other hand, in actual grid operations, faults are typically
not ideal short circuits but involve a certain level of transition
resistance. For instance, tree branches contacting conductors or
aging insulation materials can introduce this resistance. Ignoring
transition resistance may lead to false alarms or missed detections,
thereby affecting the accuracy of busbar fault diagnosis. (Flores and
Song, 2019; Jankovski et al., 2023). Consequently, for a more precise
fault analysis, it becomes imperative to account for the impact of
transition resistors on both the differential currents and voltages
when scrutinizing waveforms, facilitating accurate fault detection.
As depicted in Figure 4, all three-phase differential currents on
Busbar 1 register at 0 A, indicative of an absence of faults on this
busbar. Conversely, on Busbar 2, differential currents manifest on
phases B and C, exhibiting opposite phases, suggestive of ground
faults on these phases. Upon closer inspection of the three-phase
voltage waveforms on Busbar 2, only a marginal voltage drop is
observed on phases B and C, failing to plummet to 0 V. From this
observation, it can be deduced that the fault on phases B and C of
Busbar 2 involves grounding through transition resistors.

From this, it can be inferred that by analyzing the three-phase
differential current waveforms on Busbar 1 and Busbar 2, fault types can
be effectively determined. Therefore, when the differential current on
the bus exceeds the set value, a fault can be confirmed. By using
differential current data collected from different positions on the dual
bus, and analyzing the relationship between the three-phase currents,
the fault type can be identified. This paper analyzes typical fault types
such as three-phase short circuit faults, two-phase grounding faults,
two-phase short circuit faults, and single-phase grounding faults on the
bus. The main objective is to build a foundational bus fault diagnosis
framework, contributing to the goal of intelligent grid diagnosis and
filling the gap in the intelligent diagnosis of bus faults.

3 Establishment of busbar fault
diagnosis model

In traditional methods, busbar fault types are typically analyzed
through busbar differential current waveform analysis, with further

FIGURE 3
Busbar 1 phase a ground fault waveform. (A) BusbarThree-Phase Large Differential Current Waveform. (B) Busbar1 Three-Phase Small Differential
Current Waveform. (C) Busbar1 Three-Phase Voltage Waveform.
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confirmation of busbar faults using busbar three-phase voltages.
Although this process often allows faults to be isolated by the
differential protection system, it does not provide specific fault
types through digital analysis methods or transmit fault
information to the digital twin platform of the power system to
assist remote fault detection and timely maintenance by operators.
To adapt to the digitalization of power system fault diagnosis, it is
necessary to learn the correlation between fault characteristic
waveforms and faults using machine learning methods.

Currently, a large number of researchers utilize neural network
technology for fault diagnosis (Xu et al., 2020; Pei and Liu, 2024), while
time-domain and frequency-domain analysis are also widely applied in
waveform analysis for fault diagnosis (Zhang et al., 2021; Zhang et al.,
2023), effectively recording the severity and type of faults. Therefore,
this paper proposes a busbar fault diagnosis method based on both
time-domain and frequency-domain neural networks. Initially, feature
parameters of waveforms in the time and frequency domains are
obtained. Evidence fusion is then conducted to reduce the scale of
sample data required for training. Finally, a BPneural network is trained

to obtain a busbar fault diagnosis model that integrates multi-source
data under dual-busbar conditions.

3.1 Time domain analysis

In order to digitize the busbar fault diagnosis process, it is
necessary to analyze the busbar fault signals. Time-domain analysis
is a crucial method in traditional fault analysis, capable of revealing
the temporal variations of voltage and differential current. Through
time-domain analysis, temporal characteristics of busbar faults can
be obtained. When a busbar fault occurs, characteristics such as the
amplitude and phase of the differential current can provide insights
into the type of busbar fault (Vásquez et al., 2021). After computing
the busbar differential current waveform and voltage waveform, the
time-domain feature matrix is calculated through multidimensional
matrix computation to obtain time-domain feature parameters. The
time-domain feature values for busbar fault diagnosis are shown
in Table 1.

FIGURE 4
Busbar 2 BC phase ground fault waveform diagram with transition resistors. (A) BusbarThree-Phase Large Differential Current Waveform. (B)
Busbar2 Three-Phase Small Differential Current Waveform. (C) Busbar2 Three-Phase Voltage Waveform.
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By using Equations 4–10, the time-domain basic feature values
a1 to a7 of the busbar fault waveform are obtained, representing key
time-domain features such as mean and standard deviation. These
features can reflect the overall intensity and fluctuation of the busbar
waveform, allowing for visualization of the discrete distribution of
busbar fault waveforms. By comparing the features during faults
with those during normal operation, faults can be effectively
detected and analyzed for fault types. In addition, the maximum
value, minimum value, and peak-to-peak value are also recorded,
providing various aspects of information regarding the amplitude
range of the busbar fault waveform as shown in Equations 11–13.
This helps in documenting the busbar fault differential current and
fault voltage, assisting in the analysis of fault types.

a8 � max x n( )[ ] (11)
a9 � min x n( )[ ] (12)

a10 � max x n( )[ ] − min x n( )[ ] (13)
Through the above formulas, the characteristic parameters of

traditional time-domain analysis have been derived. These
parameters serve to represent the temporal variations of the
busbar differential current waveform and voltage waveform,
enabling the identification of busbar fault types. To further reflect
the time-domain features of the fault waveform and enhance
diagnostic accuracy, calculations have been performed on various
indicators of time-domain analysis.

f1 represents the fluctuation index, which can reflect the
volatility or vibration of the busbar fault signal. Its significance
lies in quantifying the degree of signal variation relative to the overall
signal amplitude, thus indicating the severity of the busbar fault
occurrence. This parameter is helpful in analyzing fault types and
fault locations. Its expression is as shown in Equation 14:

f1 � a2
a4

(14)

f2-f4 represent the peak value indices, which record the ratio of the
fault waveform peak value to the standard deviation, absolute
standard deviation, and variance amplitude, respectively. These
indices quantify the peak characteristics of the signal relative to
the overall strength or energy of the signal. They are helpful in
quantitatively evaluating the amplitude characteristics of busbar
differential current and voltage waveforms, facilitating the
analysis and comparison of busbar faults under different voltage
levels. Their expressions are as shown in Equations 15–17:

f2 � a8
a2

(15)

f3 � a8
a3

(16)

f4 � a8
a4

(17)

The skewness index f5 and kurtosis index f6 reflect the degree of
skewness and sharpness of the fault data distribution relative to the
degree of data dispersion. They quantify the dispersion of fault
waveform signals. The expressions are as shown in Equations 18, 19:

f5 � a5��
a7

√( )3 (18)

f6 � a6��
a7

√( )4 (19)

By conducting time-domain analysis on fault waveforms, a set of
time-domain feature values can be derived, and various metrics
computed. These metrics aid in quantifying waveform fluctuation
and dispersion along the time axis, laying the groundwork for
subsequent fault diagnosis and analysis. When a fault occurs, the
differential current surges, and the peak value of the waveform
increases significantly. Depending on the fault type, the changes in
time-domain feature values such as amplitude, mean, and kurtosis
vary. These characteristics can be used to distinguish between

TABLE 1 Busbar fault time-domain feature values.

Name Formula Index

Mean
a1 � 1

N∑N
n�1

x(n) (4)

Standard deviation

a2 �
��������������
1
N∑N

n�1
[x(n) − a1]2

√√ (5)

Absolute mean value
a3 � 1

N∑N
n�1

���������|x(n) − a1|
√ (6)

Root mean square
a4 � ⎡⎣ 1

N ∑N
n�1

���������|x(n) − a1 |
√ ⎤⎦2 (7)

Variance
a5 � 1

N∑N
n�1

[x(n) − a1]2
(8)

Skewness
a6 � 1

N∑N
n�1

[x(n) − a1]3
(9)

Kurtosis
a7 � 1

N∑N
n�1

[x(n) − a1]4
(10)

Where N represents the number of data points, x(n) represents the waveform, and ai represents the scalar time-domain feature values.
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different types of bus faults. However, incorporating numerous fault
features can lead to neural network overfitting, rendering it
inadequate for typical busbar fault scenarios. Hence, subsequent
steps involved fault feature data fusion to mitigate this issue,
consequently enhancing the reliability of fault features.

3.2 Frequency domain analysis

Using only time-domain analysis is insufficient for effectively
eliminating signal noise and measurement errors when analyzing
busbar faults. Therefore, it’s necessary to employ various approaches
for busbar fault analysis. Frequency domain analysis has been widely
recognized in the field of fault diagnosis (Tian et al., 2023), playing a
critical role in providing insights into system status, extracting fault
features, and predicting warnings. By transforming signals into the
frequency domain, frequency domain analysis can identify
frequency components associated with specific fault patterns,
aiding engineers in problem localization (Guo et al., 2023).
Additionally, by monitoring changes in frequency domain
features, frequency domain analysis can identify early signs of
potential system faults, enabling fault prediction and warning to
prevent system downtime or damage. Moreover, frequency domain
analysis exhibits certain resistance to interference, capable of
removing noise and disturbances, thereby enhancing signal
clarity and accuracy. When a fault occurs, the spectrum of
busbar differential current and voltage signals shows a
phenomenon of energy concentration, with significant increases
in amplitude at certain frequency bands. This is particularly evident
at low frequencies and at integer multiples of the power frequency
(harmonic frequencies). Additionally, due to the occurrence of
unbalanced faults, harmonic components in the fault signals also
increase. Analyzing the frequency domain characteristics of the
busbar enables diagnosis of typical busbar faults. Therefore, this

paper also performs frequency domain analysis on fault waveforms,
utilizing multidimensional matrix calculations to obtain the
following feature values, reflecting the frequency domain
characteristics of fault data, as shown in Table 2.

Through Equations 20–26, the frequency domain features b1-b7 are
obtained, representing the commonly used frequency domain
characteristics of the busbar differential current, such as mean,
standard deviation, frequency center, etc. These features can reflect
the dispersion or concentration of the frequency spectrum during
busbar faults, thereby avoiding the noise and errors existing in the
time domain in conventional measurements and effectively improving
the accuracy of fault analysis. Additionally, Equations 27–32 are utilized
to further derive the characteristics of the main frequency band of the
busbar fault signal, as shown in Table 3.

Through frequency domain feature values b8–b13, the
distribution of the main frequency band in the differential
current and fault voltage during busbar faults is recorded,
allowing for quantitative analysis of their dispersion and
concentration. Comparing these values with those during normal
operation enables fault detection, facilitating the establishment of a
busbar fault diagnosis model. By separately computing the
frequency domain feature values during busbar faults using
multidimensional matrices, characteristics such as the dispersion
of the fault signal in the frequency domain and the distribution of
the main frequency band can be reflected. Detecting changes in
frequency domain features allows for the early detection of busbar
faults. The combined application of frequency domain analysis and
time domain analysis in neural network training corroborates each
other, enhancing training accuracy.

3.3 Neural network construction

To establish the relationship between the fault waveform and the
fault type during busbar fault occurrence, it is necessary to construct
a neural network training model that comprehensively analyzes the
influence of various parameters in both the time domain and the

TABLE 2 Busbar fault frequency-domain feature values.

Name Formula Index

Frequency mean
b1 � 1

N∑N
n�1

s(n) (20)

Frequency Standard deviation
b2 � 1

N∑N
n�1

[s(n) − b1]2
(21)

Frequency skewness

b3 �
1
N∑N

n�1
[s(n)−b1 ]3

(b2) 32

(22)

Frequency kurtosis

b4 �
1
N∑N

n�1
[s(n)−b1 ]4

(b2 )2

(23)

Frequency center

b5 �
∑N
n�1

[fi ·s(n)]∑N
n�1

s(n)

(24)

Frequency weighted standard deviation

b6 �

�����������∑N
n�1

[(fi−b5)2 ·s(n)]
N

√
(25)

Frequency root mean square

b7 �

��������∑N
n�1

[(f i 2 ·s(n)]∑N
n�1

s(n)

√√√ (26)

TABLE 3 Busbar fault waveform main frequency band characteristics.

Name Formula Index

Fourth-order frequency moment

b8 �

��������∑N
n�1

[(f i 4 ·s(n)]∑N
n�1

[(f i 2 ·s(n)]

√√√ (27)

Ninth-order frequency moment

b9 �
∑N
n�1

[(f2
i •s(n)]��������∑N

n�1 s (n)∑N

n�1 [(f
4
i
•s(n)]

√ (28)

Bandwidth distribution index b10 � b6
b5

(29)

Third-order standard moment

b11 �
∑N
n�1

[(fi−b5 )3 ·s(n)]
N·(b6)3

(30)

Fourth-order standard moment

b12 �
∑N
n�1

[(fi−b5 )4 ·s(n)]
N·(b6)4

(31)

Absolute square root frequency moment

b13 �
∑N
n�1

[
�����
|fi−b5 |

√
·s(n)]

N·
��
b6

√
(32)
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frequency domain. Artificial neurons are simplified abstractions of
the information transmission process in biological neurons and
serve as the basic units for controlling and processing information in
neural networks (Fan and Xing, 2021). Multiple artificial neurons
with simple functions are interconnected through specific
topological structures to form a neural network. The
transmission of signals between these neurons accomplishes the
information processing function of the neural network, while the
continuous adjustment and modification of connection weights
complete the training and learning process of the neural network.
The neuron has multiple inputs xj (j = 1,2,3, . . . ,n) and a single
output y, expressed as shown in Equation 33:

I � ∑n
j�1
wjxj + θ

y � f I( )

⎧⎪⎪⎨⎪⎪⎩ (33)

By using Wj to represent the strength of connections between
neurons and the transfer function F(x) to simulate the transmission
characteristics of biological neurons, the information transfer of
artificial neurons is achieved. After connecting several neurons,
adjustments and corrections are made to Wj to train the
neural network.

The backpropagation (BP) neural network is currently the most
widely used neural network, with a nonlinear transfer function for its
neurons (Wang et al., 2022). In the BP network, the first layer
computes the output of each neuron by backward propagation
using known training samples. The last layer computes the weights
and thresholds by forward propagation using the established network
structure, weights from the previous iteration, and thresholds. This
process iterates until convergence. The main idea of the
backpropagation network is to propagate signals forward and
errors backward, continuously adjusting the weights and thresholds
of each layer of the network (Zhang et al., 2018). Therefore, it can
quickly establish the connection between the characteristics of busbar
faults and fault types. Through the iterative process of establishment
and correction, the relationship between fault characteristics and fault
types is determined, thereby achieving busbar fault diagnosis.

At the same time, the BP network can globally approximate
functions. The configuration of hidden layers allows it to quickly
adapt to the requirement of establishing the relationship between the
characteristics of busbar faults and the types of busbar faults. For
conventional feature parameters, the training of the BP neural
network adopts gradient descent to gradually minimize errors.
The transfer function chosen is the continuous derivative
Sigmoid function, as shown Equation 34:

f x( ) � 1
1 + exp −x( ) (34)

For fault characteristics that vary in the positive and negative
domain, the transfer function of neurons during training adopts the
hyperbolic function, namely the symmetric Sigmoid function, as
shown in the formula:

f x( ) � than x( ) � 1 − exp −x( )
1 + exp −x( ) (35)

Therefore, for the time-domain and frequency-domain
characteristic parameters of busbar faults, different transfer

functions were set based on the numerical distribution range,
enabling effective calculation and transmission of weights in the
BP neural network neurons for busbar fault diagnosis.

3.4 Busbar fault diagnosis model

The relationship between the time-domain and frequency-
domain characteristics of busbar faults and their corresponding
fault types is not straightforward or easily discernible. Neural
network algorithms are particularly effective in such scenarios, as
they can learn and identify hidden relationships between parameters
through training on sample data without prior knowledge of the
input-output relationship. This enables the establishment of a
mapping between the input and output of the samples. The
inputs for the neural network training of the busbar fault
diagnosis model include the following:

X �
X11 X12 / X15

X11 X22 / X25

..

. ..
. ..

. ..
.

Xn1 Xn2
..
.

Xn5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,Xij �

a1
..
.

a16
b1
..
.

b13

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

(36)

The outputs of the neural network include:

Y � y1 y2 / yn[ ]T (37)

In this context, Xi represents the key parameters that need to be
correlated with the fault results during a busbar fault. These
parameters mainly include the busbar small differential current,
large differential current, and busbar voltage, with each row
representing a sample and n indicating the number of samples.
For each feature waveform, a and b represent the characteristic
values obtained from time-domain and frequency-domain analyses,
respectively. The output yi of the network corresponds to the fault
type associated with each sample. By establishing a hidden layer, the
neural network system can effectively correlate the time-domain and
frequency-domain characteristics of the fault waveform with the
fault type, thereby achieving fault diagnosis. Therefore, a three-layer
network structure was established for model training, as illustrated
in Figure 5:

However, the selection of numerous characteristic parameters
inevitably leads to computational complexity and uncertainty in the
training process. Dempster-Shafer Evidence Theory (DS Theory), a
mathematical framework for handling uncertainty and incomplete
information (Fu et al., 2021), is often used in data fusion and
decision support systems (Peng and Zhang, 2021). The basic
representation structure of DS Theory is the belief structure
(Wang and Wang, 2023). The structure is defined by
Equations 38–40:

∑
Y⊆U

m Y( ) � 1

m ø( ) � 0

⎧⎪⎨⎪⎩ (38)

Bel A( ) � ∑
B⊆A

m B( ) (39)
K � ∑

B∩C�0m1 B( ) ·m2 C( ) (40)
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m A( ) � ∑B∩C�Am1 B( ) ·m2 C( )
1 −K

(41)

In this context, m(Y) represents the basic probability number of
Y, expressing the degree of belief in the hypothesis set Y given the
current environment. Bel(A) denotes the sum of the basic
probabilities of all subsets of the hypothesis set X in the current
environment, indicating the overall degree of belief in X. In this
paper, the degrees of belief in the time-domain and frequency-
domain characteristic values are assigned based on the results of
specific training and literature findings (Peng and Zhang, 2021;
Wang et al., 2023). Among them, analyze the results obtained from
training separately in the time domain and the frequency domain.
By combining the solution process of time domain and frequency
domain characteristic values, the importance of key characteristic
values can be enhanced. After assigning these values, different data
are combined using the following formula, where K is the
normalization factor of the evidence, which can handle conflicts
between different pieces of evidence and improve data fusion. Using
the DS Theory, the time-domain feature values a1−a16 and the
frequency-domain feature values b1-b13 are fused to obtain the
network input for training the busbar fault model:

X �
X11 X12 / X15

X11 X22 / X25

..

. ..
. ..

. ..
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Xn1 Xn2
..
.

Xn5

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,Xij �

m1

m2

..

.

m10

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
T

(42)

Among them, m1-m10 are the feature parameters after data
fusion, comprehensively reflecting the time-domain and
frequency-domain characteristics of busbar fault waveforms.
Using this method, the complex time domain and frequency
domain characteristic values are optimized. The input samples
for the BP neural network are optimized, thereby improving the
efficiency and accuracy of the diagnosis. By integrating multi-source
fault information, the reliability of model training is ensured, and the
training time cost is reduced.

After optimizing the network input, the number of neurons in
the hidden layer was optimized. This is typically determined through
step-by-step experimentation using empirical formulas. If the
number of hidden layer nodes chosen is too small, it will
increase the network prediction error, prolong training time, and
fail to accurately represent the relationship between network input

and output. Conversely, if the number of hidden layer nodes is too
large, it will cause overfitting, making the network overly sensitive to
noise and errors in the data, thus unable to generalize to new data.
Therefore, trial-and-error training was conducted in this study. To
shorten training time and ensure training accuracy, the number of
neurons was set to 80. For the transfer function of the neurons, it was
designed according to Equations 35, 36, applying different transfer
functions to different categories of fused feature values to effectively
reduce training error.

When selecting the learning rate η for the network, the stability
of the training process should be considered. If the chosen η value is
too small, the training time will be prolonged and the convergence
speed will be too slow. Conversely, if the η value is too large, the
changes in network connection weights during the weight
adjustment process will be excessive. Sometimes, the weights
might surpass the minimum error threshold, causing the
algorithm to fail to converge. Therefore, to ensure stability, a
relatively small value is generally chosen as the learning rate for
the fault diagnosis system, typically ranging between 0.1 and 0.7. In
this study, 0.1 was selected as the learning rate for the busbar fault
diagnosis model.

In this study, the maximum training time for the busbar fault
neural network was set to 1,000, and the training error target was
set to 0.001. Based on the fundamental fault types of the bus,
label classification is conducted with five labels set: normal state,
three-phase short circuit fault, two-phase grounding fault, two-
phase short circuit fault, and single-phase grounding fault.
Figure 6 reflects the overall framework of the intelligent
diagnosis of busbar faults, which can effectively meet the
requirements of the digital twin platform for power systems.
By collecting data from voltage and current transformers, faults
can be quickly identified and reported to the system. The input
data for training the model is obtained from the simulation
model established in Chapter 2. Simulate and obtain 35 sets of
bus fault waveforms, including voltage and current waveforms
measured by transformers at different locations in the double-
bus system.

After the model training was completed, we characterized the
training results in detail using Mean Squared Error (MSE), as
shown in Figure 7. MSE is a commonly used metric to evaluate the
difference between the model’s predicted values and the actual
observed values. A smaller MSE value indicates a smaller difference

FIGURE 5
Fault analysis and diagnosis network model.
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between the model’s predicted results and the true values,
indicating a better fit of the model. It is clearly observed in the
graph that with an increasing number of training cycles, the MSE
steadily decreases, gradually approaching our designated target
value. By the 80th cycle, the training error had already reached our
expected requirement level, and the training was terminated
prematurely.

By further examining Figure 8, we can observe the changes in the
training gradient and the display of training errors. It is evident that
as the training epochs increase, the training gradient rapidly

decreases, indicating that the model is able to converge smoothly
and reach the optimal solution during the training process.
Additionally, the figure shows that the training errors are
essentially zero, demonstrating the model’s excellent performance
and stability during the training phase.

Figure 9 shows the regression curve of the busbar fault model
training, with an accuracy reaching 99.0%. This confirms that the
model training results are good, and the accuracy is high, meeting
the requirements for precise fault identification of busbar systems in
the digital twin platform for power systems.

FIGURE 7
The change curve of MSE.

FIGURE 8
Training measurement trends.

FIGURE 6
The process of building an intelligent diagnosis model for busbar faults.
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4 Discussion of results

Based on the fault sample data obtained from busbar dynamic
simulation, an intelligent diagnostic model for busbar faults was
developed. This model analyzes and predicts busbar fault
waveforms. Forty sets of test data were input into the model for
simulation. Each set of data consists of waveform data measured by
voltage and current transformers in a double busbar system. The
diagnostic model first performs time-domain and frequency-
domain analysis on the fault data to obtain feature values. Then,
it undergoes evidence fusion, and finally, prediction is made through
the trained neural network. Figure 10 shows the comparison
between the predicted results and the actual results. The accuracy
is 99.1%, which effectively meets the requirements for
fault diagnosis.

In Table 4, comparison of different fault diagnosis models
based on time-domain and frequency-domain characteristic
values is presented. Other similar fault diagnosis methods in
various fields of the power system are listed and compared with

the method presented there (Palácios et al., 2016; Siegel et al.,
2018; Qu et al., 2020). In this context, Palácios et al. (2016)
utilized time-domain characteristic signals for fault
identification in the stator windings of asynchronous motors.
They optimized the input samples for the artificial neural
network (ANN) using Principal Component Analysis (PCA),
reducing 30 input data points to 7. In contrast, Siegel et al. used a
frequency-domain diagnostic model without optimizing the
inputs, resulting in a model with 607 inputs and a 5-layer
network structure. Although their model achieved high
accuracy, the complex sample structure made it difficult to
understand and apply. By comparison, the method presented
in this paper diagnoses busbar faults by integrating both time-
domain and frequency-domain features and uses DS theory to
optimize the input samples. This approach reduces complexity
and offers greater reliability for diagnosing fundamental busbar
fault types in power systems.

This demonstrates that the multi-source data fusion busbar fault
diagnostic model developed in this study is effective for diagnosing
faults in diverse busbar environments. By leveraging data collected
by sensors, the model can detect and identify faults, upload
diagnostic results to the system, and assist maintenance
personnel in troubleshooting and maintenance activities. This

FIGURE 9
Training regression curve.

FIGURE 10
Comparison of test set prediction results.

TABLE 4 Comparison of different fault diagnosis models based on time-domain and frequency-domain characteristic values.

PCA-ANN PSO–SOM DNN DS-BPNN

Method
framework

Use the time-domain characteristic values
of the current waveform as input for the

artificial neural network

Extract frequency domain
indicators, train SOM neural

network

Use Fourier coefficients and
wavelet eigenvalues as input for

deep neural network

Calculate time-domain and
frequency-domain metrics, and

input them into the neural network

Neural network
structure

7-30-1 49-36-10 607-16-32-16-1 10-80-1

Neural network
optimization

Optimize the neural network input
using PCA.

Use particle swarm optimization
to optimize initial value of neural

network

Not mentioned Use DS theory to fuse parameters
and optimize neural network inputs

Accuracy 98.0% 95.0% 95.6% 99.1%
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significantly contributes to the establishment of a comprehensive
fault diagnosis platform for modern power systems.

5 Summary and prospect

To adapt to the digitalization of power systems, this paper
establishes an intelligent diagnostic model for busbar faults based
on the principles of traditional busbar differential protection.
Initially, it analyzes the principles of traditional busbar
differential protection and conducts specific analyses on faults in
double busbar systems. Building upon this foundation, data from
sensors on various branches and busbars in the double busbar
system are collected to calculate the major differential current
and minor differential current of the busbar. Time-domain and
frequency-domain analyses are then conducted on the fault
waveforms to obtain 16 time-domain and 13 frequency-domain
characteristic values, effectively reflecting busbar fault features. To
further improve training accuracy and speed, evidence fusion using
DS evidence theory is performed on the time-domain and
frequency-domain characteristic values, transforming
26 characteristic values into five combined characteristic values
for neural network training. A BP neural network is selected for
training, utilizing 35 fault samples obtained from busbar dynamic
simulation. With error backpropagation, 80 hidden layers are
established to establish the connection between busbar
characteristic values and busbar faults. The accuracy of the
model training reaches 99.0%. During the model validation
process, when analyzing 40 sets of test fault data, the diagnostic
accuracy is found to be 99.1%, indicating that the model can achieve
precise diagnosis of busbar faults. Through this research, it
supplements the diagnosis of busbar faults in intelligent
diagnostic digital twin platforms for power systems, promoting
the development of Informa ionization in smart grids.
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