AUTHOR=Iftikhar Hasnain , Zywiołek Justyna , López-Gonzales Javier Linkolk , Albalawi Olayan TITLE=Electricity consumption forecasting using a novel homogeneous and heterogeneous ensemble learning JOURNAL=Frontiers in Energy Research VOLUME=12 YEAR=2024 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2024.1442502 DOI=10.3389/fenrg.2024.1442502 ISSN=2296-598X ABSTRACT=

In today’s world, a country’s economy is one of the most crucial foundations. However, industries’ financial operations depend on their ability to meet their electricity demands. Thus, forecasting electricity consumption is vital for properly planning and managing energy resources. In this context, a new approach based on ensemble learning has been developed to predict monthly electricity consumption. The method divides electricity consumption time series into deterministic and stochastic components. The deterministic component, which consists of a secular long-term trend and an annual seasonality, is estimated using a multiple regression model. In contrast, the stochastic part considers the short-run random fluctuations of the consumption time series. It is forecasted by four different time series, four machine learning models, and three novel proposed ensemble models: the time series homogeneous ensemble model, the machine learning ensemble model, and the heterogeneous ensemble model. The study analyzed data on Pakistan’s monthly electricity consumption from 1991-January to 2022-December. The evaluation of the forecasting models is based on three criteria: accuracy metrics (including the mean absolute percent error (MAPE), the mean absolute error (MAE), the root mean squared error (RMSE), and the root relative squared error (RRSE)); an equality forecast statistical test (the Diebold and Mariano’s test); and a graphical assessment. The heterogeneous ensemble model’s forecasting results show lower error values compared to the homogeneous ensemble models and the singles models, with accuracy metrics measured by MAPE, MAE, RMSE, and RRSE at 5.0027, 460.4800, 614.5276, and 0.2933, respectively. Additionally, the heterogeneous ensemble model is statistically significant (p < 0.05) and superior to the rest of the models. Also, the heterogeneous ensemble model demonstrates considerable performance with the least mean error, which is comparatively better than the individual and best models reported in the literature and are considered baseline models. Further, the forecast values’ monthly behavior depicts that electricity consumption is higher during the summer season, and this demand will be highest in June and July. The forecast model and graph reveal that electricity consumption rapidly increases with time. This indirectly indicates that the government of Pakistan must take adequate steps to improve electricity production through different energy sources to restore the country’s economic status by meeting the country’s electricity demand. Despite several studies conducted from various perspectives, no analysis has been undertaken using an ensemble learning approach to forecast monthly electricity consumption for Pakistan.