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As the electric power market reform deepens, the strategic role of load
aggregators in demand-side response becomes increasingly important. The
inherent variability of distributed renewable energy generation and user
demand response often leads to a mismatch between the purchased
electricity and the market bid volume, resulting in punitive costs for
companies. To address this issue, this study treats demand-side controllable
loads as dispatchable resources and proposes a tiered pricing strategy to adjust
power distribution. By establishing a Stackelberg leader-follower game model,
the study promotes a mutually beneficial relationship between load aggregators
and controllable load users. Through case studies, this paper examines the
operational profits of load aggregators and the power adjustment behaviors of
controllable load users under tiered and fixed compensation pricing schemes.
The results indicate that tiered compensation pricing significantly reduces
punitive costs and enhances user participation in demand response.
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1 Introduction

In recent years, the deepening of electricity market reforms has increasingly highlighted the
strategic role of load aggregators in demand-side response. Time-of-use pricing mechanisms, as
a crucial tool for electricity demand-side management, more closely align electricity prices with
supply costs through differentiated pricing. This effectively guides users to adjust their electricity
consumption at different times, ensuring the safety and stability of the power system (Zhang
et al., 2021; Liu et al., 2023). With the increasing complexity and interdependence of power
systems, especially concerning False Data Injection Attacks (FDIA) and Voltage Stability
Assessment (VSA), the vulnerability and resilience of power systems have become key
research focuses (Yang and Wang, 2024). To address these challenges, various innovative
methods have been proposed. For instance, Ding and Liu (2017) introduced an AC false data
injection attack method based on robust tensor principal component analysis, which generates
false data without requiring system parameters, overcoming the limitations of traditional bad
data detection methods. Additionally, Yang et al. (2023) proposed a domain-adaptive voltage
stability assessment method that quickly adapts to topological changes, reducing retraining
needs and improving assessment accuracy. These research findings provide significant
theoretical and practical support for further refining pricing mechanisms.
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As key intermediaries in the electricity market, load aggregators are
responsible for integrating and scheduling various demand-side
resources. By providing aggregated load curves and related
information, load aggregators can participate in competitive bidding
for demand response and sign various trading contracts (Lv et al., 2023).
Moreover, considering the potential threat of false data injection attacks
to the power system, load aggregators need the capability to counter such
attacks to ensure data authenticity and system stability (Yang et al., 2024).

Different countries exhibit significant differences in power
adjustment and balancing mechanisms. For example, the UK and
Nordic countries tend to adopt decentralized market models,
adjusting and settling deviation power through intraday balancing
markets (Khodadadi et al., 2020). In contrast, the US and Australia
prefer centralized market models, where bids and quantities are
submitted on trading platforms within a specified time and matched
based on price and time priority (Çelebi and Flynn, 2020). Currently,
China is transitioning from a long-term trading market to a combined
long-term and spot trading market. Provinces are experimenting with
decentralized or centralized market models in the spot market based on
local conditions (Liangyuan et al., 2022). For instance, regions like
Western Inner Mongolia and Fujian conduct decentralized spot
markets based on long-term physical contracts (Zhu et al., 2023). In
this model, generators and consumers independently determine power
consumption curves in the day-ahead stage and adjust imbalances
through day-ahead and balancing trades (Watanabe et al., 2018). The
essence of this model lies in the scheduling arrangements based on
bilateral contracts, with system dispatch departments ensuring contract
fulfillment and power balance dispatch (Reddy et al., 2015). However,
most regions in China still conduct spot market transactions through
monthly settlement of long-term trades, leading to significant
imbalance penalty costs for load aggregators (Jiang et al., 2019; Lu
et al., 2022). Therefore, considering the uncertainties in load demand
and distributed power output, it is crucial for load aggregators to
maximize their benefits by setting reasonable compensation prices to
incentivize controllable loads to participate in demand response
transactions.

Designing reasonable, flexible, and effective demand-side pricing
mechanisms is critical for motivating user participation in demand
response and improving resource utilization efficiency (Xu et al., 2021;
Jiang et al., 2023). In terms of organizing electricity market transactions,
demand-side users can be classified into single market type transactions
and multi-type market transactions. In single market type transaction
scenarios, drawing from research experiences in the stock trading field,
Chen et al. (2019) proposed a trading algorithm that combines auction
and continuous bidding. Additionally, a fixed-ratio total deviation
settlement method was designed for non-full transactions, and a
phased user-side deviation evaluation mechanism was introduced
(Wang L. et al., 2023). To address the economic rationality issues of
traditional deviation balancing mechanisms, a pre-bid-based monthly
deviation balancing mechanism was proposed to minimize deviation
adjustment costs, encouraging low-cost units to replace high-cost units
for power generation (Fu et al., 2022). In the context of coupled multi-
type market transactions, the design methods of electricity price
difference contracts were discussed, including setting contract prices,
effective directions, benchmark prices, and design parameters for
decomposing contract quantities (Nobis et al., 2020). Additionally,
considering the practical situation of China’s electricity trading and
dispatch management system, a day-ahead market clearing model

compatible with long-term physical contracts was proposed to
bridge the gap between long-term physical contract delivery and
grid operation constraints (Liu et al., 2020). The reinforcement
learning methods for studying electricity spot market pricing
mechanisms examined the impact of different pricing mechanisms
on the organization of long-term trades (Wang Y. et al., 2023). Finally,
Gong et al. (2021) proposed a government-authorized price difference
contract settlement mechanism, considering fairness and hedging
functions as a differentiated and predetermined approach.

Based on the above analysis, this paper aims to explore the
optimization of interests between load aggregators and proxy power
users. The innovations are in several aspects: First, considering the
deviation penalties of long-term trading contracts, positive and
negative balance penalty prices are introduced to evaluate the
penalty costs arising from the discrepancy between bid volumes
and actual electricity consumption. Second, utilizing demand-side
storage, distributed photovoltaics, and controllable loads as
dispatchable resources, a multi-option compensation contract for
power regulation of controllable load/storage devices based on the
cost functions of controllable load users or storage users is proposed.
Furthermore, a Stackelberg game model is established to explore the
application of tiered pricing strategies in demand response, aiming
to reduce power trading deviation costs while enhancing user
participation and economic benefits. Lastly, a reverse induction
method based on genetic algorithms is employed to solve the
proposed model, and the effectiveness of the model and method
is verified through case simulations.

Main Contributions of This Paper:

1. Proposing a multi-option controllable load power regulation
compensation contract based on hierarchical pricing, effectively
reducing deviation costs in electricity transactions and providing
flexible pricing options to meet different user needs.

2. Constructing a Stackelberg leader-follower game model to
optimize compensation pricing strategies, achieving an
economic benefit balance between load aggregators and users.

3. Using genetic algorithms to verify the effectiveness of the
proposed model and strategies, providing theoretical
support and empirical evidence for the formulation of
demand response strategies in the electricity market.

2 Problem description

The operational model of load aggregators in the electricity market
involves the integration of load resources, market bidding, and trading
processes. By aggregating distributed renewable energy generation and
user demand, load aggregators can more accurately predict and adjust
loads, thereby reducing penalty costs associated with deviations.
Additionally, by integrating different types of load resources, such as
residential users, commercial users, and storage systems, load
aggregators can enhance system flexibility and responsiveness,
ensuring grid stability and efficiency. However, penalty costs related
to power deviations increase operational pressure on load aggregators,
necessitating effective demand response strategies and compensation
mechanisms to mitigate these costs.

To address these issues, this paper proposes a bi-level game
approach based on a Stackelberg game model. In the game, the load
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aggregator, acting as the leader, first formulates a reasonable power
procurement strategy and tiered compensation pricing scheme to
maximize operational revenue and incentivize user participation in
demand response. The controllable load users, as followers, adjust their
electricity consumption behavior according to the compensation
strategy provided by the load aggregator, obtaining economic
compensation by reducing electricity consumption during peak
periods or increasing consumption during off-peak periods. Through
this bi-level game model, load aggregators can significantly reduce
deviation penalties and related costs while enhancing user participation
in demand response, achievingmutually beneficial economic outcomes.
The process flow of the problem description is illustrated in Figure 1.

2.1 Design of load aggregator
operating mechanism

As renewable energy and energy storage systems continue to
develop, traditional grid users are gradually transitioning from
passive recipients to active participants in power balancing. Load
aggregators play a crucial role by integrating the loads of numerous
residential, commercial, and energy storage users. This not only
enhances the overall flexibility and responsiveness of the system but
also significantly reduces costs associated with power deviations.

Load aggregators are essential in the electricity market, facilitating
the effective utilization of distributed generation and demand
response resources.

In medium-to long-term trading in the electricity market, load
aggregators develop purchasing and flexible pricing strategies based
on forecasts of end-user demand, expected production from
distributed generation, and market fluctuation costs. The trading
center assesses load aggregators to ensure the accuracy of their
load responses and power assessments. In turn, load aggregators
formulate their purchasing strategies and pricing schemes based on
this information (Yang et al., 2022). This process requires load
aggregators to possess precise forecasting capabilities and the
flexibility to adjust strategies in a continuously evolving market
environment.

Due to the volatility of distributed generation and the uncertainty of
load demand, load aggregators may face discrepancies when assessing
power deviations and actual consumption. The trading center imposes
deviation assessment fees based on the positive and negative imbalance
of deviation power, compelling load aggregators to make accurate
forecasts and manage loads effectively. By utilizing a segmented
compensation pricing mechanism, load aggregators incentivize users
to modify their consumption behaviors, reducing usage during peak
periods while increasing consumption during off-peak periods, thereby
achieving overall system balance.

FIGURE 1
Schematic diagram of load aggregator operational model.
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As illustrated in Figure 1, load aggregators serve a critical role in
connecting the demand side with the power supply side. The demand
side consists of a large number of dispersed and controllable load
devices, such as air conditioners, electric vehicles, and water heaters.
Load aggregators secure control over these controllable loads by signing
contracts with end users of these devices (Bruninx et al., 2020). While
ensuring that user comfort is not compromised, load aggregators
optimize the operation and control of these devices to adjust power
deviations during peak and off-peak periods, thereby minimizing the
punitive costs associated with deviations. Load aggregators not only
enhance system flexibility and responsiveness through the integration of
load resources but also encourage users to adjust their consumption
behaviors through effective pricing strategies. The specific power
assessment formula established by load aggregators is as follows:

The trading center establishes the baseline electricity purchase
quantityQd based on themonthly trading contracts signed with load
aggregators. When a user’s actual electricity consumption exceeds
this baseline, excess usage within the threshold x1% is exempt from
deviation assessment, while any consumption beyond x1% incurs a
deviation assessment fee based on the positive imbalance price set by
the trading center. Conversely, when a user’s actual electricity
consumption falls below the baseline, any shortfall within the
threshold x2% is also exempt from deviation assessment, whereas
any shortfall beyond x2% is subject to a deviation assessment fee
based on the negative imbalance price set by the trading center. The
monthly assessment fees for positive and negative imbalance
quantities are represented by Equations 1–3.

ppen+
t � ξ+ × λt (1)

ppen−
t � ξ− × λt (2)

Π2 �
ΔQpp

pen−
t ; ΔQp ≤ − x2%Qd

0 ; − x2%Qd ≤ΔQp ≤ x1%Qd

ΔQpp
pen+
t ; x1%Qd ≤ΔQp

⎧⎪⎨
⎪⎩ (3)

In the formula ppen+
t and ppen−

t denote positive and negative
deviation penalty prices, respectively; ξ+ and ξ− represent positive
and negative penalty coefficients; λt stands for wholesale electricity
prices,Π2 indicates the end-of-month deviation penalty cost; ΔQp is
the deviation quantity during the monthly settlement.

2.2 Design of segmented compensation
mechanism for controllable load power
adjustment

To implement effective power adjustments for controllable
loads, load aggregators have designed a segmented compensation
mechanism that includes both power reduction compensation
contracts and power increase compensation contracts. These
contracts provide varying levels of financial incentives based on
the time sensitivity and cost differences of load adjustments,
encouraging users to reduce consumption during peak electricity
demand periods and increase usage during off-peak periods.

Through power reduction contracts, users are compensated for
decreasing their electricity consumption during high-demand
intervals, which helps alleviate the burden on the grid and reduce
reliance on expensive emergency power sources. In contrast, power
increase contracts incentivize users to take advantage of lower

electricity prices during off-peak periods, thereby optimizing the
energy distribution within the grid.

To ensure the effectiveness of this compensation mechanism, a
multi-option segmented compensation design has been introduced,
allowing different types of loads to select the most suitable
compensation plan based on their specific circumstances
(Bouakkaz et al., 2020). This flexible compensation strategy not
only considers the economic costs associated with load adjustment
for users but also reflects their contributions to grid stability, thus
motivating various users to actively participate in demand response
activities within the electricity market.

2.2.1 Compensation contract for controllable load
power reduction

Demand aggregators create tiered power reduction compensation
contracts for users participating in load shedding, offering m options.
Each option consists of a specific load reduction power ΔP−

i , and a
corresponding compensation ratepcom−

i denoted as (ΔP−
i , p

com−
i )where

i � 1, 2,/,m. When demand aggregators have a positive deviation in
power, the economic compensation U−

k,t that a controllable load user k
receives for reducing their power ΔP−

k,t is calculated as follows:

U-k,t �
ΔP-k,tpcom-

1 ; ΔP-0 ≤ΔP-k,t ≤ΔP-1
ΔP-k,tpcom-

2 ; ΔP-1 ≤ΔP-k,t ≤ΔP-2
..
.

ΔP-k,tpcom-
m ; ΔP-m-1 ≤ΔP-k,t ≤ΔP-m

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(4)

Due to the varying costs of load power reduction for controllable
load users across different time periods, implementing a uniform
power reduction compensation price may hinder user engagement
in demand response initiatives. Following the methodology
proposed in the literature (Wang et al., 2021), the power
reduction compensation price pcom−

i for time period t is defined
as the retail electricity price for that period multiplied by a
compensation rate, as shown in Equation 5.

pcom−
i � ρtδi (5)

In the formula: ρt represents the retail electricity price during
period t; δi denotes the compensation rate associated with the i
option of the power reduction compensation contract.

2.2.2 Controllable load incremental power
compensation contract

When demand aggregators experience a negative deviation in
electricity volume, the economic compensation U+

k,t that
controllable load user k receives for increasing load power ΔP+

k,t

can be expressed by Equations 6, 7.

U+
k,t �

ΔP+
k,tp

com+
1 ; ΔP+

0 ≤ΔP+
k,t ≤ΔP+

1

ΔP+
k,tp

com+
2 ; ΔP+

1 ≤ΔP+
k,t ≤ΔP+

2

..

.

ΔP+
k,tp

com+
m ; ΔP+

m−1 ≤ΔP+
k,t ≤ΔP+

m

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(6)

pcom+
i � ρtπi (7)

In the formula: pcom+
i represents the compensation electricity

price associated with the i option of the tiered incremental power
compensation contract; πi denotes the electricity price discount rate
corresponding to the i option of the contract.
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3 Dynamic compensation pricing
model for controllable load power
adjustment based on leader-follower
game decision-making

Implementing controllable load management strategies within
power systems presents a complex optimization challenge involving
dynamic interactions between load aggregators and multiple
controllable load users. These interactions are governed by
supply interruption compensation contracts established between
the load aggregator and users, where the operating costs of the
load aggregator are directly influenced by the power adjustments of
controllable load users. Users are required to adjust their electricity
consumption behavior in accordance with the demand response
directives issued by the load aggregator to achieve cost efficiency
while ensuring the stability of the power supply system.

To address this issue, this paper constructs an interactive model
among the load aggregator and multiple controllable load users,
which can be framed as a 1 −K type Stackelberg game model. In this
model, the load aggregator acts as the leader, formulating
preliminary strategies, while K users respond as followers.

The upper-level optimization model is managed by the load
aggregator, aiming to minimize its monthly operating costs. These
costs encompass wholesale electricity procurement expenses,
penalties associated with monthly deviation in consumption,
demand response costs for controllable loads, and operational
maintenance costs for Battery Energy Storage Systems (BESS). To
achieve this, the load aggregator must establish capacity increase or
decrease compensation contracts and make charging and
discharging decisions for the BESS. During the upper-level
optimization process, constraints regarding power balance,
storage operational limits, and charging/discharging regulations
must be satisfied.

Conversely, the lower-level optimization model is handled by
the controllable load users, who seek to maximize their demand
response benefits. Users gain economic compensation by adjusting
their loads to either reduce or increase electricity consumption. The
lower-level optimization process must adhere to constraints related
to participation in demand response, adjustments in controllable
load power range, duration of power adjustments, frequency of
power adjustments, and energy storage charging/discharging
limitations.

To accurately simulate and predict system behavior under this
game structure, the load aggregator can employ a Monte Carlo
sampling method to generate typical daily scenarios based on
monthly trading data, thereby estimating monthly deviation in
consumption. This statistical simulation technique not only
effectively captures the volatility of the electricity market but also
provides decision support aimed at optimizing operational costs and
maximizing user benefits.

By designing a segmented compensation pricing model, the load
aggregator can incentivize users to participate in demand response
programs, leading to effective control of monthly consumption
deviations and significant reductions in penalty costs. This
strategic pricing mechanism optimizes the operational costs of
the load aggregator while fostering active user engagement
through economic incentives, collectively promoting the stability
and sustainable development of the electricity market.

Figure 2 illustrates the structure of the Stackelberg game model
proposed in this paper, which simulates the interactive decision-
making processes between load aggregators and controllable
load users.

3.1 Upper-level optimization model

The upper-level optimization problem of the model aims to
effectively reduce the monthly operating costs of the load aggregator
by incorporating capacity increase or decrease power compensation
contracts, along with the charging and discharging power of the
Battery Energy Storage System (BESS), as key decision variables.

3.1.1 Upper-level optimization objective function
The monthly operational costs of demand aggregators consist of

four components: the cost of purchasing electricity from the
wholesale market, denoted as Π1; the penalty cost for end-of-
month electricity volume deviations, denoted as Π2; the cost
associated with controllable load demand response, denoted as
Π3; and the operational and maintenance costs of the Battery
Energy Storage System (BESS), denoted as Π4. The above costs
include electricity procurement costs (see Equation 9), end-of
month deviation penalty costs (see Equation 10), etc.

minEM � Π1 + Π2 + Π3 + Π4 (8)

Qd � ∑
W

w�1
χ w( )∑

T

t�1
μ−w,tQ

−
w,t + μ+w,tQ

+
w,t( )Δt (9)

Π1 � Qdλt + ΔQpλt (10)

Π3 � ∑
W

W�1
χ w( )∑

T

t�1
∑
K

k�1
U−

k,t + ΔP−
k,tρt + U+

k,t − ΔP+
k,tρt( )Δt (11)

Π4 � ∑
W

W�1
χ w( )∑

T

t�1
Pch
t + Pdh

t( )CBESSΔt + Cctd
BESSα

ctd
t + Cdtc

BESSα
dtc
t( ) (12)

In the model, χ(w) represents the frequency of occurrence of
typical days under monthly transactions (calculated daily); W is the
total number of typical days; Q+

w,t and Q−
w,t respectively denote the

positive and negative power deviations for the demand aggregator after
implementing smoothing measures; μ+w,t and μ−w,t are binary variables,
where μ+w,t � 1 when Q+

w,t > 0; Δt is the daily dispatch interval; T is the
total number of daily dispatches; and K represents the total number of
controllable load users. Qa indicates the actual electricity consumption
by the users. In calculating the penalty costs for end-of-month power
deviations, if actual consumption exceeds the baseline, deviation power
occurs and penalties are applied based on the wholesale electricity price.
Conversely, if actual consumption does not exceed the baseline, the
deviation is zero, and no penalty costs arise. To address the potential
frequent charging and discharging scenarios of the Battery Energy
Storage System (BESS) and regulate its charging and discharging
behavior as per reference. Equation 13 considers both the
operational and maintenance costs of BESS and the conversion costs
between charging and discharging. Here, Pch

t and Pdh
t represent the

charging and discharging powers of BESS for the period t;CBESS denotes
the operational and maintenance costs of BESS; αctdt and αdtct are binary
variables for the transitions from charging to discharging and
discharging to charging, respectively; Cctd

BESS and Cdtc
BESS correspond to

the costs associated with these transitions.

Frontiers in Energy Research frontiersin.org05

Yang et al. 10.3389/fenrg.2024.1442194

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1442194


3.1.2 Upper-level optimization constraints
(1) Power Balance Constraints

Q−
w,t � QD

w,tηw,t + Pch
t − Pdh

t +∑
K

k�1
ΔP+

k,t − ΔP−
k,t( ) (13)

Q+
w,t � Pdh

t − Pch
t +∑

K

k�1
ΔP−

k,t − ΔP+
k,t( ) − QD

w,tηw,t (14)

In the formula: QD
w,t represents the load power during period t

on a typical day w; ηw,t is the power purchase deviation coefficient
for the demand aggregator during period t on typical day w.

(2) Constraints on Energy Storage Operation

0≤Pch
t ≤ βcht PES (15)

0≤Pdh
t ≤ βdht PES (16)

Et � Et−1 + Pch
t ηchΔt − Pdh

t Δt/ηdh (17)
E0 � ET (18)

γminQES ≤Et ≤ γmaxQES (19)

In the equation: PES and QES respectively represent the rated
power and capacity of the Battery Energy Storage System (BESS); βcht
and βdht are binary variables indicating the charging and discharging

FIGURE 2
Structure of the stackelberg game model.
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states of BESS, with βcht � 1 denoting charging, and βdht � 1 denoting
discharging; Et is the nuclear capacity of BESS during period t; ηch
and ηdh respectively are the charging and discharging efficiencies of
BESS; γmax and γmin respectively represent the maximum and
minimum nuclear state coefficients of BESS.

(3) Energy Storage Charging and Discharging Constraints

αctdt − αdtct � βdht+1 − βdht (20)
αctdt + αdtct ≤ 1 (21)
βcht + βdht ≤ 1 (22)
u+
w,t + u−

w,t ≤ 1 (23)

Equations 21, 22 represent the charging and discharging
conversion constraints of the energy storage system; Equation 23
specifies that at any given moment, the Battery Energy Storage
System (BESS) can only be in one of three states: charging,
discharging, or idle.

3.2 Lower-level optimization model

3.2.1 Lower-level optimization objective function
The lower-level optimization problem in the model aims to

maximize the demand response benefits for controllable load users
(see Equations 24–31). By adjusting the power increases and decreases
across different time periods, the model seeks to enhance system
flexibility and efficiency under varying demand and market
conditions, while also maintaining system stability and
economic viability.

maxESK � ∑
T

t�1
U+

k,t − C+
k,t( ) + U−

k,t − C−
k,t( ){ } (24)

As delineated in reference (Ma et al., 2023), the costs associated
with increasing. C+

k,t. and decreasing C−
k,t the load power for user k

are represented as follows:

C+
k,t � a+k ΔP+

k,t( )2 + b+kΔP+
k,t − b+kΔP+

k,tθ
+
k (25)

C−
k,t � a−k ΔP−

k,t( )2 + b−kΔP−
k,t − b−kΔP−

k,tθ
−
k (26)

In the equation, b−k and a−k denote the linear and quadratic
coefficients, respectively, for user k cost function related to load
reduction. Similarly, b+k and a+k correspond to the linear and
quadratic coefficients for the cost function associated with load
increase. The type parameters, θ+k and θ−k , indicate user k propensity
to engage in load adjustment, with higher values suggesting a
stronger inclination to modify load levels.

3.2.2 Lower-level optimization constraints
(1) Controllable Load Participation Constraints

If participation in demand response increases the user’s own
benefits, users will voluntarily enter into power adjustment contracts
with the load aggregator. Conversely, if participation does not yield
additional benefits, users will choose not to participate. This means
that the compensation received for power adjustments must not be
less than the additional losses incurred by these adjustments. This
condition can be expressed as:

U+
k,t − C+

k,t ≥ 0 (27)
U−

k,t − C−
k,t ≥ 0 (28)

(2) Controllable Load Power Adjustment Range Constraints

]+k,tΔP+
k,t,min ≤ΔP+

k,t ≤ ]+k,tΔP+
k,t,max (29)

]−k,tΔP−
k,t,min ≤ΔP−

k,t ≤ ]−k,tΔP−
k,t,max (30)

−ΔP−
max,k ≤∑

T

t�1
]+k,tΔP+

k,t − ]−k,tΔP−
k,t( )≤ΔP+

max,k (31)

In the equation: ]+k,t and ]−k,t denote the binary state variables
for user k, representing the power increase and decrease during
period t. ΔP+

k,t,min and ΔP+
k,t,max specify the minimum and

maximum permissible load increases for user. k. within period
t, respectively. Similarly, ΔP−

k,t,min and ΔP−
k,t,max define the

minimum and maximum permissible load reductions. ΔP+
max ,k

and ΔP−
max ,k indicate the overall maximum allowable load

reduction and increase for user k throughout the
scheduling period.

(3) Controllable Load Power Adjustment Duration Constraints

∑
τ+T+

min,k−1

t�τ
]+k,t ≥T+

min,k ]+k,τ − ]+k,τ−1( ), τ � 1,/, T − T+
min,k + 1 (32)

∑
τ+T+

max,k

t�τ
1 − ]+k,t( )≥ 1, τ � 1,/, T − T+

max,k (33)

∑
τ+T−

min,k
−1

t�τ
]−k,t ≥T−

min,k ]−k,τ − ]−k,τ−1( ), τ � 1,/, T − T−
min,k + 1 (34)

∑
τ+T−

max,k

t�τ
1 − ]−k,t( )≥ 1, τ � 1,/, T − T−

max,k (35)

In the equation, T−
max ,k and T−

min ,k denote the maximum and
minimum time durations required for user k to decrease load power,
respectively. Conversely, T+

max ,k and T+
min ,k specify the maximum

and minimum time durations required for increasing load power.
The maximum and minimum durations for controllable load power
adjustments are as follows (see Equations 32–35). Equation 32
through Equation 35 are conceptually similar to the minimum
start-stop time constraints applicable to power generation units.

(4) Constraints on the Frequency of Power Adjustments for
Controllable Loads

To prevent excessive and prolonged power adjustments for users
with controllable loads, constraints have been imposed on the
frequency of such adjustments during the scheduling period, as
delineated in Equations 36, 37.

∑
T−1

t�1
]+k,t+1 − ]+k,t( )≤N+

max,k (36)

∑
T−1

t�1
]−k,t+1 − ]−k,t( )≤N−

max,k (37)

In the equation, N+
max,k and N−

max,k denote the maximum
permissible frequencies for increasing and decreasing power,
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respectively, for controllable load user k over the entire
scheduling period.

(5) Energy Storage Charging and Discharging Constraints

]+k,t + ]−k,t ≤ 1 (38)

Equation 38 indicates that user k will select only one form of
load power response, either to reduce or to increase their load.

4 Model solution method

In this study, we employ the Stackelberg game theory to model
and address the interaction and decision-making processes between
load aggregators and controllable load users. The Stackelberg game
model is particularly suitable for such leader-follower scenarios,
allowing for detailed analysis and prediction of the strategic
interactions between the load aggregator (as the leader) and
controllable load users (as the followers) in the electricity market.
To account for the nonlinearity and complexity of the problem, we
integrate nonlinear programming techniques with genetic
algorithms for optimization.

The genetic algorithm generates new populations through
operations such as selection, crossover, and mutation, increasing
population diversity to prevent premature convergence while
continually optimizing strategies throughout the iterative process.

In the model, the load aggregator acts as the leader and is
represented by the variableM. Its primary task is to develop demand
response pricing strategies to influence market dynamics and user
behavior. The monthly operating costs of the load aggregator are
calculated using appropriate algorithms and loss functions, and are
determined according to Equation 8 for expected marginal EM

calculations. Conversely, controllable load users function as
followers, responding to price signals and adjusting their
strategies, represented by the variable S. Each controllable load
user possesses a set of load adjustment strategies
S � S1, S2,/, SR{ }. Through a series of selections, users can
choose the most suitable response strategy based on market
conditions.

During the strategy selection process, the load aggregator selects
the optimal strategym from the strategy spaceM and analyzes each
controllable load user’s optimal decision Si under the condition mi.
Based on the controllable load user’s maximization problem
En(m, S), the optimal response strategy Vi(m, Sin) for each user
is determined. The load aggregator forecasts and calculates the
optimal strategy as S*i and solves the decision problem
maxEM(maxVi(m), · · ·, VK(m)) to obtain
m* � argmaxEM(maxVi(m), · · ·, VK(m)). Ultimately, by
integrating the controllable load users’ response strategies
S*i � Vi(m, Sin), we obtain the Nash equilibrium solution S*i for
the system.

To provide a clearer representation of the model solution
process, we have designed a flowchart for the two-level
optimization model, as shown in Figure 3. This diagram
illustrates the steps from parameter initialization, initial
population generation, fitness calculations, to strategy updates
and optimization during the iterative process. Given the

nonlinearity of the problem, the model utilizes genetic algorithms
to solve the Stackelberg leader-follower game model.

The genetic algorithm generates new populations through
operations such as selection, crossover, and mutation. First, the
roulette wheel selection method is employed to choose high-fitness
individuals (with a crossover probability denoted as pc), followed by
single-point crossover to create new individuals, and random
mutations (with a mutation probability denoted as pm) to
enhance population diversity and prevent premature
convergence. Next, the fitness Si of the newly generated
individuals is evaluated, and it is determined whether the
iteration conditions are met.

In the initial population generation and adjustment phase, the
load aggregator selects strategies from the strategy space M and
analyzes the optimal decision combinations for each available load
user S � S1, S2,/, SR{ }. The initial population corresponds to
randomly generated initial strategy combinations from the
strategy space. Specifically, the initial strategy combinations
encompass all potential strategies, with each strategy Si
representing the load response strategy selected by the load
aggregator for a specific user.

If the new fitness results indicate an improvement in strategies,
the selection, crossover, and mutation operations continue,
calculating the fitness values Vi(m, Sin) for the new generation.
After evaluating the fitness of the new generation, it is determined
whether to meet the iteration conditions. If conditions are satisfied,
the optimal strategy combination S*i is outputted; otherwise, the
iteration continues until the termination criteria are met.

5 Analysis of case studies

5.1 Case study parameters

This study focuses on the participation of a load aggregator
representing a mixed-use residential and commercial community in
the electricity market. The community comprises six mixed-use
buildings equipped with photovoltaic panels and houses a total of
200 households. The data used in this study is sourced from the
actual load data of the Source-Load Aggregation Interaction
Response Platform of Hunan Power Company in August 2023.
This data is used to validate the model’s effectiveness and
practicality.

To comprehensively derive the power usage patterns of the
entire community, we conducted aMonte Carlo simulation based on
the electricity consumption data of these 200 households, generating
scenarios for power deviation coefficients. These coefficients follow a
Gaussian distribution with a mean of 0 and a standard deviation of
1.9651. The range for evaluating power deviations in all simulated
scenarios is set to ±2%.

In the case analysis, we assume a wholesale electricity price of
$60 per megawatt-hour, utilizing the actual load data from the
community in August. The parameters involved in the model are
listed in Table 1, “Price Range for Peak Shaving Services” and
Table 2, “Key Parameters for Load Aggregator Pricing Strategies”
These tables display the electricity demand of 100 households on a
typical day in August. Figure 4 illustrates the load curve for the entire
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community on a typical day in August, based on the simulation
predictions.

To clearly present the calculation results, we assume that the
aggregated controllable loads are divided into three types of users:
high-cost, medium-cost, and low-cost. The maximum frequency of
power adjustments for each type of controllable load is limited to
four times within the entire scheduling period. The parameters for
the battery energy storage system are set as follows: rated capacity of
200 kWh, rated power of 90 kW, maximum and minimum state of
charge coefficients of 0.9 and 0.2, respectively, initial capacity of
100 kWh, charge and discharge efficiency of 95%, and both
discharge-to-charge and charge-to-discharge conversion costs of
$0.15. The parameters for different types of controllable loads are
shown in Table 3.

5.2 Monthly market deviation assessment
results under different scenarios

This section compares and analyzes the effectiveness of demand
response programs by setting three different operational scenarios.
The specific scenarios are described as follows:

1. Scenario 1: Traditional Mode: In this scenario, all loads are
traditional, and no demand response programs are
implemented. Consequently, deviations in electricity
consumption are not effectively managed, leading to higher
deviation assessment costs and the highest total cost.

2. Scenario 2: Fixed Compensation Price Mode: In this scenario,
the load aggregator employs a fixed compensation price

FIGURE 3
Two-level optimization model solution process.
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strategy to incentivize controllable loads to mitigate deviations
in electricity consumption. This strategy induces a moderate
level of user response, partially covering the deviation, resulting
in lower overall costs compared to Scenario 1.

3. Scenario 3: Tiered Compensation Contract Mode: This
scenario uses a tiered compensation contract to more
actively incentivize controllable loads to balance electricity
consumption deviations. Due to the highest level of user
participation, deviation assessment costs are significantly
reduced. Although the duration and frequency of power
adjustments for controllable loads are constrained, this
scenario achieves the lowest total cost and the most effective
deviation mitigation among all scenarios.

Figure 5 illustrates the monthly electricity consumption
variations under different scenarios, visually depicting the impact
of each scenario on electricity management. Additionally, to gain
deeper insights into the effectiveness of different scenarios, we
analyzed the outlier data points and found that the tiered
compensation strategy excels in managing fluctuating loads,
significantly reducing overall deviation costs. This demonstrates

that flexible compensation strategies not only motivate active user
participation but also enhance system stability.

Table 4 compares the cost situations of load aggregators under
different scenarios (see Table 4). From the table, it is evident that
Scenario 3, employing a dynamic compensation strategy, performs
best in reducing deviation energy and lowering overall costs.

5.3 Revenue analysis under different
deviation penalty prices

To explore the impact of different deviation penalty prices on
the economic behavior of electricity market participants, this section
sets multiple deviation penalty coefficients to assess their effect on
the monthly operating costs of load aggregators and the demand
response benefits for controllable load users. Additionally, it
analyzes how the compensation prices for power adjustments can
be modified under these varying penalty prices to optimize market
behavior and enhance overall system efficiency.

Figure 6 shows the trend of increasing monthly operating costs
for load aggregators as the deviation penalty coefficients rise.

TABLE 1 Price range for peak shaving services.

Number Control duration Price standard Remarks

1 0 ≤ Control Duration ≤60 min $0 - $0.7 per kW per event Maximum $0.7 per kWh

2 60 min ≤ Control Duration ≤120 min $0 - $1.7 per kW per event Maximum $0.83 per kWh

3 120 min ≤ Control Duration ≤180 min $0 - $2.9 per kW per event Maximum $1 per kWh

TABLE 2 Key parameters for load aggregator pricing strategies.

Parameter Category Parameter Value

Deviation Assessment Range Range ±2%

Wholesale Electricity Price Price $60/MWh

Battery Energy Storage
System Parameters

Rated Capacity 200 kWh

Rated Power 90 kW

State of Charge Coefficient 0.9 (maximum), 0.2 (minimum)

Initial Capacity 100 kWh

Charge/Discharge Efficiency 95%

Conversion Cost $0.15

Positive Deviation Penalty Price Price $60/MWh

Negative Deviation Penalty Price Price $50/MWh

Positive Deviation Penalty Coefficient Coefficient 1.2

Negative Deviation Penalty Coefficient Coefficient 0.8

Distributed PV Feed-in Tariff Electricity Price $0.062/kWh

User Load Cost Parameters Increased Load Power Cost Linear Coefficient a+k = 0.5

Increased Load Power Cost Quadratic Coefficient b+k = 0.1

Decreased Load Power Cost Linear Coefficient a−k = 0.4

Decreased Load Power Cost Quadratic Coefficient b−k = 0.05
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Moreover, as illustrated in Figure 7, user compensation benefits also
increase with higher penalty coefficients, reflecting the market’s
sensitivity to deviations and its response to strategic adjustments.

Tables 5, 6 detail the compensation prices for power reduction
and power increase under different deviation penalty coefficients,
respectively. The data indicate that as the penalty coefficients
increase, both the compensation rate and the price discount rate
for electricity show an upward trend. This strategy aims to
incentivize users to adjust their electricity consumption behavior,
thereby reducing the overall operating costs of the market and
enhancing system stability.

As the deviation penalty coefficients increase, the monthly
operating costs for load aggregators rise, compelling them to

enhance the management of controllable loads and optimize their
strategies. This economic pressure motivates load aggregators to
actively seek efficient demand response solutions to minimize
electricity procurement costs and deviation penalties.

By increasing the compensation prices for controllable loads,
users are incentivized to flexibly adjust their electricity usage
patterns. This not only helps aggregators control costs but also
improves the load regulation capability and stability of the entire
power system. Additionally, as compensation prices are adjusted, the
participation and benefits of controllable load users increase
accordingly.

This dynamic further promotes the application and
development of demand-side response technologies, contributing

FIGURE 4
Projected load curve for the entire community on a typical day in August.

TABLE 3 Parameters of controllable loads.

Type High cost Medium cost Low cost

Total number of controllable loads 50 70 80

Response range (%) (0.95,1.0) (0.9,0.95) (0.95,0.9)

Adjustment power range (kW) (90,95) (80,85) (75,80)

Compensation rate (%) (0.4,0.45) (0.4,0.45) (0.35,0.38)

Load adjustment range (kW) (140,165) (140,165) (185,205)

TABLE 4 Comparison of load aggregator costs across different scenarios.

Cost type Scene 1 ($) Scene 2 ($) Scene 3 ($)

Market cost of electricity purchase 21,660 19,040 17,040

Tariff adjustment cost 0 2,520 3,020

Penalty for deviation 3,810 3,260 2,860

Total cost 29,040 25,020 21,760

Frontiers in Energy Research frontiersin.org11

Yang et al. 10.3389/fenrg.2024.1442194

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1442194


to the dual enhancement of economic and environmental benefits in
the electricity market.

6 Conclusion

This paper proposes a segmented multi-option controllable load
power adjustment compensation contract based on a game theory
framework, aiming to optimize demand response strategies in the
long-term market environment prior to the spot market. This
approach treats demand-side controllable loads as dispatchable
resources. By establishing segmented compensation contracts
between load aggregators and users, the method gains control
over the operation of controllable load equipment, optimizing
their operation to reduce the discrepancy between bid volumes
and actual power consumption.

1. Economic Win-Win Objective: To achieve an economic win-
win situation for both load aggregators and controllable load
users, this study constructs a 1-K type Stackelberg leader-
follower game model. This model thoroughly considers the
economic benefits of both load aggregators and controllable
load users, reducing the operating costs of the load aggregators
while enabling controllable load users to gain economic
benefits through power adjustments.

2. Design of Segmented Compensation Price Contracts: The
segmented compensation price contracts designed in this
study are valuable for motivating users to participate in
demand response. This not only helps load aggregators

formulate more effective demand response pricing strategies
but also enhances user participation in demand response by
inducing controllable load users to demonstrate demand
elasticity, thereby effectively reducing the penalty costs for
load aggregators.

3. Monte Carlo Simulation and Optimization: Using the Monte
Carlo method, the compensation prices for incentivizing
controllable load user power adjustments were optimized
based on deviation scenarios generated in typical daily
scenarios of monthly transactions. Extending this model to
shorter time scales, such as the intraday balancing market,
could further smooth out deviations arising from day-ahead
market transactions. However, due to the current maturity
level of China’s electricity market, along with market
mechanisms and technological and economic constraints,
this study has not delved deeper into the spot market analysis.

This research provides an innovative perspective to optimize
demand response strategies in the electricity market and offers
practical strategic recommendations for electricity market
designers to enhance overall market efficiency and reliability.
Future research can explore broader market conditions and
additional model application scenarios to further validate and
expand the findings of this study. Case studies indicate that
segmented compensation pricing strategies significantly reduce
the penalty costs for load aggregators by 25% and increase user
participation by 30%. These results demonstrate the effectiveness
and potential economic benefits of segmented compensation pricing
strategies in demand response.

FIGURE 5
Monthly electricity consumption variation curves under different scenarios.
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FIGURE 6
Operational costs of load aggregators under different bias penalty electricity prices.

FIGURE 7
User compensation benefits under different bias penalty electricity prices.
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4. Future Work: In our future work, we will consider
integrating artificial intelligence and machine learning
technologies to optimize demand response strategies.
Additionally, we will study the economic viability and
implementation effects of segmented compensation
strategies under different policy environments, providing
decision support for policymakers.
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