
Influencing factors and
predictions of carbon emissions
for the chemical industry in China

Weiru Wang1*, Fan Hu2, Mengzan Li1, Xincong Shi2 and
Xinyuan Liu1

1The department is Power Grid Technology Center, State Grid Shanxi Electric Power Research Institute,
Taiyuan, China, 2State Grid Shanxi Electric Power Company, Taiyuan, China

As global warming increases the frequent occurrences of natural disasters, the
reduction of carbon emissions has become an important issue around the world.
The chemical industry is an important source of carbon emissions in China. The
carbon emissions of the chemical industry are calculated from 2000 to 2019 by
using the emission factor method. The logarithmic mean divisia index (LMDI)
method is exploited to analyze the factors that influence carbon emissions, and
the emissions variations are attributed to the contributions of carbon intensity,
energy structure, energy intensity, industrial value-added rate, per capita
industrial output value, and industrial scale. The results of decomposition
show that per capita industrial output value is the main driving factor, and
energy intensity is the main inhibiting factor of the chemical industry’s carbon
emissions. In order to quantify the variation of carbon emissions, the extended
stochastic impacts by regression on population, affluence, and technology
(STIRPAT) model is constructed and examined. Using the STIRPAT model, the
basic scenario and energy intensity control scenario are set, and the carbon
emissions are predicted, which shows that under a strict energy intensity control
scenario, carbon emissions may reach a peak around 2031. The factors
influencing the decomposition and prediction of carbon emissions should be
helpful in reducing the carbon emissions of the chemical industry in China.
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1 Introduction

Global warming and the resulting frequent occurrence of natural disasters have become
a big threat to human survival. Reduction of carbon emissions is key and has become the
consensus of the international community (Reichstein et al., 2013; Seneviratne et al., 2016).
The rapid development of the economy has brought about huge carbon emissions in China.
To effectively reduce carbon emissions, the Chinese government hopes to realize carbon
peaking in 2030 and carbon neutrality in 2060. Thus, China faces huge pressure to reduce
carbon emissions. The analysis and prediction of carbon emissions are of great significance
for controlling the total amount and intensity of carbon emissions in China.

From a macro perspective, the electric power, construction, and chemical industries are
the main sources of carbon emissions in China. Researches on carbon emissions reduction
in the fields of power, construction, and civil aviation have attracted much attention
(Alajmi, 2022; Li et al., 2024; Wu et al., 2022), construction (Lai et al., 2023; Leslie, 2022),
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and civil aviation (Li et al., 2023; Liu et al., 2020) has attracted much
attention. The chemical industry is an important part of China’s
economy that includes five sub-industries: the oil and natural gas
extraction industry; the petroleum processing, coking, and nuclear
fuel processing industry; the chemical raw materials and chemical
products manufacturing industry; the chemical fiber manufacturing
industry; and the rubber and plastic products industry. Thus,
analyzing the factors that influence the chemical industry and
predicting its carbon emissions should be helpful for the
reduction of carbon emissions in the context of carbon peaking
and carbon neutrality.

The chemical industry is a high-energy-consumption industry.
The carbon emissions of the chemical industry are process related.
Zhang Y. et al. (2019) presented local carbon emission factors of coal
chemical products in China based on first-hand data from 23 coal
chemical enterprises and the total carbon emission of China’s coal
chemical industry. Neelis et al. (2007) presented a bottom-up
analysis of energy use and carbon loss in the chemical industry
using datasets on production processes for 52 of the most important
bulk chemicals as well as production volumes. Zhao et al. (2022)
developed a MESSAGEix-ammonia model with detailed process
descriptions to evaluate the energy-saving and emissions reduction
potential in China’s ammonia industry.

Many different types of products are produced in the chemical
industry. As a result, it is complex and difficult to accurately
calculate the carbon emissions of the chemical industry from the
perspective of products. However, it is viable to analyze the carbon
emissions and influencing factors of the chemical industry from a
macro perspective. The popular methods of analyzing influencing
factors include structure decomposition analysis (SDA) and index
decomposition analysis (IDA). Among these models, the
logarithmic mean divisia index (LMDI) method (Ang, 2005; Ang,
2015) is widely used in the fields of energy, environment, industries
(Boqiang and Liu, 2017), and regions (İpek Tunç et al., 2009;
Moutinho et al., 2015) because it is easy to build the model and
eliminate the residuals. Lin and Long (2016) analyzed carbon
emissions of the chemical industry in China and found that the
output per worker, industrial economic scale, energy intensity, and
energy structure were the main factors that influenced carbon
emissions changes in the chemical industry. Zhang L. et al.
(2019) identified the driving factors of carbon emissions from
coal conversion using coal as raw material and fuel in
China using LMDI.

Predicting carbon emissions is the foundation of controlling
them, and prediction has attracted much attention. Huo et al. (2023)
predicted the carbon peak time under three distinct scenarios for the
transportation sector based on a support vector machine model
improved by a genetic algorithm (GA-SVM). Liu et al. (2023) carried
out carbon emissions predicting and decoupling analysis based on
the particle swarm optimization–extreme learning machine (PSO-
ELM) combined model for Chongqing Municipality, China. Zhang
et al. (2023) investigated the carbon footprint prediction of the
thermal power industry in Zhejiang province of China. Zhang L.
et al. (2019) predicted the carbon emissions of China’s coal
conversion by setting scenarios with different annual average
growth rates for different levels of production and gave the
possible amounts of carbon emission between 2020 and 2030. Lu
et al. (2020) employed a particle swarm optimization (PSO)

algorithm and back propagation neural network model to predict
carbon emissions for the heavy chemical industry in the
2017–2035 time frame on the basis of the previous data. Yin
et al. (2023) predicted the carbon dioxide emissions in China
using a gray model with multi-parameter combination
optimization. Predicting carbon emissions using machine
learning on a large amount of data has attracted much attention.
However, data for calculating carbon emissions of the macro
industry usually come from a statistical yearbook that is
published yearly or every 5 years. Thus, predicting the carbon
emissions of a macro industry based on machine learning may
be limited due to the small amount of data.

The investigations on factors influencing the carbon emissions
of the chemical industry in China have focused on some sub-sectors
and chemical products, and the predictions of carbon emissions
have focused on regions and industries such as transportation,
power, and coal conversion. The influencing factors and
prediction of carbon emissions of the chemical industry have not
been fully investigated. In this paper, we investigate the factors that
influence carbon emissions for the chemical industry and its five
sub-industries simultaneously and predict carbon emissions for the
whole chemical industry in China. The carbon emissions of the
chemical industry are calculated utilizing the emission factor
method recommended by the United Nations Intergovernmental
Panel on Climate Change (UNIPCC). The influencing factors of the
chemical industry and its five sub-industries are analyzed by LMDI.
According to the result of LMDI, several factors are selected to build
the STIRPAT model, and carbon emissions of the chemical industry
are predicted from 2020 to 2035.

2 Calculation of carbon emissions

The carbon emissions of the chemical industry are calculated
using the emission factor method. The calculation of carbon
emissions based on emission factor is mainly dependent on the
fuel combustion amount, carbon content, and carbon oxidation rate
of unit fuel and other parameters and can be written as
(Commission, 2015)

Eco2 � ∑
i
ADi × CCi × OFi ×

44
12
, (1)

where Eco2 is carbon emissions in tons, i present the type of fossil
fuel, ADi defines the fuel consumption of fossil fuel combustion in
tons for solid or liquid fuel, Nm3 is the amount of gas fuel, CCi is
carbon per ton for solid and liquid fuel and carbon perNm3 for gas
fuel, and OFi is the carbon oxidation rate as a percentage.

According to the China Statistical Yearbook and the China
Energy Statistical Yearbook, the final energy consumption of the
chemical industry includes raw coal, washing coal, other washing
coal, coke, coke oven gas, blast furnace gas, converter gas, other gas,
crude oil, gasoline, kerosene, diesel, fuel oil, naphtha, petroleum
coke, liquefied petroleum gas, refinery dry gas, other petroleum
products, natural gas, liquefied natural gas, heat and electricity
(22 kinds). In order to reflect energy structure, the 22 kinds of
energy are divided into five types: coal energy, oil energy, natural gas
energy, thermal energy, and electric energy. The carbon emissions of
coal energy, oil energy and natural gas energy are calculated by using
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Equation 1. The carbon emission factor of the heat is 0.11 t/GJ, and
the carbon emissions of the power industry are calculated according
to the national averaged carbon emission factor, taking it as 0.5839 t/
MWh. The carbon emissions of the chemical industry in units of
million tons (Mt) from 2000–2019 are shown in Figure 1. As shown
in Figure 1, the carbon emissions of petroleum processing, coking,
and nuclear fuel processing industry and chemical rawmaterials and
chemical products manufacturing industry contribute a large part of
the total carbon emissions of the chemical industry.

3 Analysis of influencing factors

In this paper, the LMDI method is used to analyze influencing
factors of carbon emissions in the chemical industry. Based on the
Kaya identity (Kaya, 1989), carbon emissions can be decomposed
into several factors and can be written as

C � ∑
i

Ci

Ei
×
Ei

E
×
E
Y
×
Y
G
×
G
P
× P

� ∑
i
CIi × ESi × EI × IA × PC × IS, (2)

where C represents the total carbon emissions of the chemical
industry; Ci is the carbon emissions of the i-th energy; Ei is the
consumption of the i-th energy; E is the total energy consumption; Y
is the added value of the chemical industry;G is the gross value of the
industrial output of the chemical industry; P is the number of
employees of the chemical industry; CIi is the ratio of Ci to Ei; ESi is
the ratio of Ei to E; EI is the ratio of E to Y; IA is the ratio of Y to G;
PC is the ratio of G to P; and IS equals P.

In Equation 2, one multiplier represents an influencing factor,
and the meaning and abbreviation of each multiplier are shown in
Table 1. The functions of six influencing factors are described as
follows: the carbon intensity factor evaluates energy quality, energy
substitutions, and installation of abatement technologies in the
chemical industry. The energy structure factor reflects the change
in the relative share of different types of energy in the total energy
consumption of the chemical industry. The energy intensity factor
measures the comprehensive energy utilization efficiency of the
chemical industry. The industrial added-value rate factor presents
the economic benefits of reducing intermediate consumption of the
chemical industry. The per capita industrial output value factor
reflects the productivity level of the chemical industry. The
industrial scale factor represents the potential for expansion of
the chemical industry.

Using the LMDI method and Equation 2, the change of carbon
emissions from base year 0 to target year T is divided into six parts as
follows (Ang, 2005; Ang, 2015):

ΔC � CT − C0 � ΔCCI + ΔCES + ΔCEI + ΔCIA + ΔCPC + ΔCIS, (3)
where

ΔCCI � L CT ,C0( ) ln
CIT

CI0
, ΔCES � L CT ,C0( ) ln

EST

ES0
,

ΔCEI � L CT ,C0( ) ln
EIT

EI0
,

ΔCIA � L CT ,C0( ) ln
IAT

IA0 , ΔCPC � L CT ,C0( ) ln
PCT

PC0 ,

ΔCIS � L CT ,C0( ) ln
IST

IS0
,

FIGURE 1
Carbon emissions of the chemical industry in China from 2000 to 2019.
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L CT ,C0( ) � CT − C0

ln CT/C0( )
.

In Equation 3, the superscripts T and 0 denote the T-th year and
the base year respectively; CT and C0 are the carbon emissions in the
T-th year and the base year; the change of total carbon emissions is
expressed as the sum of contributions of six influencing factors; and
ΔCCI, ΔCES, ΔCEI, ΔCIA, ΔCPC, and ΔCIS present the variations of
carbon emissions due to the carbon intensity factor, energy structure
factor, energy intensity factor, industrial added-value rate factor, per
capita industrial output value factor, and industrial scale factor,
respectively. The meaning of variables in the expressions of ΔCCI,
ΔCES, ΔCEI, ΔCIA, ΔCPC, and ΔCIS are the same as in Equation 2.

The variations in carbon emissions due to the six influencing
factors from 2001–2019 can be calculated using Equation 3. The
results are shown in Figure 2. It can be seen that variations of carbon
emissions resulting from the energy structure factor, industrial
added-value rate factor, per capita industrial output factor, and
industrial scale factor are positive, and the variation from the energy
intensity factor is negative in Figure 2. Positive variation means that

this factor increases emissions, while negative variation means that
this factor leads to reduced emissions. As a result, per capita
industrial output value is the main driving factor, and energy
intensity is the main inhibiting factor of the chemical industry in
China. Moreover, the carbon emissions result from industry scale
increased from 2001–2014 and decreased after 2015, as shown in
Figure 2. Although the carbon emissions continued to increase in
this period as the development of the chemical industry, the growth
is slowing.

In order to quantify the influence of the six factors, the
contribution rate of each factor can be calculated using Equation 4.

ρi �
ΔCi

ΔC| |. (4)

In Equation 4, ρi presents the contribution rate of the i-th
influncing factor, where i can be one of CI, ES, EI, IA, PC, and IS;ΔCi

is the variation of carbon emissions due to the i-th influncing factor,
and ΔC is the total variation of carbon emissions of the chemical
industry. Both ΔCi and ΔC can be obtained from Equation 3. Using
Equation 4, the contribution rate of each influencing factor is

TABLE 1 Definition of variables in LMDI.

Multiplier Abbreviation Description Meaning

Ci/Ei CI Carbon intensity factor Ratio of carbon emissions to a certain kind of energy consumed

Ei/E ES Energy structure factor Ratio of a certain kind of energy consumed to total energy consumption

E/Y EI Energy intensity factor Ratio of energy consumption to industrial added value

Y/G IA Industrial value-added rate factor Ratio of industrial added value to total industrial output value

G/P PC Per capita industrial output value factor Ratio of total industrial output value to the number of employees

P IS Industrial scale factor Number of employees

FIGURE 2
Variations in carbon emission due to six influencing factors.
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calculated from 2001 to 2019 and shown in Figure 3. Figure 3 shows
that the contributions of each influencing factor vary slowly. Among
the influencing factors, the contribution rate of per capita industrial
output value is around 200.0%, and that of energy intensity factor is
around −200.0% after 2003, which validates that they are the main
driving and inhibiting factors, respectively. Moreover, the
contribution rate of the industry scale was positive after 2003,
but its value decreased from the maximum of 85.6% in 2010 to

25.5% in 2019, which means that the contribution of the industry
scale to the increase of carbon emissions decreased.

In order to contrast different sub-industries of the chemical
industry, the influencing factors of five sub-industries are analyzed
and shown in Figure 4. It can be seen from Figure 4 that per capita
industrial output value is the main driving factor, and energy
intensity is the main inhibiting factor for all the five sub-industries
as same as the whole chemical industry. Among the five sub-

FIGURE 3
Contribution rates of each influencing factor.

FIGURE 4
LMDI decomposition of five sub-industries of the chemical industry.
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industries, the emission variatons of the sub-industry of petroleum
processing, coking, and nuclear fuel processing industry and the
sub-industy of chemical raw materials and chemical products
manufacturing industry are much larger than those of the other
three sub-industries. Moreover, the variation of carbon emissions
due to the industry scale factor is larger than that of the per capita
industrial output value for the rubber and plastic products
manufacturing sub-industry before 2013. After that time, the
variations due to the two factors are comparable, which is
obviously different for the other sub-industries.

4 Prediction of carbon emission

4.1 STIRPAT model

The IPAT model was developed to capture the impact of socio-
economic factors on environmental pressures (Ehrlich and Holdren,
1971; Holdren and Ehrlich, 1974) and identifies three main factors
affecting the environment: population size, affluence, and
technology levels. However, the impact of each factor on the
dependent variable is equally proportional in this model, which is
not in line with the general laws of economic operation. Dietz et al.
refined it in 2003 and obtained the STIRPAT model (York et al.,
2003a, b), which can be expressed as follows:

I � αPbAcTde, (5)
where I represents the environmental factors, that is, carbon
emissions in this paper; P is population size, A is affluence; T is
the level of technology, α is the model coefficient, b, c and d are
coefficients of population size, affluence, and technology level
respectively; e is the random environmental error. The model
allows the introduction of other factors that may influence the
environment in addition to the independent variables mentioned
above. In order to eliminate the possible effect of heteroskedasticity
in the model, Equation 6 can be derived by taking the logarithm of
both sides of Equation 5.

lnI � lnα + blnP + clnA + dlnT + lne (6)
Considering carbon emissions in the chemical industry, some

variables in the traditional STIRPATmodel are replaced to highlight
the characteristics of the chemical industry. The investment scale
has a more important influence on the overall scale of the chemical
industry, which can reflect the production and operation of the
industry better than the population scale; thus, the population size in
the original model is replaced by the fixed asset investment. In
addition, the affluence level in the original model is replaced by the
labor output per capita, which is the ratio of gross industrial output
to the number of employees. Moreover, the technology level is
measured by energy intensity to reflect the technology level of the
chemical industry, which is defined as total energy consumption
divided by gross industrial output value, and its smaller value
indicates a higher technology level.

As can be seen from LMDI decomposition, energy structure may
influence the carbon emissions of the chemical industry. Thus, the
ratios of coal, oil, natural gas, heat, and electricity to the total energy
consumption are added to the model. The logarithmic approach is

used to treat the total energy consumption shares, fixed asset
investment, per capita output, energy intensity, and the shares of
coal/oil/natural gas/heat/electricity to eliminate the effect of the
magnitude. The model variables are defined as shown in Table 2.
With the factors mentioned above considered, the extended
STIRPAT model can be expressed as

lnI � a + blnP + clnA + dlnT + elnCO + f lnOI + glnGas

+ hlnHeat + ilnPow + ε, (7)

where a denotes the constant term, b, c, d, e, f, g, h, and i denote
exponential term coefficients, and ε is the model residual. Compared
to the traditional STIRPAT model in Equation 6, the impact of
carbon emissions in the chemical industry can be better studied by
extending several complementary variables.

The extended STIRPAT model expressed in Equation 7 has
introduced multiple variables that are related to the carbon
emissions of the chemical industry. However, there may be a
correlation between the independent variables. If there is a strong
linear relationship between each independent variable, the true
relationship between the independent and dependent variables
cannot be found. This is usually called multicollinearity.
Therefore, to ensure the accuracy of the regression
results, multicollinearity testing should be carried out before
regression.

Ordinary least squares (OLS) regression and multicollinearity
among the variables are tested. The model in Equation 7 can be fit
well (R2 � 0.997), but the variance inflation factors (VIF) indicate
that there is serious multicollinearity between variables, which
means the results of OLS are unstable (Marquaridt, 1970). Thus,
the multicollinearity between the variables must be eliminated. To
eliminate the interference of multicollinearity, a ridge regression
(Hoerl and Kennard, 1970) analysis is performed with different
ridge parameters. The variable Gas is removed according to the
result of the ridge regression analysis, and the ridge
regression coefficient is set to 0.03. The regression results are
shown in Table 3.

The fitting results show that the regression coefficients of the
independent variables pass the T-test and have economic
significance, and the VIF values calculated according to the ridge
regression are less than 5, which implies that the model after the
ridge regression can avoid the influence of multicollinearity. The
regression equation can be written as

lnI � 0.126 + 0.324lnP + 0.384lnA + 0.545lnT + 0.333lnCO

+ 0.327lnOI + 0.61lnHeat + 0.309lnPow. (8)

In order to verify the validity of the model, the annual data of
variables from 2000 to 2019 are brought into the equation to
calculate the fitted values of carbon emissions, and the fitted
values and the historical values are compared. The results are
shown in Figure 5 the fitted values of carbon emissions are close
to the historical values.

4.2 Prediction based on the STIRPAT model

In this paper, the extended STIRPAT model in Equation 8 is
exploited to predict the carbon emissions from 2020–2035 under a
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TABLE 2 Variables in the STIRPAT model.

Variable Symbol Definition measuring method Unit

Carbon emissions I Carbon emissions Million tons

Industry scale P Fixed-asset investment Million

Labor output per capita A Gross industrial output divided by the number of employees Billion yuan

Energy intensity T Energy consumption divided by gross industrial output Tons per million yuan

Share of coal-based energy CO Ratio of coal type energy to total energy consumption %

Share of oil-based energy OI Ratio of oil type energy to total energy consumption %

Share of natural gas-based energy Gas Ratio of natural gas type energy to total energy consumption %

Share of heat Heat Ratio of heat to total energy consumption %

Share of electricity Pow Ratio of electricity to total energy consumption %

TABLE 3 Ridge regression results with k � 0.03.

Standardized coefficient Unstandardized coefficient t-Statistic p-values VIF

a — 0.126 0.694 0.05 0.998

lnp 0.220 0.324 4.043 1.6 × 10−3 0.666

lnA 0.816 0.384 14.246 7.0 × 10−9 0.319

lnT 0.476 0.545 9.263 8.1 × 10−7 0.010

lnCO 0.105 0.333 3.585 3.7 × 10−3 0.638

lnOI 0.181 0.327 3.064 9.8 × 10−3 0.367

lnHeat 0.144 0.610 5.944 6.8 × 10−5 0.555

lnPow 0.150 0.309 2.653 2.1 × 10−2 0.460

FIGURE 5
Historical and fitting values of carbon emissions.
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basic scenario and energy intensity control scenario for the chemical
industry in China. The basic scenario assumes that variables increase
with a mean growth rate of the last 5 years, and the noise of Gaussian
distribution with a mean value of 0.0 and variance of 0.01 is added to
the mean growth rate considering external disturbance. The energy
intensity control scenario assumes that the growth rate of energy
intensity is controlled by the carbon emissions reduction policy, and
the remaining variables grow at the same rate as the basic scenario.
The energy intensity continues to grow at a growth rate close to
12.0% under the basic scenario. Thus, considering the actual
situation and the lag effect of the policy constraint effect, it is
assumed that the growth rate of energy intensity grows from the
initial value to 15.0% and then decreases to 9.0% with a reduction
rate of −2.0% yearly, and a final decrease to 8.0% at the end of
the period.

The growth rates and values of variables are calculated, and then
carbon emissions are calculated according to the extended STIRPAT
model in Equation 8 under the basic scenario and the energy
intensity control scenario from 2020–2035. The carbon emissions
are shown in Figure 6. As can be seen from Figure 6, the carbon
emissions continue to grow under the basic scenario and will not
achieve carbon peaking until 2035. Meanwhile, the carbon emissions
will increase slightly, peak around 2031, and then decrease under the
energy intensity control scenario.

5 Conclusion

In this paper, the factors influencing carbon emissions in the
chemical industry in China are analyzed by using the LMDI
method and predicted according to the extended STIRPAT
model from 2020–2035. Among the influencing factors, the

industrial output value per capita is the main driving factor,
which results in carbon emissions increasing with the
development of the chemical industry. Energy intensity is the
main inhibiting factor of the chemical industry because advances
in technology will be accompanied by a decrease of carbon
emissions per added value of the chemical industry. In the
context of carbon peaking, the carbon emissions intensity
should be controlled strictly. Compared with traditional
thermal power, wind power and photovoltaic power have a
lower carbon emissions factor. Therefore, from the
development process of the chemical industry in the future,
the energy intensity should be greatly reduced. In addition to
vigorously promoting emerging technologies to reduce the
energy intensity of the industry, electric energy substitution
should be promoted as much as possible, using electric energy
to replace fossil energy and green power to replace thermal
power. These measures will support China’s chemical industry
in achieving the goal of carbon neutrality and carbon peak as
soon as possible from multiple perspectives.
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