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Against the backdrop of China’s initiative to construct a new power system
focusing on new energy, optimizing power grid investment holds significant
importance. This study aims to investigate whether the application of artificial
intelligence (AI) contributes to power grid investment efficiency. By considering
diverse factors, power grid investment efficiency in China is assessed by using a
Slack-based measure model. Then we analyze the relationship between AI and
power grid investment efficiency, as well as their nonlinear threshold effect. We
find a notable increase in China’s power grid investment efficiency, accompanied
by evident regional differences. In addition, the utilization of AI exerts a
significantly positive effect on power grid investment efficiency. Particularly,
such a promoting effect is more pronounced in the China Southern Power
Grid cohort and remains significant during the 12th Five-Year Plan period.
Moreover, grid investment exhibits a double-threshold effect, and it
diminishes the contributing effect of AI on power grid investment efficiency.
AI shows a single threshold effect on power grid investment efficiency as
electricity sales increase, and the positive impact manifests only when
electricity sales surpass a specific threshold. These insights are important for
the strategic deployment of power grid projects through using AI.
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1 Introduction

To break the monopoly, the unbundling reform was introduced to separate power
plants from grids in 2002, marking a vital milestone in China’s power market evolution
(Deng et al., 2018). In 2015, China’s government initiated a new round of reform, proposing
to build a national unified power market and reshaping the profit model of power grid
enterprises (Zeng et al., 2016). Furthermore, to address emissions abatement, China
advocated for the construction of a new type of power system in 2021, highlighting the
clean transformation of power system (Sun et al., 2023). This focus on achieving emission
peaking and carbon neutrality has catalyzed the development of wind and photovoltaic
power generation projects, which spurs substantial demand for power investment.
However, this shift has also brought uncertainties and challenges in grid investment.
Moreover, the reform concerning electricity transmission and distribution tariffs requires
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power grid enterprises to adjust their revenue models (He et al.,
2018). Given the critical role of power grid investment in the
business performance of power grid enterprises and its broad
impact on residents’ livelihoods, it is of great significance to
investigate effective strategies for optimizing power grid
investment and enhancing overall efficiency. As a new
technological factor, artificial intelligence (AI), which denotes the
human-like intelligent actions programmed to execute specific tasks
(Goodfellow et al., 2016), exerts a vital role in the transformation
and advancement of the energy sector (Li et al., 2023). The
integration of AI with emerging technologies like the industrial
internet of things, big data analysis, and cloud computing, has the
potential to generate adaptable and efficient operating methods and
contribute to industrial applications (Liu et al., 2020). Since 2013,
China has implemented a succession of national policies to facilitate
AI development, such as the New Generation Artificial Intelligence
Development Plan, the Development Plan on Smart Manufacturing,
and the Overall Layout Plan for the Construction of Digital China
(Zhai and Liu, 2023). Consequently, AI’s extensive capacities have
led to its rapid expansion across manufacturing, finance, education,
logistics, and various other sectors (Miller, 2019). According to the
International Data Corporation (IDC), the value of China’s AI
market is projected to be 0.91 billion in 2023, with an impressive
growth rate of 82.5%.

The widespread applications of AI have attracted considerable
scholarly attention, particularly in analyzing its multifaceted
influence. Some literature has explored the economic effects
associated with AI, including economic development (Lu, 2021;
Makridis and Mishra, 2022), productivity (Graetz and Michaels,
2018; Ramachandran et al., 2022), and income (Valentini et al.,
2023), etc. Its social implications have also been a focus, like
employment (Acemoglu and Restrepo, 2020; Faber, 2020),
education (Ara Shaikh et al., 2022), healthcare (Tursunbayeva
and Renkema, 2023; Yu et al., 2018), and industrial structure
(Zou and Xiong, 2023), etc. Additionally, a growing body of
recent literature has shifted its attention to AI’s environmental
effects, like climate change adaption (Chen et al., 2023),
emissions (Delanöe et al., 2023; Ding et al., 2023), and
sustainable development (Chang et al., 2023), etc. Moreover,
research on AI’s influence on the energy market has also gained
significant attention. For instance, Lyu and Liu (2021) point out that,
compared to other digital technologies, AI is the most extensively
utilized in the energy sector, enhancing the performance of energy
firms and contributing to the development of new energy
technologies. As documented by Khalilpourazari et al. (2021) and
Lee and Yoo (2021), applying AI can enhance energy efficiency by
forecasting energy demand, optimizing energy production and
consumption, and enabling intelligent control. Consequently,
reduced energy costs and sustainable development can be
promoted with the utilization of AI. Chen et al. (2023) state that
the implementation of AI can assist power grid operators because of
its ability to coordinate the grid by predicting renewable energy
production.

These studies provide a foundational understanding of AI’s
impact on the energy sector. However, a significant gap remains
regarding AI’s influence on power grid investment efficiency. The
question of whether AI applications effectively enhance power grid
investment efficiency is unresolved and warrants thorough

investigation. To address this gap, we, therefore, conduct a study
examining the nexus between AI and power grid investment
efficiency. Our study involves several key steps. Firstly, we
measure power grid investment efficiency across China,
considering various factors such as human, financial, and
material inputs, as well as outputs including economic
performance, grid safety, and environmental impact. Secondly,
the relationship of AI on power grid investment efficiency is
analyzed. Thirdly, we carry out a heterogeneous analysis for
further analysis. Lastly, in light of the possible nonlinear effect,
setting grid investment and electricity sales are the threshold
variables, respectively, we examine the threshold effect of AI on
power grid investment efficiency.

Based on our research, we find that China’s power grid
investment efficiency notably increases over the study period,
with conspicuous regional variations. The adoption of AI is
identified as a significant driver behind this enhancement,
exhibiting a positive effect on power grid investment efficiency.
Furthermore, such a positive effect demonstrates evident regional
heterogeneity. In more detail, AI manifests a stronger contributing
effect on power grid investment efficiency in the China Southern
Power Grid group compared to the State Grid Corporation of China
group, and the positive influence remains significant solely during
the 12th Five-Year Plan. Moreover, taking grid investment into
account, the impact of AI on power grid investment efficiency shows
a double-threshold effect, and AI’s influence on power grid
investment efficiency exerts a single threshold effect as electricity
sales enlarge.

Thereby, this paper contributes to the present literature on
three grounds: First, the electricity transmitted through the
power grid is indispensable across all facets of life, and power
grid investment can improve social welfare by meeting
fundamental life and production needs. However, only limited
attention has been paid to power grid investment efficiency (Sun
et al., 2019; Tong et al., 2017; Yao et al., 2019). By focusing on
power grid investment efficiency in China, this study evaluates it
taking multiple factors into consideration, thereby enriching the
prior literature with a detailed assessment of the performance of
power grid investment. Second, despite the widespread
examination of AI’s diverse effects (Agrawal et al., 2023;
Czarnitzki et al., 2023; Damioli et al., 2021; Zhao et al., 2022),
few studies have investigated its impact on power grid investment
efficiency. This study, thus, fills this gap by empirically exploring
the nexus between AI and power grid investment efficiency. This
exploration not only offers new insights into the benefits
associated with AI but also enhances our understanding of
how AI can be leveraged to boost power grid investment
efficiency. Third, we go beyond analyzing the linear effect of
AI on power grid investment efficiency by examining their
nonlinear threshold effects, considering variables such as grid
investment and electricity sales. The findings can contribute to a
comprehensive understanding of the relationship between AI
and power grid investment efficiency, offering valuable insights
for policymakers and stakeholders in the power sector.

This paper consists of the following three parts: Section 2
introduces the methodology, variables, and data. Section 3
presents and discusses the empirical results. The conclusions and
policy recommendations are drawn in Section 4.
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2 Methodology and data

2.1 Power grid investment efficiency

Building upon the CCR-DEAmodel developed by Charnes et al.
(1978), Tone (2001) introduced the Slack-based measure (SBM)
model to calculate efficiency by accounting for input excesses and
output shortfalls. Different with the traditional DEAmodel, SBM, as
a non-radial approach, addresses the overestimation issues resulting
from the oversight of slack variables (Fukuyama and Weber, 2009).
Additionally, it incorporates input and output slacks in efficiency
assessment, thereby offering a comprehensive evaluation of
inefficiency across all aspects. In our study, to comprehensive
measure power grid investment efficiency, both desirable output
(economic and safety indicators) and undesirable output
(environmental indicator) are taken into consideration. In light
of the characteristics and advantages of the SBM model,
following Yao et al. (2019), it is, therefore, applied to assess
power grid investment efficiency.

Firstly, we set the input-output vector for DMU i as (Xi, Yi, Bi).
Xi represents the input vector for DMU i, including human,
financial (investment), and material resources. Yi stands for
desirable outputs, containing economic and safety indicators, and
Bi is undesirable output, reflected by environmental indicator.

Then, the general SBM model is constructed as follows:

ρ* � min
1 − 1

m ∑m
i�1

s−i
λi0

1 + 1
s1+s2 ∑s1

r�1
sgr
y
g
r0
+ ∑s2

r�1
sbr
sbr0

( )
S.T.

x0 � Xλ + s−

yg
0 � Ygλ − sg

yb
0 � Ybλ + sb

λ≥ 0, s− ≥ 0, sg ≥ 0, sb ≥ 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1)

In Equation 1, ρ denotes the efficiency value, ranging from zero
to one. m is the number of input indicators, while s1 and s2 are the
number of desirable and undesirable output. x0, y

g
0 , and yb

0 signify
the input, desirable output, and undesirable output of the solved
DMU. s−i , sg, and sb represents the slack variables associated with
inputs, desirable output, and undesirable output. λ symbolizes an
intensity vector for the production possibility set construction using
linear programming.

Furthermore, following the thought of Hu and Wang (2006),
power grid investment efficiency is defined as:

PGIE � Target investment input

Actual investment input
� 1 − s−invest

Xinvest
(2)

In Equation 2, s−invest is the slack variable of investment, and Xinvest

represents the input of investment.

2.2 Econometric model

2.2.1 Benchmark regression model
The major objective of this study is to explore whether AI can

improve power grid investment efficiency. Following the studies of
Ni and Obashi (2021) and Huo and Wang (2022), the econometric
model is constructed as below:

PGIEit � ∂ + β ln AIit + ωlnCONit + ui + vt + εit (3)

In Equation 3, i and t denote region and year. PGIEit and AIit
represent power grid investment efficiency and AI applications of
region i in year t. CONit reflects a series of control variables,
including efficiency of power supply (E), energy mix (EM),
technical progress (TP), economic development (ED), foreign
direct investment (FDI), and urbanization level (UL). In addition,
ui and vt indicate the unobservable region and time fixed effects,
respectively, and εit is the random error term.

2.2.2 Threshold regression model
The panel threshold model proposed by Hansen (1999) stands

as a classical approach examining the nonlinear relationships among
variables. In this study, our aim is to investigate the possible
nonlinear threshold effect of AI on power grid investment
efficiency by taking grid investment and electricity sales into
account. Therefore, following Khalifa et al. (2013) and Yang et al.
(2019), the panel threshold models are constructed as:

PGIEit � ∂ + δ1 ln AIit GIit ≤ c1( ) + δ2 ln AIit c1 <GIit ≤ c2( )
+ δ3 ln AIit GIit > c2( ) + ωlnCONit + ui + vt + εit (4)

PGIEit � ∂ + ρ1 ln AIit ESit ≤ d1( )
+ ρ2 ln AIit d1 <ESit ≤d2( ) + ρ3 ln AIit ESit >d2( )
+ ωlnCONit + ui + vt + εit (5)

In Equations 4, 5 GIit and ESit are two threshold variables, grid
investment and electricity sales, respectively. c1 and c2, d1 and d2
reflect the threshold values of the two threshold variables. The other
symbols are identical with the ones in Equation 3.

2.3 Relevant variables

2.3.1 Artificial intelligence
The core independent variable in this study is AI. As AI

utilizes a range of technologies, like machine learning, deep
learning, and programming and algorithmic processing, to
simulate human skills (Liu et al., 2020), precisely quantifying
the level of AI applications poses a considerable challenge. Given
that the adoption of AI in the production process is achieved
predominantly through industrial robots (Chen and Qing, 2022),
industrial robots can be employed for measuring AI applications.
Therefore, referring to Liu et al. (2020), we adopt the density of
industrial robots as a proxy of AI applications based on the
practice of Acemoglu and Restrepo (2020). More specifically, the
ratio between the stock of industrial robots and overall
employment is computed to denote the density (Li et al.,
2023), and it reflects the number of industrial robots per
thousand workers. The detailed measurement approach is
demonstrated in Equation 6 as follows:

AIit � ∑
j

Ej,i,t

Ei,t
p
Rj,t

Ej,t
(6)

In Equation 6, Ej,i,t

Ei,t
represents the proportion in industry j to the

overall employment in province i in year t, which can be treated as a
weight. Rj,t and Ej,t is the number of industrial robots and national
employment in industry j in year t, respectively.
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2.3.2 Power grid investment efficiency
As the dependent variable, power grid investment efficiency is

estimated based on the SBM model, which is previously illustrated.
Its calculation requires input and output variables. Among them,
standing as the input variable, the human, financial, and material
resources are indicated by the number of employees, the power grid
investment values, and transformer capacity above 35 KV,
respectively. The two desirable indicators are denoted by
electricity sales and the reliability rate of power supply.
Moreover, the undesirable output is reflected by the coal
consumption rate for power supply.

2.3.3 Control variables
To mitigate estimation biases associated with omitted variables

and minimize the influence of exogenous factors, based on prior
studies, the following variables are controlled for: 1) Efficiency of
power supply (EPS). It is treated as an essential factor influencing
power grid investment efficiency as it is highly related to the
performance of grid investment projects. It is reflected by the
transmission loss rate of the power grid. The lower the line loss
rate, the higher the power supply efficiency; 2) Energy mix (EM). A
clean energy mix can be beneficial to attract more investments. To
quantify energy mix, it is assessed with the ratio of thermal power
generation to overall power generation; 3) Technical progress (TP).
Technical progress plays a significant role in improving power grid
investment efficiency because it contributes to the utilization of
advanced energy technologies, thereby enhancing the success rate of
investment projects. It, therefore, is incorporated, measured by the
expenditure on research and development (R&D) of industrial
enterprises; 4) Economic development (ED). A strong economic
foundation could result in more adequate funding allocated towards
the expansion and transformation of power grid, potentially
boosting power grid investment efficiency. GDP per capita serves
as the indicator for economic development; 5) Foreign direct
investment (FDI). As increased FDI might reflect a favorable
business environment, it is believed to be associated with power
grid investment efficiency. It is denoted by the share of FDI to GDP;
6) Urbanization level (UL). With the promotion of urbanization, the
enlarged demand for power necessitates grid expansion and
additional investment, hence influencing power grid investment
efficiency. The ratio of urban population to total population is to
indicate urbanization level.

2.3.4 Threshold variables
The threshold variables being investigated in this study

include grid investment and electricity sales. 1) Gird
investment (GI). In regions with different levels of grid
investment, it may generate divergent AI application efficacy,
thereby leading to a distinct effect on power grid investment
efficiency originating from AI applications. Thus, grid investment
is incorporated as a threshold variable, and it is measured by the
total amount of grid investment. 2) Electricity sales (ES). Higher
power sales generally indicate superior business performance,
which exerts a certain influence on attracting external
investment. Also, enhanced business performance is associated
with more advanced technology in utilizing AI. In light of this,
electricity sales might have a threshold effect on the relationship
between AI and power grid investment efficiency. Hence,

electricity sales from grid entities are incorporated to assess
this potential influence.

2.4 Data sources

The samples adopted in this research cover 31 provinces,
municipalities, and autonomous regions in China. Considering
data availability, the study periods span from 2006 to 2020. The
data is mainly sourced and collected from the China Electric Power
Yearbook, the Compilation of Statistical Data of the Power Industry,
China Statistic Yearbook, and China Population and Employment
Statistical Yearbook. The data on industrial robots used to represent
AI applications is obtained from the International Federation of
Robotic (IFR). Additionally, missing data is addressed through
linear interpolation. The descriptive statistics of the data are
presented in Table 1.

3 Empirical results

3.1 Efficiency level of power grid investment

Based on the SBM approach, the power grid investment
efficiency across China’s provinces is calculated. Initially, an
analysis is conducted on the overall level of power grid
investment efficiency. As illustrated in Figure 1, the evolution of
overall efficiency can be divided into four phases. During
2006–2009, the values remained relatively stable, keeping around
0.5. Subsequently, the efficiency values experienced a discernible
increase from 0.51 to 0.66 from 2009 to 2013. Nevertheless, a gradual
decline in power grid investment efficiency was observed during the
period of 2013–2016, with a decrease value of 0.56 in 2016. Further,
there was a substantial rise in power grid investment efficiency after
2016. In 2020, its average value reached 0.79, significantly surpassing
the value recorded in 2016. It shows that power grid investment
efficiency has improved tremendously over these years, reflecting the
considerable strides made by power grid enterprises. The
progressive improvement in power grid efficiency might be
attributed to the issuance of the 13th Five-Year Plan for Power
Development which proposes to upgrade and transform distribution
grids and promote smart grid construction.

TABLE 1 Descriptive statistics.

Variable N Max Median Mean Min SD

PGIE 465 1 0.571 0.600 0.059 0.233

lnAI 465 4.497 1.882 2.061 0.096 1.092

lnEPS 465 5.124 1.863 1.844 0.978 0.320

lnEM 465 0 −0.198 −0.462 −7.324 0.747

lnTP 465 17.034 13.895 13.747 7.401 1.759

lnED 465 12.009 10.542 10.504 8.717 0.609

lnFDI 465 3.553 −1.460 −1.254 −3.044 0.885

lnUL 465 −0.110 −0.626 −0.637 −1.558 0.273
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From the perspective of power grid investment efficiency among
different regions in China, large regional disparities can be observed.
Overall, the power grid investment efficiency from 2006 to 2020 was
highest in South China (0.69), followed by the Northwest (0.63),
North (0.62), and Northeast (0.61) regions, whose average values were
higher than the national average value of 0.60. This indicates the
superior performance of the grid investment in these regions.
However, the average values of power grid investment efficiency in
East and Central China were computed to be 0.59 and 0.49,

respectively, both falling below the national average. Moreover, the
South and Northeast regions exerted outstanding performance in
power grid investment efficiency between 2013 and 2020, with their
highest values reaching 0.83 and 0.95 in 2020. On the contrary, the
lowest values were linked to Central China, with values less than
0.40 during 2006–2008. These divergences highlight the pronounced
regional variations in power grid investment performance across the
country, which signifies the necessity for tailored region-specific
policies in terms of enhancing efficiency.

FIGURE 1
Power grid investment efficiency in China from 2006 to 2020.

FIGURE 2
The scatter diagram of artificial intelligence on power grid investment efficiency.
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3.2 Artificial intelligence and power grid
investment efficiency

Firstly, a scatter diagram is depicted to illustrate the relationship
between AI and power grid investment efficiency. As can be seen in
Figure 2, high levels of AI applications are associated with high levels
of power grid investment efficiency, which illustrates that a positive
correlation exists between the two variables. Further, to
quantitatively explore the causality between AI and power grid
investment efficiency, Equation 3 is estimated with province-fixed
and year-fixed effects. We gradually add the control variables, and
regression results are reported in Table 2.

As can be seen, the coefficients of AI in all columns are positive
at the 1% significance level, which signifies that it contributes to
increase power grid investment efficiency. In more detail, the
coefficient is estimated to be 0.351, implying that a 10 percentage
of increase in robot penetration rate is associated with 0.0351%
enhancement in power grid investment efficiency.

The potential reasons behind this positive effect are as
follows: As indicated by Wang et al. (2018), the widespread
implementation of smart meters has significantly expanded the
reservoir of data about power consumption. This surge in

available data provides a robust database for AI, enabling it to
gather comprehensive and high-resolution information. Thus,
more detailed analyses and precise prediction can be performed,
which lays a solid foundation for making well-informed
investment decisions. Additionally, AI technology can help to
reduce operation costs by identifying any errors or inefficiencies
at an early stage. Also, it serves as a powerful tool for investors by
assessing the risk of new energy projects under various
conditions (Chen et al., 2023). Therefore, power grid
investment efficiency can be improved with the
implementation of AI. Moreover, as China’s government has
proposed to accelerate the construction of a new type of power
system to achieve its carbon abatement goals (Han et al., 2022),
specific investment has been directed toward this endeavor. The
applications of AI play a significant role in promoting energy
efficiency and realizing sustainable development (Ahmed et al.,
2022), which helps power grid operators with the transformation
of the power grid towards the new type of power system. In this
regard, the adoption of AI can be conducive to bolstering the
enhancement of power grid investment efficiency, and the
findings contribute to the prior literature by unveiling the AI’s
potential role in power grid investment.

TABLE 2 Results of artificial intelligence on power grid investment efficiency.

(1) (2) (3) (4) (5) (6) (7)

PGIE PGIE PGIE PGIE PGIE PGIE PGIE

lnAI 0.417*** 0.407*** 0.386*** 0.408*** 0.383*** 0.384*** 0.351***

(0.068) (0.068) (0.068) (0.071) (0.076) (0.076) (0.075)

lnEPS −0.075* −0.080* −0.079* −0.078* −0.079* −0.050

(0.043) (0.043) (0.043) (0.043) (0.043) (0.042)

lnEM −0.063** −0.070** −0.071** −0.071** −0.086***

(0.027) (0.028) (0.028) (0.028) (0.028)

lnTP −0.046 −0.024 −0.023 −0.018

(0.040) (0.048) (0.048) (0.047)

lnEL −0.104 −0.104 0.294**

(0.119) (0.119) (0.147)

lnFDI 0.002 0.031

(0.032) (0.032)

lnUL −1.048***

(0.237)

CONS −0.260* −0.101 −0.076 0.508 1.342 1.339 −3.538**

(0.140) (0.167) (0.166) (0.535) (1.093) (1.096) (1.537)

Region FE YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES

N 465 465 465 465 465 465 465

R-squared 0.429 0.433 0.441 0.442 0.443 0.443 0.469

Note: The values in parentheses are t-values. *, **, and *** indicate 10%, 5%, and 1% significant levels. Source: Authors’ calculation.
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In terms of control variables, the coefficient of energy mix is
negative, passing the significant test at the 1% level, which indicates
that high shares of thermal power generation demonstrate a
downward effect on power grid investment efficiency. It reveals
that promoting clean energy generation is conducive to bolstering
the enhancement of power grid investment efficiency. In addition,
the coefficient of economic development is significantly positive,
signifying that economic development exerts a promoting effect on
increasing power grid investment efficiency. This is because superior
economic development can lay the foundation for the
implementation of power grid investment projects, contributing
to their success possibility. The negative coefficient of urbanization
level implies that urbanization is negatively associated with power
grid investment efficiency. Urbanization’s progression necessitates
the grid’s expansion to encompass a broader geographical area,
involving different types and sizes of electricity demand, which thus
brings complexity and uncertainty to the construction of power
grids. As a result, the power grid investment efficiency can be
negatively affected.

3.3 Robustness exercise

In this section, multiple alternative regressions are estimated to
check the robustness of the baseline results, including altering the
measurement of key variables, lagging independent variables, and
employing additional regression methods. The results are shown in
Table 3, and all results are basically consistent with the baseline
results. The specific descriptions of these tests are as follows:

Robustness to using alternative data of robot. In column (1),
referring to Chen et al. (2022), we adopt the increment data of
robots, the new installation number of robots, to reflect the level of
robot applications as a proxy of AI. It can be seen that the estimated
coefficient of AI is still positive at the 1% level, demonstrating
identical results with the main findings.

Robustness to changing the measurement of power grid
investment efficiency. To precisely calculate the value of power
grid investment efficiency, here we utilize a non-radial directional
distance function (NDDF) strategy, which incorporates
inefficiencies for all input and output variables. The coefficient of

TABLE 3 Regression results of robustness analysis.

(1) (2) (3) (4) (5) (6) (7)

PGIE PGIE PGIE PGIE PGIE lnAI PGIE

lnAI 0.241*** 0.291*** 0.328*** 0.357*** 0.415*** 0.379***

(0.086) (0.052) (0.078) (0.083) (0.072) (0.091)

lnEPS −0.058 −0.024 −0.055 −0.066 −0.129*** −0.007 −0.049

(0.043) (0.029) (0.043) (0.043) (0.043) (0.005) (0.033)

lnEM −0.080*** −0.068*** −0.081*** −0.091** −0.046 −0.012*** −0.085***

(0.029) (0.019) (0.029) (0.042) (0.028) (0.004) (0.033)

lnTP 0.027 0.060* −0.012 −0.002 −0.040** −0.011* −0.025

(0.046) (0.033) (0.048) (0.050) (0.020) (0.006) (0.057)

lnEL 0.222 0.153 0.258 0.223 0.074 −0.042** 0.306**

(0.149) (0.102) (0.160) (0.175) (0.093) (0.019) (0.140)

lnFDI 0.020 0.053** 0.040 0.038 0.029 0.001 0.032

(0.032) (0.022) (0.032) (0.034) (0.027) (0.004) (0.032)

lnUL −1.188*** −1.075*** −1.131*** −1.051*** −0.277 0.021 −1.039***

(0.240) (0.164) (0.252) (0.273) (0.185) (0.031) (0.250)

IV 0.889***

(0.009)

CONS −2.922* −2.976*** −3.180* −2.889 0.181 0.488** −2.618*

(1.553) (1.063) (1.656) (1.819) (1.031) (0.199) (1.410)

Region FE YES YES YES YES YES YES YES

Year FE YES YES YES YES YES YES YES

N 465 465 434 403 465 465 465

R-squared 0.451 0.536 0.485 0.491 0.999 0.468

Kleibergen-Paap Wald rk F statistic 3,506.49

Note: The values in parentheses are t-values. *, **, and *** indicate 10%, 5%, and 1% significant levels. Source: Authors’ calculation.
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AI in column (2) is estimated to be 0.291, passing the 1% of level
significant test, which aligns with the benchmark result.

Robustness to lagging the core independent variable.
Considering the possible time lag in the effect of implementing
AI on power grid investment efficiency, AI is lagged by one and two
periods, respectively. Results are reported in columns (3)–(4). Both
coefficients of AI are significantly positive, proving the robustness of
the main findings.

Robustness to utilizing the Tobit model for regression. Given
that the values of power grid investment efficiency fall between zero
and one, this censored nature supports the adoption of the Tobit
model (Khoshroo et al., 2013). Therefore, we re-estimated Equation
3 by using the Tobit model. As observed in column (5), the
coefficient of AI remains positive, indicating the robustness of
our baseline results.

Robustness to employing the Two-stage Least Squares (2SLS)
method for estimation. In light of the potential endogenous problem
between AI and power grid investment efficiency, the 2SLS is applied
to mitigate the endogeneity. Following Hu et al. (2023) and Zhu et al.
(2023), we select the data from US to calculate the level of AI

applications and then re-estimate Equation 3. The results of the first
and second stages are exhibited in columns (6) and (7), respectively.
The results in column (6) reflect that the instrumental variable
utilizing US’ data is highly associated with AI applications with
China’s data. Besides, the Kleibergen-Paap rk Wald F statistic is
much higher than the critical value at the 10% level. The relevance of
instrumental variables, therefore, is justified, proving the rationality
of the instrumental variable. In terms of the second stage results, the
coefficient of AI is still positive, in line with the baseline results.

3.4 Heterogeneous analysis

In 2002, to break the monopoly, the State Power Grid
Corporation was divided into two grid enterprises. Consequently,
the power grids across 26 provinces are managed by the State Grid
Corporation of China, and the power grids of the other 5 provinces,
including Guangdong, Guangxi, Yunnan, Guizhou, and Hainan, are
under the control of the China Southern Power Grid. This might
generate distinguished effects of AI on power grid investment

TABLE 4 Regression results of heterogeneity analysis.

(1) (2) (3) (4) (5)

State Grid Corporation of China China Southern Power Grid 2006–2010 2011–2015 2016–2020

PGIE PGIE PGIE PGIE PGIE

lnAI 0.309*** 0.685*** −0.004 0.571** −0.223

(0.089) (0.219) (0.270) (0.227) (0.394)

lnEPS −0.079 −0.095* 0.144 −0.023 −0.092*

(0.068) (0.054) (0.166) (0.130) (0.055)

lnEM −0.070** −0.128 −0.024 0.167* −0.053

(0.030) (0.080) (0.039) (0.099) (0.175)

lnTP 0.008 0.102 −0.121 −0.339*** −0.133

(0.055) (0.144) (0.145) (0.118) (0.144)

lnEL 0.313* −0.608 −0.105 1.464*** −0.723

(0.160) (0.711) (0.407) (0.425) (0.791)

lnFDI 0.080* −0.052 −0.089 −0.286*** 0.077

(0.045) (0.055) (0.074) (0.105) (0.047)

lnUL −1.225*** 1.278 1.155 −0.819 0.642

(0.253) (0.970) (0.869) (0.841) (1.270)

CONS −3.997** 5.182 3.658 −12.132*** 11.786

(1.669) (7.421) (4.837) (4.601) (8.554)

Region FE YES YES YES YES YES

Year FE YES YES YES YES YES

N 390 75 155 155 155

R-squared 0.485 0.593 0.671 0.660 0.618

Note: The values in parentheses are t-values. *, **, and *** indicate 10%, 5%, and 1% significant levels. Source: Authors’ calculation.
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efficiency. We, therefore, classify our sample into two cohorts: the
State Grid Corporation of China group and the China Southern
Power Grid group. The results are reported in Table 4.

The coefficients of AI in column (1) and column (2) are
0.309 and 0.685, both passing the significant level of 1%. The
findings indicate a more conspicuous effect of AI applications on
power grid investment efficiency in the China Southern Power Grid
cohort compared to the State Grid Corporation of China cohort. The
potential reasons behind this distinction are as follows. Firstly,
China Southern Power Grid, as a regional entity being in charge
of Southern China, typically exhibits a more agile and adaptable
organizational structure. Such agility empowers China Southern
Power Grid to specially address local needs and challenges with
precision and responsiveness. The ability to quickly adapt to specific
regional demands enhances the effectiveness of AI applications in
optimizing power grid investments. In contrast, State Grid
Corporation of China, with its broader nationwide coverage, may
adopt more centralized decision-making procedures than State Grid
Corporation of China. This centralization can sometimes result in
delays in the implementation of AI tools and technologies, as these
processes require multiple layers of approval and coordination.
Therefore, the application of AI has a more noticeable impact on
power grid investment efficiency in the China Southern Power Grid
group. By comprehending these underlying mechanisms associated
with idiosyncratic organization structure, stakeholders can better
understand the diverse impacts of AI on different power grid
entities, thereby facilitating more effective decision-making
processes within the energy sector.

We further investigate if there exist heterogeneity across
different time periods. In light of China’s implementation of the
“Five-Year Plan” (FYP) every 5 years to guide socio-economic
development, we divide our samples according to the FYP cycles.
In more detail, our sample is divided into three groups, including
2006–2010, 2011–2015, and 2016–2020. The results are
demonstrated in columns (3) to (5) in Table 4.

As can be seen, the coefficient associated with AI in column (4) is
positive at the 1% significant level. In columns (3) and (5), a negative
coefficient of AI is found, but it does not pass the significant test, even at
the 10% level. The findings signify that only during the period of the
12th FYP period did AI display a positive effect on power grid
investment efficiency. This might be linked to the policies
implemented during the 12th FYP, when the State Council
implemented the Energy Development “12th Five-Year Plan.” It
proposed to promote smart grid construction and deepen the
electric system reform. Correspondingly, a series of actions were
performed in alignment with this directive. It facilitated the
integration of advanced technologies into multiple aspects of power
grid operations, including real-time data analysis, and predictive
maintenance. As a result, AI is treated as a vital tool, exerting a
positive impact on enhancing power grid investment efficiency. The
findings offer valuable insights for policymakers to leverage AI to
optimize power grid investment in future planning cycles.

3.5 Threshold effect analysis

In this section, the panel threshold model, pioneered by Hansen
(1999), is employed to test the potential nonlinear relationship

between AI applications and power grid investment efficiency,
treating the grid investment and electricity sales as thresholds,
respectively.

Initially, a vital determination involves identifying the existence
of any threshold and its values (Liu et al., 2022). Thus, the threshold
tests are carried out, and the results are reported in Table 5. Notably,
when grid investment is the threshold variable, there exists a double
threshold. The threshold values are estimated to be 56 and
140 respectively, both passing the significant tests. The outcomes
suggest that within the impact of AI applications on power grid
investment efficiency, the power grid investment has a double
threshold effect. Moreover, setting the electricity sales as the
threshold variable, there is only a single threshold and its
threshold value is 589, demonstrating statistical significance. It
indicates that electricity sales play a single threshold effect on the
nexus between AI and power grid investment efficiency.

Next, we proceed with the authenticity test for the thresholds to
ascertain their alignment with the true values (Zhang et al., 2022).
This examination is achieved through the utilization of the
likelihood ratio test statistic (LR), and the LR graphs for the
threshold estimation of grid investment and electricity sales are
demonstrated in Figure 3. As for grid investment, both its first and
second threshold values pass the authenticity test within a 95%
confidence interval, which verifies the existence of a double
threshold for grid investment. In terms of electricity sales, its first
threshold value passes the authenticity test, confirming the
validation of a single threshold of electricity sales.

Furthermore, the panel threshold model is applied to estimate
Equations 4, 5, and corresponding results are exhibited in Table 6.
Column (1) in Table 6 shows the results with power investment as
the threshold variable. Notably, the influence of AI and power grid
investment efficiency varies depending on power investment and
can be divided into three stages. When the amount of power
investment falls less than 56, the coefficient of AI on power grid
investment is 0.563, passing the significant test. Subsequently, when
the power investment increases to the interval [56, 140], the
contributing effect of AI on power grid investment efficiency
remains significantly positive but drops to 0.459. As the power
investment further passes the second threshold value of 140, the
promoting effect associated with AI decreases to 0.395. Overall, the
contributing effects of AI applications on power grid investment
efficiency appear to be more pronounced in the first stage, followed
by the second and third stages. This trend implies that with the
increasing input of power investment, the promoting effect of AI on
power grid investment efficiency becomes progressively weaker.
This might be attributed to the diminishing marginal returns.
With the initial investment in power grid, the stimulating effect
of AI on power grid investment efficiency can be well utilized.
However, such a promoting effect cannot be sustained as further
applications of AI might come across various technical obstacles,
such as integration issues and system compatibility, limiting
effectiveness. In addition, increased power investment levels
introduce greater complexity in resource allocation. As these
investments grow, grid enterprises might require additional
resources to manage and coordinate operations, potentially
diminishing the impact of AI on power grid investment
efficiency. Summing up, while AI enhances power grid
investment efficiency, its contributory effect diminishes with
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higher investment levels on account of diminishing returns and
increased complexity.

Column (2) in Table 6 displays the results where electricity
sales are treated as the threshold variable. It can be found that AI
on power grid investment efficiency has a threshold effect based
on electricity sales. Specifically, when electricity sales are less
than 589, the effect of AI on power grid investment efficiency fails
to achieve statistical significance. This means that, at this stage,
AI does not exert a promoting effect on enhancing power grid
investment efficiency. Nevertheless, as electricity sales are higher
than the threshold value of 589, AI’s impact on power grid
investment efficiency is revealed to be 0.252 at the 1%
significant level. It indicates that the effective facilitation of
power grid investment efficiency by AI only occurs when
electricity sales exceed the threshold value. This is due to the
fact that insufficient electricity sales imply a lack of robust
business performance within power grid enterprises, reflecting

some potential challenges and problems. Consequently, AI
encounters limitations in its effective utilization under such
circumstances, thus constraining its effect on increasing power
grid investment efficiency. The reason behind it might be that
enterprises with low electricity sales often face financial
constraints that limit their ability to invest in and maintain
advanced AI technologies. Without sufficient funding, these
enterprises cannot fully exploit AI capabilities, leading to
limited improvements in efficiency. By contrast, elevated
electricity sales reflect better business performances of power
grid enterprises. Generally, these enterprises are characterized by
abundant resources, enhanced human capital, mature operation
systems, as well as advanced technical levels. Mature operational
systems provide a solid foundation for integrating AI into various
processes, which ensures smoother implementation and greater
benefits. As a result, AI can function as a powerful tool for
boosting power grid investment efficiency.

TABLE 5 Results of threshold affects.

Variable Model Threshold value F value P-value 10% 5% 1% Confidential interval

GI Singel threshold 56 94.12 0.000 14.679 18.426 26.233 [55, 61]

Double threshold 140 47.66 0.000 12.403 14.085 20.310 [132, 140]

ES Singel threshold 589 42.75 0.000 17.997 21.769 28.350 [580, 590]

Note: 95% confidential interval is constructed.

FIGURE 3
The LR graphs for the threshold estimate.
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4 Conclusion and policy
recommendations

Under the backdrop of China’s construction of a new power
system based on new energy, this study firstly adopts SBM to assess
power grid investment efficiency in China spanning from 2006 to
2020. Next, the linear and nonlinear threshold effects between AI
applications and power grid investment efficiency are explored. On
the basis of our study, we draw the following conclusion:

(1) There has been a notable improvement in power grid
investment efficiency in China, with significant regional
disparities; (2) AI applications enhance power grid
investment efficiency, which remains robust after
performing multiple robustness tests. (3) Heterogeneous
analysis reveals a more evident effect of AI applications on
power grid investment efficiency in the China Southern

Power Grid cohort compared to the State Grid
Corporation of China cohort. Additionally, its positive
effect on power grid investment efficiency remains
significant solely during the 12th FYP period. (4) Grid
investment has a double threshold effect, that is, higher
grid investment levels are associated with a diminishing
positive effect of AI on power grid investment efficiency. A
single threshold effect is found for electricity sales, and AI
significantly contributes to efficiency only when electricity
sales exceed the threshold value.

According to the above conclusion, the following policy
recommendations are suggested:

Firstly, given the considerable potential for improving power
grid investment efficiency in China, investment in power grid should
be boosted and regulated. For example, the government should
optimize the evaluation process of grid planning and investment

TABLE 6 Panel threshold estimation results.

(1) (2)

PGIE PGIE

Interval (PI < 56) 0.563*** Interval (ES < 589) 0.120

(0.068) (0.081)

Interval (56<PI < 140) 0.459*** Interval (ES > 589) 0.252***

(0.067) (0.074)

Interval (PI > 140) 0.395***

(0.065)

lnEPS −0.058 lnEPS −0.071*

(0.037) (0.041)

lnEM −0.074*** lnEM −0.076***

(0.024) (0.027)

lnTP 0.013 lnTP 0.012

(0.041) (0.045)

lnEL 0.203 lnEL 0.324**

(0.128) (0.141)

lnFDI 0.033 lnFDI 0.031

(0.028) (0.030)

lnUL −0.743*** lnUL −1.122***

(0.207) (0.227)

CONS −2.311* CONS −3.614***

(1.250) (1.382)

Region FE YES Region FE YES

Year FE YES Year FE YES

N 465 N 465

R-squared 0.438 R-squared 0.314

Note: The values in parentheses are t-values. *, **, and *** indicate 10%, 5%, and 1% significant levels. Source: Authors’ calculation.
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projects by developing a targeted framework, including advanced
analytical tools and performance metrics. Transparent regulatory
mechanisms should be established to oversee the implementation of
grid planning. In addition, significant regional disparities in
investment performance necessitate tailored policies considering
regional challenges and advantages. For regions with high levels
of power grid investment efficiency, the policy focus should be on
prioritizing advanced maintenance techniques, renewable
integration, and long-term sustainability. Conversely, in regions
with lower power grid investment efficiency, targeted and
customized guidance such as technical training, should be
provided for the grid enterprises to enhance the grid investment
performance.

Secondly, given the substantial role of AI applications in
facilitating power grid investment efficiency, government
initiatives aimed at further accelerating AI applications across
various sectors are necessary. For instance, the government
should incentivize the comprehensive integration of AI
technology with power management systems by offering tax
credits or subsidies to contribute to the establishment of the new
power system. Based on AI technologies, the government should
support projects that develop AI-based systems for real-time
monitoring, predictive maintenance, and dynamic load balancing
to enhance grid responsiveness and reduce downtime. Moreover, to
address those technical barriers, the government should financially
support the collaboration between industry, university and research
institutions to contribute to the application and transformation of
AI technologies.

Thirdly, considering the threshold effect of grid investment and
electricity sales on the nexus between AI and power grid investment
efficiency, targeted measures should be adopted focusing on grid
investment and electricity sales. Since AI applications exert a
diminishing effect on power grid investment efficiency with the
promotion of grid investment, strategic attention towards
optimizing grid investment becomes crucial. This incorporates
complete pre-investment analysis, such as risk assessments, cost-
benefit analyses, and potential societal economic and environmental
impacts. As higher levels of electricity sales are associated with a
more pronounced contributing effect of AI on power grid
investment efficiency, the government should effectively employ
AI and smart equipment to boost electricity sales through demand
forecasting, dynamic pricing and customer engagement tools.

There are two limitations in this paper, which could serve as
potential directions for future research. Firstly, while the disparities
among different power grid companies regarding AI and power grid
investment efficiency have been explored, the underlying factors
driving this heterogeneity are not examined. Future research could
be conducted to answer what causes the distinct effects on power
grid investment efficiency from AI across different power grid
companies. Secondly, this study investigates the impacts of AI on
power grid efficiency, whereas the various AI technologies are not

distinguished. By separately considering different types of AI, it is
believed that future research can form more detailed and targeted
conclusions.
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