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Cloud-edge collaborative
high-frequency acquisition data
processing for distribution
network resilience improvement

Sanlei Dang, Jie Zhang, Tao Lu*, Yongwang Zhang, Peng Song,
Jun Zhang and Rirong Liu

Metrology Center, Guangdong Power Grid Co., Ltd., Qingyuan, China

To realize transparent monitoring and resilience improvement of low-voltage
distribution network, both the data acquisition scope and frequency have been
greatly expanded. Cloud-edge collaboration leverages the edge server’s real-
time response capabilities and the cloud server’s robust data processing power
to enhance the performance of high-frequency data acquisition processing.
Nonetheless, it continues to confront challenges such as the entanglement
of optimization variables, the presence of uncertain information, and a lack
of awareness regarding acquisition frequencies. In this paper, we propose a
machine learning-based cloud-edge collaborative data processing optimization
algorithm to minimize the weighted sum of data processing delay and device
energy consumption for distribution network resilience improvement. The
joint optimization problem is decoupled into device-edge data offloading
subproblem and edge-cloud data splitting subproblem, which are solved
by the proposed upper confidence bound (UCB) based frequency-aware
device-edge data offloading optimization algorithm and the exponential-weight
algorithm for exploration and exploitation (EXP3) based edge-cloud data
splitting optimization algorithm, respectively. Simulation results show that the
proposed algorithm is superior to existing algorithms in performances of energy
consumption and total processing delay.

KEYWORDS

distribution network resilience improvement, edge-cloud collaboration, data
offloading, data splitting, high-frequency acquisition

1 Introduction

With a high proportion of unstable distributed renewable sources, energy
storage, and controllable loads connected to the low-voltage distribution network, its
transparent monitoring and resilience improvement have become an indispensable
requirement Zhou et al. (2022); Yang et al. (2023); Ding et al. (2024); Wang et al.
(2018); Chen et al. (2021). A large number of high-frequency acquisition devices
need to be deployed in the low-voltage distribution network to collect multi-
dimensional operation data such as voltage and current to support continuous
monitoring, unmanned control, and fault detection, improving the resilience of
distribution network operation Shah et al. (2020); Li et al. (2023); Soltani et al. (2023);
Tariq et al. (2020). Compared with conventional devices, both the data acquisition
scope and frequency have been greatly expanded. However, due to the limited
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computation and energy resources of devices, it is difficult to
satisfy the stringent and differentiated data processing requirements
of electric services Liao et al. (2020); Liu and Cao (2021);
Li et al. (2024b), Li et al. (2024c).

Cloud-edge collaboration is a new convergent distributed
computing paradigm, which combines the advantages of edge
computing and cloud computing Laili et al. (2023); Jiang et al.
(2023); Zhang et al. (2021). High-frequency acquisition devices
offload the collected data to either edge server or offload the
data to cloud server for remote processing. The real-time response
capability of edge server and the large data processing capability of
cloud server are integrated to improve data processing performance
Gao et al. (2022); Dong et al. (2021); Guo et al. (2020); Naeem et al.
(2021). However, the application of cloud-edge collaborative high-
frequency acquisition data processing for distribution network
resilience improvement still faces several challenges.

First, cloud-edge collaborative data processing involves the
joint optimization of transmission power selection, edge server
selection, and data splitting Long et al. (2023); Wu et al. (2020);
Lin et al. (2024). The coupling relationship among optimization
variables causes difficulties in solving the joint optimization
problem. Second, traditional optimization methods are based on
the global state information (GSI), while it is impractical to
obtain complete GSI in real-world applications Zhang et al. (2022);
Wang et al. (2022); Zhang et al. (2022). Uncertain GSI leads to
large deviations in the optimization of cloud-edge collaborative
data processing decisions. Last but not least, the data processing
performance is affected by the frequency of data acquisition.
The data processing optimization without the consideration of
acquisition frequency cannot satisfy differentiated data processing
requirements of high-frequency acquisition, which degrades the
optimization performance Xiao et al. (2022); Cui et al. (2021).

Currently, some works have explored data processing for the
distribution network. In Xia et al. (2022), Xia et al. proposed a
data processing algorithm based on the Lyapunov optimization
framework and the Markov approximation method, the objective
of which is to minimize the long-term energy cost while meeting
the real-time data processing constraint. However, the above study
does not consider the joint optimization of edge server selection,
data splitting, and device data transmission power control. In
Mu et al. (2019), Mu et al. proposed a data processing method
based on the centralized Kuhn-Munkers algorithm for a binary
integer linear programming problem, the objective of which is
to guarantee the network stability and improve energy saving. In
Li et al. (2024a), Li et al. proposed a data processing method based
on the three-dimensional learning-matching-based joint selection
algorithm of server and container, the objective of which is to reduce
the delay of high-priority service. However, the above studies do
not consider how to make device data processing decisions under
uncertain GSI. In Zhang et al. (2022), Zhang et al. proposed a data
processing method based on convolutional neural networks and
mathematical methods to solve the problems of sampling period
anomalies, sampling reference time anomalies, data noise, and data
missing in low-voltage distribution substation area. However, it does
not consider the joint optimization of high-frequency acquisition
device energy consumption and data processing delay.

Motivated by the above challenges, we propose a machine
learning-based cloud-edge collaborative data processing

optimization algorithm to minimize the weighted sum of data
processing delay and device energy consumption for distribution
network resilience improvement. First, we formulate a joint
optimization problem of transmission power selection, edge server
selection, and data splitting under cloud-edge collaboration.
Second, the joint optimization problem is decoupled into
device-edge data offloading subproblem and edge-cloud data
splitting subproblem and solved by machine learning-based
cloud-edge collaborative data processing optimization algorithm.
Specifically, devices and edge servers can learn the optimal
data offloading and data splitting strategy by upper confidence
bound (UCB) based frequency-aware device-edge data offloading
optimization and exponential-weight algorithm for exploration and
exploitation (EXP3) based edge-cloud data splitting optimization,
respectively. Finally, the effectiveness is verified through
simulations. The main contributions of this paper are summarized
as follows.

• Two-stage joint optimization of transmission power
selection, edge server selection, and data splitting under
cloud-edge collaboration: We decompose the joint
optimization of transmission power selection, edge server
selection, and data splitting into two stages. In the first
stage, the selection of transmission power and edge
server is realized through UCB-based frequency-aware
device-edge data offloading optimization algorithm, and
in the second stage, the selection of data splitting ratio
is realized through EXP3-based edge-cloud data splitting
optimization algorithm.
• Cloud-edge collaborative high-frequency acquisition
data processing under uncertain GSI: We model the
cloud-edge collaborative high-frequency acquisition data
processing problem as a multi-armed bandit (MAB)
problem and propose a machine learning-based cloud-
edge collaborative data processing optimization algorithm,
which introduces the acquisition frequency weight into the
confidence upper bound calculation formula to achieve
frequency awareness. The proposed algorithm optimizes
device data offloading and edge-cloud data splitting
through historical observations of cloud-edge collaborative
processing delay and device energy consumption,
integrating edge server and cloud server for collaborative
computing.
• Low-delay and low-energy consumption data processing:
We formulate the optimization objective as the weighted
sum of total data processing delay and energy consumption
to achieve simultaneous reduction of delay and energy
consumption. The proposed algorithm dynamically selects
transmission power, edge server, and data splitting ratio
based on the historical observation of weighted sum
performance.

This paper is structured as follows. Section 2 formulates
the system model and the cloud-edge data processing problem.
The proposed machine learning-based cloud-edge collaborative
data processing optimization algorithm is presented in Section 3.
Simulation results are provided in Section 4. Section 5 concludes
this paper.
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FIGURE 1
Cloud-edge collaborative high-frequency acquisition data processing architecture for distribution network resilience improvement.

2 System model

As shown in Figure 1, we consider a cloud-edge collaborative
high-frequency acquisition data processing architecture for
distribution network resilience improvement, which consists
of the device layer, the edge layer, and the cloud layer. In the
device layer, the information acquisition devices are deployed
on distributed electrical equipment such as photovoltaic and
distributed energy storage to collect data to support different
services. There exists N devices. The set of which is denoted
as D = {d1,…,dn,…,dN}. The edge layer and the cloud layer
consist of M edge servers and one cloud server, the set of edge
servers is denoted as S = {s1,…, sm,…, sM} and the cloud server
is denoted as s0. Firstly, devices offload data to edge servers
via 5G to reduce the data processing delay. Then, edge servers
split the data offloaded from devices and transmit them to the
cloud server via optical fiber communication to relieve data
processing stress caused by device data growth. Through edge-
cloud collaborative data processing, the processing requirements
of high-frequency power distribution information acquisition
can be met.

The total optimization period is divided into T time slots,
and the set is T = {1,…, t,…,T}. Each slot includes three stages:
device-edge data offloading, edge-cloud data transmission, and
edge-cloud collaborative data processing.Themaximum time length
of each stage is set as τ1,τ2,τ3. Denote xn,m(t) as edge server
selection variable, where xn,m(t) = 1 represents that device dn selects
edge server sm for data offloading in the t-th slot, and xn,m(t) = 0
otherwise.

2.1 Device-edge data offloading model

The power distribution information acquisition devices have
differentiated acquisition frequencies. Devices collect data with

different volumes in each slot and offload the data to the
selected edge server for data processing. Denoting the amount
of data collected at dn in the t-th slot as Un(t), the data stored
at dn are modeled as a data backlog queue Qn(t), which is
evolved as Eq. 1:

Qn (t+ 1) = Qn (t) +Un (t) −
M

∑
m=1

xn,m (t)U
D,E
n,m (t) , (1)

where UD,E
n,m (t) represents the amount of data offloaded by dn to sm

in the t-th slot, which is given by Eq. 2:

UD,E
n,m (t) =min{Qn (t) +Un (t) ,τ1Rn,m (t)} , (2)

where Rn,m(t) represents the rate of data transmission between dn
and sm, which is given by Eq. 3:

Rn,m (t) = Bn,m (t) log2(1+
Pn (t)gn,m (t)
δ0 + In,m (t)

) , (3)

where Bn,m(t) and gn,m(t) represent the bandwidth and
channel gain for data transmission between dn and sm,
respectively. δ0 and In,m(t) represent Gaussian white noise
and electromagnetic interference power between dn and sm,
respectively. Pn(t) ∈ Pn represents transmission power of dn. Pn
is the transmission power set, which contains L levels and can be
expressed by Eq. 4:

Pn = {Pn,min,…,Pn,min +
(l− 1) (Pn,max − Pn,min)

L− 1
,…,Pn,max}, (4)

where L is the transmission power level number. Pn,min and
Pn,max represent the minimum transmission power and maximum
transmission power of dn, respectively.

Therefore, the transmission delay of data offloading from dn to
sm in the t-th slot is calculated as Eq. 5:

τD,En,m (t) =min{τ1,
Qn (t) +Un (t)

Rn,m (t)
} . (5)
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The data transmission energy consumption En,m(t) for data
offloading from dn to sm in the t-th slot is represented as Eq. 6:

En,m (t) = Pn (t)τ
D,E
n,m (t) . (6)

2.2 Edge-cloud data splitting model

Edge server smmaintains data backlog queueOE
n,m(t) for the data

offloaded from device dn, which is dynamically evolved as Eq. 7:

OE
n,m (t+ 1) = O

E
n,m (t) +U

D,E
n,m (t)

− yn,m (t)U
D,E
n,m (t) −U

E,com
n,m (t) , (7)

where UE,com
n,m (t) is the processed data volume of sm, whose specific

explanation is shown in (11). yn,m(t) ∈ Y is data splitting ratio,
which represents the data splitting ratio of dn from sm to s0. Y is
the data splitting ratio set. In order to ensure the data integrity
while accomplishing ratio-based data splitting, we discretize the
data splitting ratio into H levels Chen et al. (2020), which can be
expressed as Eq. 8:

Y = {ymin (t) ,…,ymin (t) +
(h− 1) (ymax − ymin)

H− 1
,

…,ymax}. (8)

Denote UE,C
n,m(t) as the data amount of dn offloaded from sm to

cloud server s0 in the t-th slot, which is given by Eq. 9:

UE,C
n,m (t) =min{yn,m (t)U

D,E
n,m (t) ,τ2R

E,C
m (t)} , (9)

where RE,C
m (t) represents the transmission rate between sm and s0,

whose calculation method is as same as (3).
The transmission delay of data transmitted from sm to s0 in the

t-th slot is calculated as Eq. 10:

τE,Cn,m (t) =min{τ2,
yn,m (t)U

D,E
n,m (t)

RE,C
m (t)

}. (10)

2.3 Edge-cloud collaborative data
processing model

2.3.1 Edge server data processing delay model
Define the data amount of device dn processed by edge server sm

in the t-th slot as UE,com
n,m (t), which is given by Eq. 11:

UE,com
n,m (t) =min{OE

n,m (t) + (1− yn,m (t))U
D,E
n,m (t) ,

τ3
fEn,m (t)
χn
}, (11)

where fEn,m(t) (cycles/s) is the computing capacity of sm in the t-
th slot, and χn (cycles/bit) is the data processing complexity of dn.
Therefore, the processing delay of sm in the t-th slot is given byEq. 12:

τE,comn,m (t) =

min
{
{
{
τ3,χn[

[

(OE
n,m (t) + (1− yn,m (t))U

D,E
n,m (t))

fEn,m (t)
]

]

}
}
}
. (12)

2.3.2 Cloud server data processing delay model
Cloud server s0maintains data backlog queueZC

n,m(t) for the data
of device dn split from edge server sm, which is dynamically evolved
as Eq. 13:

ZC
n,m (t+ 1) = ZC

n,m (t) +U
E,C
n,m (t) −U

C,com
n,m (t) , (13)

whereUC,com
n,m (t) is the cloud server processing data amount, which is

given by Eq. 14:

UC,com
n,m (t) =min

{
{
{
ZC
n,m (t) +U

E,C
n,m (t) ,

(τ3 − τ
E,C
n,m (t)) fCn,m (t)

χn

}
}
}
. (14)

The processing delay of dn’s data in s0 is given by Eq. 15:

τC,comn,m (t) =min
{
{
{
τ3 − τ

E,C
n,m (t) ,

χn (Z
C
n,m (t) +U

E,C
n,m (t))

fCn,m (t)

}
}
}
. (15)

2.4 Problem formulation

The total delay of high-frequency acquisition data processing
consists of the delay of device-edge data offloading, and the
maximum value between edge server data processing delay and
the sum of edge-cloud data splitting delay and cloud server data
processing delay, which is given by Eq. 16:

τsumn,m (t) = τ
D,E
n,m (t) +max{τE,comn,m (t) ,τ

E,C
n,m (t) + τ

C,com
n,m (t)} (16)

In this paper, we aim to address the problem of low delay and
low energy consumption edge-cloud collaborative high-frequency
acquisition data processing for distribution network resilience
improvement.The objective is tominimize the weighted sum of data
processing delay and device energy consumption through the joint
optimization of transmission power selection, edge server selection,
and edge-cloud data splitting ratio selection. The joint optimization
problem is formulated as Eq. 17:

P1: min
{Pn(t),xn,m(t),yn,m(t)}

1
N

N

∑
n=1

M

∑
m=1

xn,m (t)ϒn,m (t)

s.t. C1:xn,m (t) ∈ {0,1} , ∀dn ∈D, ∀sm ∈ S , ∀t ∈ T

C2:
M

∑
m=1

xn,m (t) = 1, ∀dn ∈D, ∀sm ∈ S ,

C3:
N

∑
n=1

xn,m (t) ≤ num
max
m , ∀dn ∈D, ∀sm ∈ S ,

C4:Pn (t) ∈ P , ∀dn ∈D, ∀sm ∈ S ,
C5:yn,m (t) ∈ Y , ∀dn ∈D, ∀sm ∈ S , (17)

where ϒn,m(t) = τsumn,m(t) +VEEn,m(t), and VE is the weight of the
energy consumption. C1, C2 and C3 are edge server selection
constraints, i.e., each device can only select one edge server
for data offloading, and the maximum number of devices
can be handled by sm is nummax

m . C4 is the transmission
power selection constraint and C5 is the data splitting ratio
selection constraint.
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P1 involves the device-edge data offloading optimization
and edge-cloud data splitting optimization, which can be
solved by a time-sequential manner. Specifically, the device-
edge data offloading should be first optimized and edge-cloud
data splitting should be optimized based on the data offloading
strategy. Therefore, P1 is decomposed into two subproblems,
i.e., SP1: device-edge data offloading subproblem involving
Pn(t) and xn,m(t); SP2: edge-cloud data splitting subproblem
involving yn,m(t).

3 Machine learning-based cloud-edge
collaborative data processing
optimization algorithm

In this section, a machine learning-based cloud-edge
collaborative data processing optimization algorithm is proposed
to solve the optimization problem. The implementation procedure
of the machine learning-based cloud-edge collaborative data
processing optimization algorithm is shown in Algorithm 1.

3.1 UCB-based frequency-aware
device-edge data offloading optimization

SP1 is formulated as Eq. 18:

SP1: min
{Pn(t),xn,m(t)}

1
N

N

∑
n=1

M

∑
m=1

xn,m (t)ϒn,m (t)

s.t. C1 ∼ C4. (18)

SP1 optimizes the device-edge data offloading process. Its
optimization variables involve Pn(t) and xn,m(t). The device obtains
the optimal offloading decision by minimizing the weighted sum of
τsumn,m(t) and En,m(t).

However, the precise knowledge of global state information
such as channel quality and edge server computing resources
is inaccurate. It is difficult for devices to make the optimal
offloading decision. Devices should optimize edge server selection
and power selection based on the local state information.
Multi-armed bandit (MAB) is an effective solution to solve the
combinatorial optimization problem with incomplete information
Hashima et al. (2020); Zhao et al. (2020). In each slot, the decision
maker selects an arm.Then, the selected arm generates a reward.The
goal of the decision maker is to maximize the cumulative reward.

We transform SP1 into an MAB problem. The decision maker,
arm, action, and reward are described as follows.

• Decision maker: Define the acquisition devices as the
decision maker, which makes the edge server selection and
power control decision for data offloading.
• Arm: The power Pn and edge server S are combined
to reduce the space complexity of action. Define An =
{An

1,1,…,A
n
l,m,…,A

n
L,M} as the set of arms which satisfy |An| =

L×M. The armAn
l,m represents the combination of the power

level l and edge server sm. Define the number of times to select
An
l,m as rnl,m(t).
• Action: Define the arm selection action indicator variable
as anl,m(t), anl,m(t) = 1 represents that device dn selects

1: Input: D, S, T , P, Y, N, M, VE.

2: Output: {xn,m(t)}, {Pn(t)} and {yn,m(t)}.

3: For t = 1,2, … ,T do

4: Phase 1: UCB-based frequency-aware device-edge

   data offloading optimization

5: For dn ∈D do

6:  Initialize an
l,m(t),xn,m(t), and αn

l,m(t).

7:  Sequentially select each arm and obtains the

    initial reward.

8:  Calculate the confidence upper bound

   based on (20).

9:  Select arm An
l∗ ,m∗ and perform the action an

l∗ ,m∗ (t)

    based on (21).

10: Update αn
l∗ ,m∗ (t), ᾱn

l∗ ,m∗ (t), and rn
l∗ ,m∗ (t) based on

    (19) and (22) respectively.

11: End for

12: Phase 2: EXP3-based edge-cloud data splitting

    optimization

13: For sm ∈ S do

14: Initialize the uniform distribution parameter

   ξ ∈ (0,1]. Set the empirical performance-related

    distribution parameter     λn,m
h
(t) = 1, ∀Yn,m

h
∈Y.

15:  Calculate the probability for selecting

     Yn,m
h

based on (25).

16:  Calculate the cumulative distribution

       function of probn,m
h
(t) based on (26).

17:  Generate a random value probn,m
0
(t) ∈ [0,1], and

     get the optimal splitting ratio decision

     based on (27).

18:  Execute bn,m
1
(t) = 1 and get the reward γn,m

h
(t)

     based on (24).

19: Update the empirical performance-related

     distribution parameter λn,m
h
(t) based on

     (28) and (29).

20: End for

21: End for

Algorithm 1. Machine Learning-based Cloud-Edge Collaborative Data
Processing Optimization Algorithm.

the transmission power Pn(t) = Pn,min +
(l−1)(Pn,max−Pn,min)

L−1
to

offload data to the edge server sm.
• Reward: In the t-th slot, dn selects An

l,m to get the reward
αnl,m(t), which is given by Eq. 19:

αnl,m (t) = −ϒn,m (t) . (19)

We propose a UCB-based frequency-aware device-edge data
offloading optimization algorithm, which introduces the acquisition
frequency weight into the confidence upper bound calculation
formula to achieve frequency awareness, and addresses the MAB
problem of device-edge data offloading. UCB is a low-complexity
learning-based algorithm to balance exploitation and exploration.
The proposed algorithm enables the acquisition devices to take
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action based on local state information such as delay. Afterward,
combined with the optimization variables τD,En,m(t) and En,m(t), the
acquisition devices perceive the obtained reward and updated state
information for the next selection Xia et al. (2020).

The implementation procedure of UCB-based frequency-aware
device-edge data offloading optimization algorithm is introduced
as follows.

3.1.1 Initialization
Initialize anl,m(t) = 0, xn,m(t) = 0, and αnl,m(t) = 0, ∀dn ∈D, ∀sm ∈

S . When t ≤ |An|, device dn ∈D sequentially selects each arm and
obtains the initial reward.

3.1.2 Decision making
dn calculates the confidence upper bound based on the selection

number rnl,m(t) of A
n
l,m in the t-th slot, which is expressed by Eq. 20:

αn,upl,m (t) = ᾱ
n
l,m (t− 1) +

1
βnᾱ

n
l,m (t− 1)

√
ln (t)

rnl,m (t− 1)
, (20)

where ᾱnl,m(t− 1) is the average reward before the (t− 1)-th slot, βn
is the acquisition frequency weight of dn, √

ln (t)
rnl,m(t)

is the confidence

interval of An
l,m, and βn is the acquisition frequency weight of dn. If

the acquisition frequency weight βn of dn is larger, more data will
be collected at each slot. In order to ensure its transmission delay
and energy consumption performance, it is necessary to utilize the
best possible decision. Thus, the second term indicates that if βn
is larger and the reward value of the selected arm is higher, the
confidence interval is smaller and the device tends to exploit the
currently selected arm. If βn is smaller and the reward value of the
selected arm is lower, the confidence interval is larger and the device
tends to explore other arms.

After obtaining αn,upl,m (t), dn selects the arm An
l,m with the

highest confidence upper bound to perform the action, which is
expressed by Eq. 21:

{
{
{

An
l∗ ,m∗ = argmax{An

l∗ ,m∗ }
{αn,upl,m (t)} ,

anl∗ ,m∗ (t) = 1.
(21)

3.1.3 Learning process
The device observes delay and energy efficiency performances.

Then, gets the reward αnl∗ ,m∗ (t) based on (19). Accordingly, ᾱnl∗ ,m∗ (t)
and rnl∗ ,m∗ (t) are updated as Eq. 22:

ᾱnl∗ ,m∗ (t) =
rnl∗ ,m∗ (t− 1) ᾱ

n
l∗ ,m∗ (t− 1) + a

n
l∗ ,m∗ (t)α

n
l∗ ,m∗ (t)

rnl∗ ,m∗ (t− 1) + a
n
l∗ ,m∗ (t)

,

rnl∗ ,m∗ (t) = r
n
l∗ ,m∗ (t− 1) + a

n
l∗ ,m∗ (t) . (22)

3.2 EXP3-based edge-cloud data splitting
optimization

SP2 is formulated as Eq. 23:

SP2: min
{yn,m(t)}

1
N

N

∑
n=1

M

∑
m=1

ϒExp
n,m (t)

s.t. C5, (23)

where ϒExp
n,m(t) = max {τE,comn,m (t),τ

E,C
n,m(t) + τ

C,com
n,m (t)}.

Based on the offloading decision obtained by optimizing SP1,
SP2 optimizes the edge-cloud data splitting process. Its optimization
variable involves yn,m(t). The edge server obtains the optimal
splitting decision by minimizing the delay required to process
all data. Similarly, we transform SP2 into an MAB problem. The
decision maker, arm, action, and reward are described as follows.

• Decisionmaker:Define the edge server as the decisionmaker,
which makes the splitting ratio decision when conducting
edge-cloud data splitting.
• Arm: Define the arm as the total splitting ratio based on Y .
The arm Yn,m

h ∈ Y indicates that the data splitting level of the
dn specified by the edge server sm is h.
• Action: Define the action indicator variable as bn,mh (t),
bn,mh (t) = 1 represents that edge server sm sets the splitting
ratio of the data from dn as yn,m(t) = ymin +

(h−1)(ymax−ymin)
H−1

in
the t-th slot.
• Reward: Define γn,mh to represent the reward obtained by sm
of selecting arm Yn,m

h , which is given by Eq. 24:

γn,mh (t) =
1

ϒExp
n,m (t)
. (24)

We propose an EXP3-based edge-cloud data splitting
optimization algorithm to address the MAB problem. The core idea
is to maintain the probability of a certain arm. Then, the algorithm
randomly selects a certain arm each time and updates the weight
of the arm based on the observed reward after selection Zhou et al.
(2021). Through iteration, this algorithm can ensure that the regret
value is within a certain acceptable range.

The implementation procedure of the EXP3-based edge-cloud
data splitting optimization algorithm is introduced as follows.

3.2.1 Initialization
Initialize the uniform distribution parameter ξ ∈ (0,1]. Set the

empirical performance-related distribution parameter λn,mh (t) = 1,
∀Yn,m

h ∈ Y .

3.2.2 Decision making
In the t-th slot, firstly, calculate the probability for selectingYn,m

h ,
which is given by Eq. 25:

probn,mh (t) = (1− ξ)
λn,mh (t)

∑H
h=1

λn,mh (t)
+

ξ
H
. (25)

Then, calculate the cumulative distribution function of
probn,mh (t), which is given by Eq. 26:

Fn,m (h) =
H

∑
h=1

probn,mh (t) . (26)

Finally, generate a random value probn,m0 (t) ∈ [0,1], and get the
optimal splitting ratio decision, which is given by Eq. 27:

bn,mh (t) =
{
{
{

1, if Fn,m (h− 1) ≤ probn,m0 (t) ≤ F
n,m (h) ,

0, otherwise.
(27)

Specially, if 0 ≤ probn,m0 (t) ≤ F
n,m(1), bn,m1 (t) = 1.
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TABLE 1 Simulation parameters.

Parameter Value Parameter Value

N 10 M 3

T 100 L 6

H 5 VE 5× 103

fEn,m(t) 6× 1010 cycles/s fCn,m(t) 12× 1010 cycles/s

βn [5,10] times/s η 1

τ1 60 ms τ2 40 ms

τ3 80 ms δ0 −114 dBm

Bn,m [4,6] MHz Un(t) [1.2,1.8] Mbits

In,m(t) [28 30] dBm χn 103 cycles/bit

Pn [0.1, 0.2, 0.3, 0.4,
0.5] W

Y [0 0.2 0.4 0.6 0.8 1]

3.2.3 Learning process
The edge server executes the splitting ratio decision bn,m1 (t),

gets the reward γn,mh (t) based on (24), and updates the empirical
performance-related distribution parameter as Eq. 28:

λn,mh (t+ 1) = λ
n,m
h (t)exp(

ηγ̃n,mh (t)
H
), (28)

where η > 0 is the adjustment factor of empirical performance-
related distribution parameter and γ̃n,mh (t) is the estimated reward,
which is given by Eq. 29:

γ̃n,mh (t) =
{{{
{{{
{

γn,mh (t)

probn,mh (t)
, if bn,mh (t) = 1,

0, otherwise.

(29)

Finally, the algorithm terminates until t > T.

4 Simulation result

In this paper, we take a low-voltage distribution network in
a certain area as the simulation scenario to verify the system
model and the performance of the proposed algorithm, which
includes 10 power distribution acquisition devices, 3 edge servers,
and one cloud server. The amount of data collected by a device
in each slot distributed within [1.2, 1.8] Mbits. The transmission
power and the data splitting ratio contain 5 and 6 levels,
respectively. The specific simulation parameters are shown in
Table 1 Liao et al. (2022); Yang et al. (2023).

Two state-of-the-art algorithms are used for comparison. The
first one is the multi-index evaluation learning-based computation
offloading algorithm (MINCO), which sets the average total data
processing delay minimization as the optimization objective, but
lacks energy consumption control of device Lu et al. (2023).
MINCO considers multiple indices in power internet of things
to improve the learning performance of its algorithm, thereby

FIGURE 2
The weighted sum of total delay and energy consumption
versus time slot.

achieving the low-delay computation offloading. The other one
is the UCB-advantage actor-critic-based data offloading algorithm
(UCB-A3C), which considers energy consumption management
and transmission delay optimization Yang et al. (2022). UCB-A3C
combines UCB and actor-critic algorithm to enhance the learning
ability of its algorithm, and achieves the joint optimization of energy
consumption and delay.Meanwhile, both comparison algorithms do
not consider data splitting optimization.

Figure 2 shows the weighted sum of total delay and energy
consumption versus time slot. The simulation result shows that
the proposed algorithm has the lowest weighted sum among the
three algorithms. Compared with MINCO and UCB-A3C, the
proposed algorithm can decrease the weighted sum performance by
19.69% and 16.05%, respectively. The reason is that the proposed
algorithm can coordinate the balance between total delay and
energy consumption by adjusting the transmission power of devices
and the data splitting ratio of edge servers, which reduces energy
consumption while maintaining low delay. However, MINCO
merely focuses on delay reduction while the energy consumption
balance is neglected. UCB-A3C considers energy consumption
management, but the utilization of cloud-edge computing resources
is inadequate, resulting in poor weighted sum performance.

Figure 3 shows the total delay of data processing versus time slot.
It can be seen that the proposed algorithmhas the optimal total delay
performance of data processing. Compared withMINCO andUCB-
A3C, the proposed algorithm can decrease the total delay by 16.91%
and 23.11%, respectively.The reason is that bothMINCO andUCB-
A3C adopt the traditional binary full offloading strategy, and do not
take into account the optimization of the edge-cloud data splitting
process, which makes them difficult to fully utilize the computing
resources of cloud server and edge servers, leading to worse delay
performance.

Figure 4 shows the cumulative energy consumption versus
time slot. Compared with MINCO and UCB-A3C, the proposed
algorithm can reduce the cumulative energy consumption by
15.04% and 9.52% respectively. The reason is that the proposed
algorithm can coordinate the balance between total delay and energy
consumption through the joint optimization of data offloading and
data splitting allocation. MINCO only considers the data offloading
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FIGURE 3
The total delay of data processing versus time slot.

FIGURE 4
The cumulative energy consumption versus time slot.

FIGURE 5
The data backlog on device versus acquisition frequency.

FIGURE 6
The total delay and cumulative energy consumption of different
algorithms versus computing resources of edge servers.

FIGURE 7
The impact of VE on the total delay and cumulative energy
consumption.

delay optimization but ignores the coupling relationship between
data transmission power and data offloading delay, which leads
to the highest energy consumption. UCB-A3C lacks optimization
of edge-cloud data splitting process, and cannot make full use of
computing resources of cloud server and edge server, resulting in
serious data backlog queue, which consumesmore energy for device
data offloading.

Figure 5 shows the data backlog on device versus acquisition
frequency. With the increase of acquisition frequency, the data
backlogs of the three algorithms all increase, but the data backlog
of the proposed algorithm increases the least. This is because
the proposed algorithm can adaptively learn the server and
transmission power selection strategies by adjusting the balance
between exploration and exploitation through the acquisition
frequency awareness. When the acquisition frequency is large,
the proposed algorithm will tend to utilize the current optimal
strategy to effectively reduce the data backlog. On the contrary, the
proposed algorithm will tend to explore other strategies to avoid the
optimization falling into local optimality.
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Figure 6 shows the total delay and cumulative energy
consumption of different algorithms versus computing resources of
edge servers. When the computing resources of the edge servers
decrease, the total delay of all algorithms increases due to the
increase of data processing time. However, the proposed algorithm
exhibits aminimal upward trend in terms of total latency and energy
consumption. This is because the proposed algorithm transmits
part of the data to the cloud server for processing through data
splitting of the edge server, so as to relieve the processing pressure
of the edge server. At the same time, more edge servers with better
performance are available for devices to choose for data offloading,
thus reducing data transmission power consumption. However, the
binary unloading strategy is adopted in the comparison algorithm,
which transmits too much data to the cloud server, and the
computing resources of the edge server cannot be fully utilized,
resulting in the increase of the total delay performance.

Figure 7 shows the impact of VE on the total delay and
cumulative energy consumption. With the increase of VE, the
proposed algorithm pays more attention to energy consumption
and ignores the total delay performance. As a result, the total
delay gradually increases, and the energy consumption gradually
decreases. This result provides a reference for the setting of VE in
practical applications. Reasonable setting can achieve a compromise
between the total delay of data processing and device energy
consumption performance.

5 Conclusion

In this paper, we investigated the cloud-edge collaborative high-
frequency acquisition data processing architecture for distribution
network resilience improvement. A machine learning-based cloud-
edge collaborative data processing optimization algorithm was
proposed to minimize the weighted sum of data processing delay
and device energy consumption by jointly optimizing transmission
power selection, edge server selection, and data splitting ratio
selection. Firstly, we decomposed the optimization problem into
two subproblems of device-edge data offloading and edge-cloud
data splitting. Then, a UCB-based frequency-aware device-edge
data offloading optimization algorithm was employed to address
the device-edge data offloading subproblem, and an EXP3-based
edge-cloud data splitting optimization algorithm was employed to
address the edge-cloud data splitting subproblem. Simulation results
demonstrated that the proposed algorithm can achieve superior
performance in terms of processing delay and energy consumption.
Compared with MINCO and UCB-A3C, the proposed algorithm
can decrease the weighted sum performance by 19.69% and 16.05%,
respectively.

In the future, we will focus on the combination of high-
frequency acquisition data processing with security technologies
such as blockchain, encryption authentication, or differential
privacy, thereby achieving the joint guarantee of low processing

delay, low energy consumption, and high data security and privacy
performances.
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