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To achieve load management optimization and timely failure warning for power
transformers, as well as improve the reliability of the power network, this paper
proposes a multiple time scale prediction method for top oil temperature (TOT)
based on an adaptive extended Kalman filter (AEKF) algorithm. This method
combines the Kalman filter (KF) algorithm and the D. Susa thermal model. The
TOT, oil exponent and oil time constant are taken as state variables, while the
ambient temperature and load current are used as input variables. The iterative
optimization of the oil exponent and oil time constant is realized by comparing
the estimated and observed TOT values. Moreover, the proposed method utilizes
an adaptive noise estimator to correct the noise statistics parameters, which
simplifies the initial noise setting and thus further improves the TOT prediction
accuracy. A case study is conducted with two 110 kV transformers. The results
show that comparing the thermal equivalent circuit model and the extended KF
algorithm, the proposed method has a higher accuracy in the intraday ultra-
short-term prediction on a 15-min time scale and day-ahead short-term
prediction on a 24-h time scale for the TOT.
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1 Introduction

The top oil temperature (TOT) is an important indicator for evaluating the thermal
characteristics of a power transformer. Accurate prediction of changes in the TOT is of vital
practical significance for timely assessing the transformer’s load capacity and detecting the
potential thermal faults (Lachman et al., 2003; Shiravand et al., 2021; Liu et al., 2022). The
TOT is related to the structure, size, cooling mode, etc. of the transformer and varies with
the changes in the external environmental parameters and load operation conditions (Wang
et al., 2019; Zhang et al., 2024). Depending on the prediction time cycle, the TOT
predictions are divided into day-ahead short-term predictions with a day as the time
cycle, and intraday ultra-short-term predictions with an hour or a minute as the time cycle.
For short-term/ultra-short-term predictions at multiple time scales for the TOT, the
existing methods mainly include the empirical thermal model calculation method given
in the IEEE and IEC guidelines and the thermal equivalent circuit method, as well as the
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prediction method based on artificial intelligence (AI) algorithms
(He et al., 2000; Chen et al., 2009).

In the (IEEE Std C57.91, 2011; IEC 60076-7, 2017) guidelines, a
differential equation is used to describe the rise of the TOT relative
to the ambient temperature. In the thermal equivalent circuit
method, the most common model is the dynamic thermal model
proposed by D. Susa (Susa et al., 2005a; Susa et al., 2005b; Sönmez
and Komurgoz, 2018). This model considers the non-linear thermal
resistance caused by the changes in oil viscosity with temperature.
Therefore, it can predict the changes in the TOT more accurately
compared with IEEE and IEC thermal models. In terms of the above
three dynamic thermal models, the key parameters that affect the
prediction performance include the rated TOT rise Δθoil,r, the ratio
of the rated load loss to the no-load loss R, the oil exponent n and the
rated oil time constant τoil,r. Among them, the accurate values of
Δθoil,r and R can be obtained through the factory test, while the
values of τoil,r and n are usually difficult to determine. Generally, the
latter two parameters are roughly assessed according to the
transformer’s capacity and cooling type. The fixed values
obtained through the rough assessment cannot accurately reflect
information such as the transformer’s existing performance and
degree of oil aging, thus affecting the accuracy of the TOT
prediction.

In addition to the above dynamic thermal models, many scholars
use the support vector regression (SVR) model and artificial neural
networks to predict the TOT (WangK. et al., 2020). In (Tan et al., 2022),
a TOT predictionmethod based on the SVR algorithm is proposed. The
correlation coefficients of nine variables such as temperature, humidity,
and light intensity with the TOT are calculated, and the main variables
among them are selected as the input vectors. In (Li et al., 2021), the
authors establish an improved weighted SVR model for the TOT
prediction and use a particle swarm optimization algorithm to
optimize the hyperparameters of the SVR model. The TOT
prediction model using a long short-term memory (LSTM) network
is proposed in (Dong et al., 2023), with the ambient temperature, and
the active and reactive power of the load data as the characteristic
parameters. The above methods realize TOT prediction using AI
algorithms while considering multiple parameters such as ambient
temperature, humidity, and load factor as input variables. It is necessary
to estimate multiple parameters at the same time. If there is a large
deviation in the prediction of a parameter, the TOT prediction accuracy
will be greatly reduced. The cumulative effect of the deviation is more
significant, especially in the prediction at a long-time scale. In addition,
machine learning-based prediction methods require a large amount of
historical measurement data during the training, and themeasured data
inevitably contains measurement noise. If the noise component cannot
be effectively identified and filtered out in the training process, it will
also affect the TOT prediction effect.

The Kalman filter (KF) algorithm is capable of iteratively
optimizing the parameters by calculating the deviation between
the estimated data and the observed data, which can control the
deviation within a certain range and avoid the effect of error
accumulation under the prediction at a long-time scale (Chen
and Su, 2013; Lai et al., 2017; Alvarez et al., 2019). Therefore,
this paper combines the KF algorithm and the D. Susa thermal
model and proposes an adaptive extended Kalman filter (AEKF)
based TOT prediction method. This method uses the Taylor Series
expansion method to realize the linearization transformation of the

nonlinear equations of the D. Susa thermal model. The oil exponent
and the oil time constant are optimized iteratively by comparing the
deviation of the estimated andmeasured TOT values. As a result, the
TOT prediction accuracy is improved under both the intraday ultra-
short-term and day-ahead short-term prediction. Moreover, the
proposed model considers an adaptive noise estimator to realize
the adaptive estimation of the statistical covariates of the TOT
observation noise, thus improving the robustness of the model
and the adaptability to uncertain environments. Two 110 kV
transformer entities are analyzed. The results show that the
proposed method outperforms the traditional dynamic thermal
model in multiple time scale prediction with 15 min or 24 h as a
period, and has a better adaptability to the measurement noise.

2 Extended Kalman filter algorithm

Kalman filter is an algorithm that uses the linear system state
equation and the observation data of the system for the optimal
estimation of the system state. The KF combines the dynamic
information of the target with the observation results to suppress
the impact of noise for a more accurate estimate of the target
position. This estimation can be a filter or smooth for the
current and past target positions, or it can also be the prediction
for future positions. However, the KF is only applicable to linear
system state equations. For the TOT prediction, which involves a
non-linear system, it is necessary to introduce Extended Kalman
filter (EKF) algorithm. The basic idea of the EKF algorithm is to
linearize the nonlinear system using the Taylor Series expansion,
and then perform subsequent calculations using the KF framework.

2.1 Establishment of prediction model

First, the derivation of the prediction model of the EKF is
introduced. The Taylor Series expansion is a method of using the
n-degree polynomial about (x-x0) to approach the function value
f(x) with n-order derivatives at x = x0. When the variable is a
multi-dimensional vector, the one-dimensional Taylor Series
expansion is shown as Equation 1:

f x( ) � f x0( ) + ∇f x0( )[ ]Τ x − x0( ) + on (1)
where [∇f(x0)]T � J(x0) denotes the Jacobian matrix and on

denotes the high-order infinitesimal. In practical engineering
applications, the EKF can satisfy the computational accuracy
requirements by taking only the first-order derivative in the
Taylor Series expansion of nonlinear functions.

For a nonlinear state equation, the state migration equation and
observation equation of the EKF system are as follows Equations 2, 3:

xk � f xk−1( ) + sk (2)
zk � h xk−1( ) + vk (3)

where the state migration function f indicates the mapping relationship
of the state vector before and after a specific time, the measurement
function h indicates the mapping relationship between the state vector
and themeasured value. xk is the real state vector at time k, sk is the state
migration noise vector. zk and vk are the observation vector and the
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observation noise vector, respectively. Generally, both sk and vk follow a
Gaussian distribution with the average value being zero vector. Their
covariance matrices are Q and Rk, respectively.

With the Taylor Series expansion, the state migration Equation 2
changes to Equation 4:

xk � f 〈xk−1〉( ) + Fk−1 xk−1 − 〈xk−1〉( ) + sk (4)
where <xk-1> is the estimated value of the state vector at the previous
time k-1. Fk-1 is the Jacobian matrix of the function f(x) at the
estimated previous time <xk-1>.

Next, the covariance matrix Σ′
k between the real value xk and the

predicted value x′k is calculated using the state migration Equation 4:

Σ′
k � 〈e′ke′Tk 〉 � 〈 xk − x′k( ) xk − x′k( )T〉
� Fk−1〈 xk−1 − 〈xk−1〉( ) · xk−1 − 〈xk−1〉( )T〉FT

k−1 +〈sksTk〉� Fk−1Σk−1FT
k−1 + Q

(5)

In Equation 5, xk, <xk> and the state migration noise vector sk are
independent of each other, and the multiplicative covariance is
0. <skskT> is the covariance matrix of the state migration noise,
expressed in Q.

2.2 Establishment of updated
correction model

Next, the derivation process of the updated correction model of
the EKF is introduced. Since the observation vector in the TOT
prediction is the TOT, it is regarded as a linear mapping and then the
observation equation is expressed as (Equation 6):

zk � Hkxk + vk (6)
where Hk is the observation matrix and vk is the observation noise
vector. Therefore, the transition functions of the prediction state
vector to the observation vector are as follows (Equations 7, 8):

μ0 � Hkx
′
k (7)

Σ0 � HkΣ
′
kH

Τ
k (8)

Then, two independent Gauss distributions can be obtained.
One is from the result of the transition from the prediction state
vector to the observation vector. The other is from the measured
value (μ1,Σ1) � (zk,Rk). There are two independent dimensions to
estimate the system state. It is known that for two independent
random variables x ~ N(μx, σ2x) and y ~ N(μy, σ2y), their product
results are in line with the form of the Gaussian probability density
function N(μ′, σ′2), and the changes in the average value and
variance are calculated as (Equations 9, 10):

μ′ � μx +
σ2x μy − μx( )
σ2x + σ2y

(9)

σ′2 � σ2x −
σ4x

σ2x + σ2y
(10)

If the variable is a multi-dimensional matrix, the above formula
are expressed in the form of a matrix (Equations 11, 12):

μ′ � μ0 + Kk μ1 − μ0( ) (11)

Σ′ � Σ0 − KkΣ0 (12)
where Σ indicates the covariance matrix, and μ is the average vector.
The Kalman gain is shown as Kk � Σ0(Σ0 + Σ1)−1.

Substituting the two independent Gaussian distributions (μ0,Σ0) �
(Hkx′k,HkΣ′

kH
Τ
k ) and (μ1,Σ1) � (zk,Rk) into Equations 11, 12

and the Kalman gain equation, the updated correction model of the
EKF can be obtained. After cancellingHk andHΤ

k fromboth sides of the
equations, the simplified updated correction model is shown as
(Equations 13–15):

K ′
k � Σ′

kH
Τ
k HkΣ

′
kH

Τ
k + Rk( )−1 (13)

〈xk〉 � x′k + K ′
k zk −Hkx

′
k( ) (14)

Σk � Σ′
k − K ′

kHkΣ
′
k � I − K ′

kHk( )Σ′
k (15)

where K ′
k is the simplified Kalman gain, Σk is the covariance matrix

between the estimated value and the real value, and I is the
unit matrix.

3 Top oil temperature prediction model
based on AEKF algorithm

3.1 Establishment of the TOT prediction
model combined with dynamic
thermal model

For the TOT prediction of oil-immersed transformers, the
existing IEEE and IEC guidelines both specify the formulas used
to calculate the corresponding TOT rise. Compared with the IEEE
and IEC thermal models, D. Susa thermal equivalent circuit model
additionally focuses on the problem of non-linear thermal resistance
of oil and considers the changes in oil viscosity with temperature.
Therefore, it has a higher accuracy in the calculation of the TOT. To
this end, this paper achieves the TOT prediction using the AEKF
algorithm based on the D. Susa thermal model. The differential
equation for calculating the TOT by D. Susa thermal model is as
follows (Equation 16) (Susa et al., 2005a):

1 + R ·K2

1 + R
· μnpu · Δθoil,r � μnpu · τoil,r ·

dθoil
dt

+ θoil − θamb( )1+n
Δθnoil,r

(16)

where R is the ratio of the load loss to the no-load loss at the rated load;
K is the ratio of the current load to the rated load, i.e., the load factor; μpu
is the per-unit value of the oil viscosity;Δθoil,r is the TOT rise at the rated
load; τoil,r is the oil time constant; θoil is the TOT at the currentmoment;
θamb is the ambient temperature; n is the oil exponent determined by the
transformer’s cooling mode. After the discrete difference
transformation, the formula above is converted into the form of the
statemigration equation in EKF, as shown in the following Equation 17:

θk � f θk−1( ) � θk−1 + δt · 1 + RK2

1 + R
· Δθoil,r
τoil,r

[ − θk−1 − θamb( )1+n
Δθnoil,r · μnpu · τoil,r

⎤⎦
(17)

where θk is the TOT at time k; δt is the time step interval at each
measurement time. According to the equation for the effect of
temperature on the oil viscosity described in (Susa et al., 2005a),
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the corresponding value of μpu at time k-1 can be expressed as
(Equation 18):

μpu �
μ

μrated
� e

θc
θk−1+θbase

e
θc

θoil,r+θbase
(18)

where θoil,r denotes the top oil temperature value at the rated load (°C).
θbase is a fixed value equal to 273K, which is used to convert the
variable to a temperature in Kelvin. θc is also a fixed value, which is
equal to 2797K.

Then, the filtering calculation on the non-linear TOT rise system is
carried out based on the EKF algorithm. For the oil exponent n obtained
by experience and the oil time constant τoil,r affected by loads and oil
temperatures in the original thermal equivalent circuit model (Wang L.
et al., 2020), the recursive fittingmethod is used to determine their values,
so as to improve the prediction accuracy of the TOT. After determining
the state variable x � [θoil, n, τoil,r]T, the state migration is as follows
(Equation 19):

θk
nk

τoil,r,k

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ � f
θk−1
nk−1

τoil,r,k−1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦⎛⎜⎝ ⎞⎟⎠ �
f θk−1, n, τoil,r( )

nk−1
τoil,r,k−1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (19)

The Jacobian matrix F can be obtained as (Equation 20):

Fk−1 �
∂f/∂θk−1 ∂f/∂n ∂f/∂τoil,r

0 1 0
0 0 1

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦
∣∣∣∣∣∣∣∣∣∣∣〈xk−1〉

(20)

Substituting Equations 17, 18, the expressions for the elements
in the Jacobian matrix F are computed as (Equations 21–23):

∂f
∂θk−1

� 1 − δt · θk−1 − θamb( )n · e θc ·n
θoil,r+θbase

· 1 + n + θk−1 − θamb( ) · θc ·n
θk−1+θbase( )2

Δθnoil,r · τoil,r · e
θc ·n

θk−1+θbase
(21)

∂f
∂n

� −δt θk−1 − θamb

τoil,r
( ) θk−1 − θamb( ) · e

θc
θoil,r+θbase

Δθoil,r · e
θc

θk−1+θbase

⎛⎝ ⎞⎠n

ln
θk−1 − θamb

Δθoil,r
( ) + θc

θoil,r + θbase
− θc
θk−1 + θbase

[ ] (22)

∂f
∂τoil,r

� δt · θk−1 − θamb( )1+n · e
θc ·n

θoil,r+θbase

Δθnoil,r · e
θc ·n

θk−1+θbase · τ2oil,r
⎡⎢⎢⎢⎢⎢⎣ − 1 + RK2

1 + R
· Δθoil,r
τ2oil,r

( )]
(23)

Only the TOT is an observation vector, thus Hk is expressed as
(Equation 24):

Hk � ∂θoil
∂θoil

,
∂θoil
∂n

,
∂θoil
∂τoil,r

[ ] � 1, 0, 0[ ] (24)

In summary, after the twomatricesF andH are obtained, they can be
imported into the model derived in Section 2 for iterative calculations.

3.2 Estimation of the adaptive
noise parameter

It is known from the derivation in Section 2 that there are still
two unknown quantities in formulas (5) and (13), namely, the state

migration noise covariance matrix Q and the observation noise
covariance matrix Rk. For the EKF algorithm, both matrix values
need to be set manually and are used as invariants. In practical
applications, however, the two noise covariance matrix Q and Rk are
often unknown. Only the TOT observation results can be obtained.
And over time, these noise statistical parameters may change due to
environmental factors. In this case, it is necessary to further use
AEKF to perform adaptive estimates on the unknown noise
parameters.

The conventional Sage-Husa AEKF algorithm can dynamically
adjust the statistical characteristics of the state migration noise and
observation noise in real time, but there are problems such as large
calculations and state estimation diverging, which result in errors in
the estimates of the observation noise covariance matrix, and such
errors may cause the decrease of the filter’s performance or even
failure of its normal work (Sage and Husa, 1969; Hartana, 2000).
Therefore, improving the robustness of the model becomes
particularly important, so it is necessary to improve the
original model.

1) Remove the estimation of the state migration noise Q. It has
been shown that the state migration noise covariance matrixQ
and the observation noise covariance matrix Rk are not
estimated accurately at the same time by the adaptive
filtering algorithm (Wu et al., 2019). We can only estimate
the other covariance matrix when one noise covariance matrix
is known. Compared with the state migration noise, the
observation noise caused by the measurement error of the
temperature sensor is more significant. The observation noise
is more likely to be affected by external environmental factors
and the aging condition of the equipment, so the adaptive
adjustment of the observation noise covariance matrix Rk is
more realistic.

2) Replace the unbiased estimation of the observation noise
covariance matrix with the asymptotically unbiased
estimation. By using the asymptotically unbiased estimation,
the impact of the estimation error of the matrix Rk can be
reduced to a certain extent, thereby improving the robustness
of the filter. The improved adaptive filtering algorithm uses the
following Equations 25–27 to calculate the average value rk and
the covariance matrix Rk:

εk � zk − h 〈xk〉( ) − rk−1 (25)
rk � 1 − dk( )rk−1 + dk zk − h 〈xk〉( )[ ] (26)

Rk � 1 − dk( )Rk−1 + dkεkε
T
k (27)

The iteration of the covariance matrix Rk in the original
adaptation filtering algorithm is as follows (Equation 28):

Rk � 1 − dk( )Rk−1 + dk εkε
T
k −HkΣ

′
kH

T
k[ ] (28)

If the filtering process converges, the value of HkΣ′
kH

T
k will

approach 0, so the improved formula can be used for the
asymptotically unbiased estimation of the observation noise
covariance matrix. It is seen that as long as the positive
definition for the initial observation noise covariance matrix is
achieved and 0 < dk < 1, it can always maintain the positive
definition in the recursion process to ensure the stability of the
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algorithm. Where dk = (1-b)/(1-bk), b is the forgetting factor used to
ensure that the matrix Rk gradually stabilizes with the increase of k.
Generally, the value of b is between 0.95 and 0.99, and it is 0.99 in
this paper.

In summary, the flow chart of the TOT prediction based on the
AEKF algorithm is shown in Figure 1. Firstly, the required historical
data such as TOT, ambient temperature, and load conditions are

input. Then, the iterative optimization of the oil exponent and oil
time constant is carried out by the AEKF algorithm. During each
optimization process, the Kalman gain is updated and noise adaptive
estimation is performed. When the maximum number of iterations
is reached, the optimized oil exponent and oil time constant are
obtained. Finally, the optimized thermal parameters are used to
perform the TOT prediction at multiple time scales.

FIGURE 1
Flow chart of TOT prediction based on the proposed AEKF algorithm.
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4 Case analysis

Two main transformers of a provincial substation are taken as
the research object. Both are three-phase transformers with oil
natural air natural (ONAN) cooling type. Figure 2 shows the
field photo of the transformer entity. The rated voltage on the
high-voltage side is 110 kV, that on the low-voltage side is 10.5 kV,
and the rated capacity is 50 MVA. The transformer key parameters
used in the case study are shown in Table 1. These data came from
the transformer nameplate and the factory test.

Historical measurements of the TOT are taken from the fiber-optic
temperature measurement system installed on the transformers. The
fiber optic temperature probe has a temperature range of −80–200°C
and a measurement accuracy of ±1°C. The transformer load data is
obtained from the Energy Management System (EMS) of the power
grid, with a 15-min collection interval. The ambient temperature data is
sourced from the National Meteorological Information Center. It
provides ambient temperature for every hourly interval, and the
temperature at the other moments in between can be achieved by
an interpolation method. The algorithm is assessed with δt = 15min,
and the initial values of correction parameters are set as n0 = 0.8, τoil,r0 =
360, R0 = (100)2, and diag (Q) = [10−3, (0.005/3)2, (4/3)2].

4.1 Intraday ultra-short-term prediction
results for top oil temperature

The intraday ultra-short-term prediction for the TOT is carried
out with the future 15 min as the time scale, which is used for the

intraday fault warning and emergency optimization scheduling of
the substation.

The proposed method is used to achieve the intraday ultra-
short-term prediction of the TOT. Firstly, the updated iterative
training on the model is performed according to the historical data
set, and the Jacobian matrix is calculated after entering the ambient
temperature and the current. Then, the predicted TOT value after
15 min and the measured TOT value is entered into the updated
correction model to estimate the state variables (θoil, n and τoil,r).
Next, the observed values and state variables are used to conduct the
noise statistical parameter estimation. Subsequently, repeat the
above steps to predict the TOT at the next 15-min node, and so
on. The optimized values for the state variables of transformer 1 are
displayed in Figure 3, where the values of n and τoil,r are converged to
1.05 and 540min, respectively. For transformer 2, the corresponding
estimates converge to 1.11 and 570 min, respectively.

To further reflect the differences between the proposed
algorithm and the conventional thermal model, the prediction
results using the proposed algorithm and the calculation results
using the D. Susa thermal model are compared with the actual TOT
values of transformers 1 and 2, as shown in Figure 4. It can be seen
that compared with the D. Susa thermal model, the ultra-short-term
prediction results by the proposed method are more consistent with
the actual values.

Table 2 shows the root-mean-square errors between the two
transformers’ prediction results and actual values under the two
methods are calculated according to the statistical data results. It is
shown that, regardless of the transformer when the D. susa thermal
model is used to predict the TOT, the root-mean-square errors are
higher than that of the AEKF algorithm. The main reason is that both
oil exponent n and the rated oil time constant τoil,r used in the D. Susa
thermal model are taken as an empirical value, which are not reliable.
For the ONAN transformer, the empirical value of the oil exponent n is
0.25. However, according to the iteration with the AEKF algorithm, the
optimized values of n for the two transformers are stable at about
1.05 and 1.11, respectively. For the rated oil time constant τoil,r, with the
aid of the calculation method in the IEEE standard (IEEE Std C57.91,

FIGURE 2
Field photo of the transformer entity.

TABLE 1 Two transformers’ key parameters.

Parameter Transformer 1 Transformer 2

No-load loss/kW 23.78 24.31

Load loss/kW 170.81 170.26

High-voltage rated current/A 262.43 262.43

Rated top oil temperature rise/K 50 50
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2011), the mass and oil volume in different parts of the transformers are
substituted to calculate the thermal capacity and then the τoil,r can be
calculated, which is about 210 min. However, according to the iteration
with the AEKF algorithm, the corresponding values of τoil,r for the two
transformers are stabilized at about 540 min and 570 min, respectively.

When using the proposed AEKF method, the maximum error is
0.67K, the maximum error percentage is 1.67% and the average error
percentage is 0.35% for transformer 1. For transformer 2, the
maximum error is 0.63K, the maximum and average error
percentages are 1.63% and 0.34%, respectively. The results of the
intraday ultra-short-term prediction of the TOT meet the needs of
practical engineering calculation.

4.2 Day-ahead short-term prediction results
for top oil temperature

The short-term prediction for TOT is carried out with the future 24 h
being the time scale. Compared with the intraday ultra-short-term
(15 min) prediction, the day-ahead short-time prediction often involves
a large error, but it is of vital practical significance for the day-ahead
optimization scheduling of the power grid. TheTOTshort-termprediction
can not only provide important data support for the subsequent
transformer load state assessment work but also provide the day-ahead
temperature data reference when the transformer may appear overloaded
so that there will be more response time. The existing machine learning
algorithms can only achieve good results in ultra-short-term prediction as
they are limited to the time interval of training data and the inevitable
impact of the observation noise in the data. By contrast, the method
proposed in this paper uses the AEKF algorithm to optimize the model
parameter and performs the adaptive estimate on the observation noise.
Therefore, it enables a more accurate prediction of the day-ahead TOT.

While the model was constantly iterated and updated according to
the continuous observation data, the ambient temperature and current of
the next day were entered at 24:00 every day based on the trainedmodel.
It can obtain the TOT change curves on the incoming day and record the
data, which lasts a total of 19 days. The prediction curves on each of these

19 days are connected to get the full-course TOT observation curve. The
short-term prediction results under the proposed algorithm and those
obtained using the D. Susa thermal model are compared with the actual
values. Figure 5 shows the obtained TOT prediction curves as well as the
measurement curves of the two transformers.

The short-term prediction results are spliced from the prediction
results of each day, at the beginning of each day, the TOT prediction
value is changed back to the actual value, resulting in a certain
fluctuation in the prediction curve, particularly significant in the
short-term prediction curve by the D. Susa thermal model. Due to
the unreliable thermal parameters and the parameter value being not
corrected in real-time in the D. Susa thermalmodel, the errors gradually
increase over time and deviate from the actual values. By contrast, the
accuracy of the AEKF algorithm is much higher in the short-term
prediction, and the corresponding prediction curve is more coherent. It
is seen in Figure 5 that the results from the first several days under the
AEKF algorithm are less accurate than those from the several
subsequent days. This is because the model is not trained enough
during thefirst several days. It becomesmore andmore stable over time,
so the accuracy of predictions is getting increasingly higher.

To compare the accuracy of the short-term prediction results
between the two methods more intuitively, the root-mean-square
errors of the two methods are calculated according to the statistical
data results, as shown in Table 3. In Table 3, the errors of the short-term
prediction under the AEKF algorithm increase to a certain extent
relative to the ultra-short-term prediction. For transformer 1, the
error increases from 0.181K to 0.541K, with an increase of 0.36K.
However, the error of the thermal equivalent circuit model increases
from 0.497K in the ultra-short-term prediction to 1.74K in the short-
termprediction, with an increase of 1.243K, and the growth rate is about
3.5 times that under the AEKF algorithm. The accuracy in the TOT
prediction by the proposed method is superior to that of the D. Susa
thermal model at a longer time scale.

When the AEKF method is used for the day-ahead short-term
prediction of the TOT, the maximum error is 1.43 K, the maximum
error percentage is 3.64%, and the average error percentage is 1.09% for
transformer 1. For transformer 2, the maximum error is 1.44 K, the

FIGURE 3
Iterative variation plots of parameters n and τoil for transformer 1.
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maximum and average error percentages are 3.59% and 1.15%,
respectively. It is seen that the calculation results still meet the actual
engineering requirements.

4.3 Comparison with the EKF algorithm

Compared with the existing KF algorithm for predicting the
TOT, the AEKF algorithm is improved. Specifically, it contains an

adaptive estimation of the unknown noise parameters in the
recursion process, and then the estimated parameters are used to
recurse the solution to the AEKF algorithm. It solves the problem in
the original algorithm that the state migration noise and the
observation noise as well as their respective covariance matrix are
often unknown in the actual application process. Besides, using this
method, the noise estimates can be dynamically adjusted over time
to ensure the timeliness of the model, thereby further improving the
accuracy and practicality of predictions.

FIGURE 4
Comparison of intraday ultra-short-term prediction results for TOT by two methods: (A) Intraday ultra-short-term prediction results for TOT of
transformer 1; (B) Intraday ultra-short-term prediction results for TOT of transformer 2.

TABLE 2 Root-mean-square errors of intraday ultra-short-term prediction results for TOT by two methods.

Root-mean-square error/K Transformer 1 Transformer 2

AEKF algorithm 0.181 0.178

D.Susa thermal model 0.497 0.508
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In the improved adaptive algorithm, the estimation of the
migration noise coordinate matrix Q is removed to ensure the
robustness of the algorithm, with only the estimation of the
observation noise covariance matrix Rk reserved. Therefore, to
better reflect the difference between the AEKF algorithm and the
EKF algorithm in the TOT prediction, different initial Rk values,
namely, the value of R0, are taken here to compare the accuracy
results of the day-ahead predictions by the two methods. In the case
of R0 = 102, the comparison of short-term prediction results on
February 19th by the AEKF algorithm and the EKF algorithm is
shown in Figure 6.

In Figure 6, it is seen intuitively that the short-term
prediction results of the AEKF algorithm are superior to
those of the EKF algorithm. The root-mean-square error of
the prediction curve under the AEKF algorithm is 0.305K, and
themaximumerror is 0.666K.Under the EKF algorithm, the root-mean-
square error is 0.692K, and the maximum error is 1.394K. From these
data, it shows that there will be a larger error in the EKF algorithm if the
initial value of Rk is incorrectly set. By contrast, the AEKF algorithm can
make an adaptive adjustment to Rk, thereby minimizing the deviation
caused by the incorrect setting of the initial value. Furthermore, the day-
ahead short-term prediction for the TOT is carried out on transformer 1

FIGURE 5
Comparison of day-ahead short-term prediction results for TOT by two methods: (A) Day-ahead short-term prediction results for TOT of
transformer 1; (B) Day-ahead short-term prediction results for TOT of transformer 2.

TABLE 3 Root-mean-square errors of day-ahead short-term prediction results for TOT by two methods.

Root-mean-square-error/K Transformer 1 Transformer 2

AEKF algorithm 0.541 0.561

D.Susa thermal model 1.740 2.120
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under the two methods with different R0 values, the root-mean-square
errors between the final results and the real values are displayed
in Table 4.

With different R0 values, the AEKF algorithm could always
make an adaptive estimation of the noise parameters, and adjust the
Rk during each iteration, so that the Rk is closer to the real value, thus
ensuring the prediction model has a higher accuracy. While under
the EKF algorithm, this could not be realized, the more the R0 value
deviates from the real value, the lower the accuracy of the prediction
results would be.

5 Conclusion

Based on the AEKF algorithm, this paper establishes the TOT
prediction model at multiple time scales for oil-immersed
transformers. The oil exponent, the oil time constant, and the
transformer’s TOT are taken as the state variables. The purpose is
to simulate the uncertainty in the transformer quality and
thermal performance of the material. The corresponding
prediction results at different time scales for two transformers
are compared with the measured TOT data, proving the
effectiveness of the proposed algorithm. The conclusions are
as follows:

1) In the intraday ultra-short-term prediction for the TOT, the
root-mean-square errors of the TOT prediction curves using
the proposed method are 0.181K and 0.178K, respectively,

which are less than that obtained by the D. Susa thermal
model. It shows that the proposed algorithm has a high
accuracy in TOT prediction at a short time scale.

2) In the day-ahead short-term prediction for the TOT, the root-
mean-square errors of the TOT prediction curves using the
proposed method are 0.541K and 0.561K, which are far less
than those obtained by the D. Susa thermal model. It shows
that the proposed algorithm still has a high accuracy even in
the TOT prediction at a longer time scale.

3) When the proposed AEKF method is used for the prediction
of the TOT, the relative error percentage of the intraday
ultra-short-term prediction results is less than 2%, and the
error percentage of the day-ahead short-term prediction
results is less than 4%. The calculation results under both
time scales meet the actual engineering calculation
requirements.

4) Compared with the EKF algorithm, the adaptive
estimation of the noise parameter through the iteration
process by the proposed method ensures the accuracy of
the prediction model while reducing the requirements on
the accuracy of the initial value of the noise parameter. In
the day-ahead short-term prediction for the TOT, the
accuracy of the EKF algorithm is worse than that
obtained by the adaptive optimization algorithm in this
paper, no matter how the initial value of the observation
noise covariance R0 of the EKF is specified. The results
show that the proposed AEKF method has better
robustness and adaptivity.

FIGURE 6
Comparison of the day-ahead short-term prediction results of the AEKF and EKF algorithm.

TABLE 4 Root-mean-square errors of day-ahead short-term prediction of two algorithms with different R0 values.

RMSE/K R0 = 0.052 R0 = 0.52 R0 = 12 R0 = 32 R0 = 102

AEKF 0.305 0.305 0.305 0.305 0.305

EKF 0.450 0.330 0.351 0.457 0.692
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