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The transformer plays a critical role in maintaining the stability and smooth
operation of the entire power system, particularly in power transmission and
distribution. The paper begins by providing an overview of traditional fault
diagnosis methods for transformers, including dissolved gas analysis and
vibration analysis techniques, elucidating their developmental trajectory.
Building upon these traditional methods, numerous researchers have aimed to
enhance and optimize them through intelligent technologies such as neural
networks, machine learning, and support vector machines. These researchers
have addressed common issues in traditional fault diagnosismethods, such as the
low correlation between characteristic parameters and faults, ambiguous fault
descriptions, and the complexity of feature analysis. However, due to the
complexity of transformer structures and the uncertainties in operating
environments, the collection and analysis of characteristic parameters
becomes highly intricate. Researchers have further refined algorithms and
feature values based on intelligent diagnostic algorithms for transformers. The
goal is to improve diagnostic speed, mitigate the impact of measurement noise,
and further advance the adaptability of artificial intelligence technology in the
field of transformers. On the other hand, the excellent multi-parameter analysis
capability of artificial intelligence technology is more suitable for transformer
diagnostic techniques that involve the fusion of multiple information sources.
Through the powerful data acquisition, processing, and decision-making
capabilities provided by intelligent algorithms, it can comprehensively analyze
non-electrical parameters such as oil and gas characteristics, vibration signals,
temperature, along with electrical parameters like short-circuit reactance and
load ratio. Moreover, it can automatically analyze the inherent relationship
between faults and characteristic quantities and provide decision-making
suggestions. This technique plays a pivotal role in ensuring transformer safety
and power network security, emerging as a prominent direction in transformer
fault diagnosis research.
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1 Introduction

The power transformer stands as a vital component within transmission and
distribution networks, serving as the linchpin for voltage and energy conversion (Barkas
et al., 2022). Its operational integrity directly influences the safety and stability of the entire
power system. However, due to manufacturing limitations, environmental complexities,
and sporadic maintenance, transformers face relatively high failure rates. A malfunctioning
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transformer can trigger widespread power outages, significantly
impacting people’s lives, industrial electricity usage, and causing
substantial economic losses. Hence, timely and accurate fault
diagnosis and prediction for transformers are imperative
(Chakravorti et al., 2013). These proactive measures not only
prevent potential hazards but also enhance the grid’s reliability
and availability (Yu et al., 2016).

Early fault diagnosis methods for transformers, including
preventive electrical tests, impulse voltage waveform tests,
dissolved gas analysis (DGA), and vibration analysis (Roncero-
Clemente and Roanes-Lozano, 2018; Lu et al., 2020; El-kenawy
et al., 2022), have played a crucial role in preventing safety incidents
and driving advancements in the power market. However, these
traditional approaches often possess limitations in diagnostic feature
quantity and precision under specific conditions, resulting in
reduced diagnostic accuracy (Standard, 2000; Kim et al., 2013;
Liu et al., 2015). Consequently, they are unable to fully meet the
evolving diagnostic requirements for power transformers.

To overcome these limitations of traditional diagnostic methods,
extensive research has delved into intelligent transformer diagnosis
(Malik et al., 2020; Zhang et al., 2022). Artificial intelligence
algorithms have excellent big data processing and learning ability
(Divya et al., 2023). By processing a substantial volume of
transformer fault data, these algorithms can conduct thorough
analyses and predictions, effectively addressing challenges
encountered in traditional diagnostic methods, including
incomplete data analysis and the fuzzy relationship between
features and faults. The outcome is a significant enhancement in
the accuracy of diagnosis and detection, making it particularly
valuable in transformer diagnosis. Various algorithms, including
neural networks (Duraisamy et al., 2007), support vector machines
(Zhu et al., 2019), machine learning (Zhuo and Ge, 2021) and others,
have been employed for transformer fault diagnosis. However, due
to the complexity of transformer internal structures and external
environments, utilizing these intelligent algorithms in combination
with traditional methods still presents challenges (Ma et al., 2021).
Therefore, researchers have mitigated the impact of noise in
measurements and improved the adaptability of intelligent
diagnostic methods for various transformers by optimizing
algorithms and enhancing feature extraction techniques (Jina
et al., 2024; Wang et al., 2024), further propelling the
development of intelligent diagnostic technologies. On the other
hand, the concept of combining multiple diagnostic methods has
emerged with the advancement of artificial intelligence technology.
In the review of DGA, Taneja et al. (2016) proposed that intelligent
diagnosis technology should not be confined to a singular diagnosis
method but should encompass a comprehensive diagnosis involving
multiple characteristic parameters. While establishing the health
index for the transformer insulation system, Badawi et al. (2022)
observed that the accuracy of verification using a single DGA is
notably lower when compared to the comprehensive analysis of
various characteristics, including DGA, winding resistance,
insulation oil moisture content, acidity, etc. The estimation of
health index results obtained through the use of a transformer
detection system with multi-source information proves to be
more accurate. Therefore, the development direction for
intelligent transformer fault diagnosis is oriented towards
integrating multi-source information, leveraging the data

collection, analysis and processing capabilities of multi-source
information integration technology. The transformer diagnosis
technology based on multi-source data integration can identify
various fault types efficiently and accurately, and provide a more
comprehensive protection for the transformer (Zheng et al., 2018).
This emphasizes the forward direction for ongoing research and
development in transformer fault diagnosis technology, making a
positive contribution to enhancing the reliability and stability of the
power system.

2 Transformer fault types

Diagnosing transformer faults requires understanding the
causes and types of different faults. With the development of the
power market, the capacity of power transformers is constantly
increasing to meet the needs of the market. To ensure uninterrupted
operation, it is crucial to establish a detailed maintenance plan. In
the process of analyzing the causes of faults, Kumar et al. (2015)
classified the failure modes of transformers into electrical faults,
mechanical faults, and thermal faults. These faults further break
down into categories like external, ground, interphase short-circuit,
and inter-turn faults (Soni andMehta, 2021). These failures are often
caused by winding deformation, insulation oil aging, overheating,
system overload, design defects, and other factors (Hashemnia et al.,
2016; Fu et al., 2017; Christina et al., 2018), as shown in Figure 1. By
classifying transformer faults and analyzing their causes, one can
clarify the objectives and approaches of transformer fault diagnosis.

2.1 External faults

External faults of transformers mainly refer to faults related to the
external power grid or connection line of transformers. These problems
arise from transmission line or transformer malfunctions, as well as
faults from other devices connected to the external power transformer.
Overloading the power system or overvoltage caused by lightning
strikes are also categorized as external faults (Awadallah et al., 2015;
Sun et al., 2021; Ounissi et al., 2023). For example, during power system
switching, the transformer becomes susceptible to overvoltage
generated within the system. Before a fault occurs, the power system
is protected by measures such as instantaneous overcurrent protection
and overcurrent protection (Florkowski et al., 2010). During the fault
diagnosis process, techniques such as frequency analysis and preventive
electrical tests are employed to monitor the voltage, current, and
frequency characteristics of transformers. This facilitates fault
detection and prediction, thereby prompting maintenance personnel
to perform necessary repairs.

2.2 Ground faults

Grounding faults can occur in the high-voltage or low-voltage
windings of a transformer, and the causes of such faults may include
insulation aging, insulation material damage, equipment humidity,
external damage, or operational errors. Grounding faults can
potentially damage the equipment itself and the connected power
grid. Currently, researchers often supplement traditional differential
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relays with Restricted Earth Fault (REF) relays to enhance
transformer safety and reliability (Davarpanah et al., 2012; Ebadi
et al., 2021). Due to variations in grounding locations, ground faults
can give rise to issues such as localized discharge and overheating
upon occurrence. Rapid detection of these faults can be achieved
through methods such as dissolved gas analysis (DGA), infrared
imaging, and electrical analysis (Sun et al., 2024; Vatsa and
Hati, 2024).

2.3 Phase-to-phase short circuit faults

A phase-to-phase short-circuit fault in a transformer can lead to
significant issues such as temporary power interruptions and voltage
instability. Therefore, it is crucial to promptly detect and rectify such

faults upon occurrence. The primary causes of these faults include
aging of the transformer’s insulation system, overcurrent, and
mechanical deformation (Djufri and Yandra, 2020). Effective
diagnosis of insulation failure and mechanical deformation in
transformers can be achieved through methods such as dissolved
gas analysis (DGA), vibration analysis, and sweep frequency analysis
(Jiang et al., 2021; Kherif et al., 2021). Conducting rapid diagnosis
before the occurrence of phase-to-phase short-circuit faults helps
prevent major safety incidents and mitigate economic losses.

2.4 Inter-turn faults

The power transformer is a vital component in the power
system, where the iron core and winding play integral roles.

FIGURE 1
Typical causes of transformer failure.

FIGURE 2
Transformer fault location.
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Among transformer issues, turn-to-turn failures in the core and
winding stand out as frequent causes of malfunctions. Out of
526 cases of transformer failures, Figure 2 highlights that
winding-related failures were most common (Behjat and Vahedi,
2013). These failures often stem from inter-turn insulation aging,
caused by various factors such as frequent overloading, mechanical
vibration, high voltage stress, high current stress (especially during
external short circuits), thermal overload, and contamination
(Wang et al., 2002; PE, 2003). Hence, utilizing diagnostic
techniques like vibration analysis, frequency response analysis,
and polarization current analysis is essential for fault detection.
These methods are capable of identifying critical issues such as
mechanical deformation and insulation failure in transformers
(Muhamad et al., 2013; Al-Ameri et al., 2021). Moreover,
infrared imaging for detecting overheating also holds significant
merit (Zhang and Li, 2021), given its non-contact nature for
fault detection.

3 Traditional transformer fault
diagnosis methods

Power transformers are among the most critical components of
power systems. Due to the high reliability requirements of power
systems, transformers often need to operate continuously for
extended periods, with limited opportunities for shutdown
maintenance. Therefore, it is essential to continuously monitor
the operational status of transformers throughout their service
life to ensure reliable diagnosis and detection at the earliest sign
of a fault. The aging and deterioration of transformer components
are crucial aspects of fault detection, with these faults manifesting

primarily through electrical and non-electrical characteristics. With
advancements in technology, industrial standards have defined
several diagnostic methods that employ chemical, electrical, and
other testing techniques to provide a comprehensive diagnosis of
transformers. Based on the concept of acquiring, analyzing, and
processing partial discharge source characteristic parameters for
fault diagnosis, various diagnostic methods have been developed.
These methods include the analysis of polarization and
depolarization currents, the analysis of dielectric breakdown
voltage, and other diagnostic approaches based on the analysis of
electric and non-electric gases, such as oil and gas analysis and
vibration analysis (Eldery et al., 2006; Yang et al., 2009). The
relationship between characteristic values and faults is thoroughly
examined. Figure 3 provides a comprehensive overview of the partial
discharge detection technique. Additionally, a rapid diagnosis of
transformer faults is discussed (Soni and Mehta, 2021). The
integration of these methods contributes to an effective
understanding and identification of faults in transformers.

3.1 Polarization and depolarization current
measurement

The polarization and depolarization current (PDC) technique
stands as a cornerstone in electrical fault diagnosis. This method
offers a non-destructive approach, capable of assessing the dielectric
response of insulation systems in power transformers. Given its non-
destructive nature, it excels in detecting insulation failure faults
induced by factors like moisture, partial discharge, contamination,
and overheating. Notably, it allows for the evaluation of oil-paper
insulation and other supporting insulation joints even without

FIGURE 3
Classification chart of transformer fault detection technology.
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opening the main tank (Mousavi et al., 2020). This feature presents a
promising application prospect in assessing the water content of
transformer insulating paper (Leibfried and Kachler, 2002; Hao
et al., 2012). In PDC measurement, DC power is applied across the
entire specimen for an extended duration. During this time, the
current steadily increases as the polarization process begins. This
occurs because various insulating components within the specimen
react with distinct time constants. Through these observations, the
specimen’s conductivity is measured, monitored, calculated, and
characterized. The ultimate aim is to understand the insulation’s
behavior and identify any abnormalities or partial discharges that
might occur during the measurement process. The schematic
diagram is shown in Figure 4.

Based on the principle, researchers have commenced studying
the correlation between PDC measurements and transformer faults.
Talib et al. (2013) analyzed the dielectric response and conductivity
of mineral insulation oil using the time-domain measurement
technique of PDC. Their findings suggest that PDC
measurements can detect overheating issues in transformer
insulation oil. However, conducting PDC measurements comes
with complexities due to limitations in equipment and methods.
Factors such as oil conductivity, paper conductivity, water content,
temperature, and insulation aging can significantly impact PDC test
outcomes (Saha and Purkait, 2004; Liao et al., 2015). In practical
fault diagnosis processes, it is essential to consider the influence of
multiple factors. Flora et al. (2017) have conducted extensive
experimental and case studies exploring these influencing factors.
Their findings suggest that PDC could evolve into a powerful tool for
long-term transformer insulation diagnosis if meticulous care is
taken to mitigate the effects of these identified parameters. This
study explores the feasibility of using PDC to detect the insulation
condition of transformers and analyze specific fault types based on
PDC results. On the other hand, PDCmeasurement and analysis is a
time-consuming off-line process, and the longer processing time
limits its application in transformer fault diagnosis to some extent
(Mishra et al., 2018; Mishra et al., 2019). Dutta et al. (2020)
addressed this issue by conducting research based on the
mechanism of PDC measurements. They proposed estimating
normalized depolarization charge by measuring shorter durations
of polarization current, thereby reducing detection time. However,

analyzing the faults that impact insulation anomalies through PDC
requires highly demanding analytical models. Although estimation
methods may enhance detection speed, they can adversely affect the
precision and classification of fault diagnosis. Combining artificial
intelligence algorithms with PDC is currently a significant direction
in the advancement of this technology. By analyzing the impact of
transformer parameters such as temperature, humidity, and
conductivity using algorithms and training them accordingly, the
efficiency and speed of PDC analysis can be effectively improved.

3.2 Transformer sweep frequency-
response analysis

Transformer sweep frequency-response analysis (SFRA) is one
of the important tests to determine the mechanical deformation of
transformer windings. The method’s ability to discern subtle
changes in the mechanical integrity of the transformer makes it a
valuable tool for identifying issues related to winding conditions and
facilitating proactive maintenance or corrective measures
(Ludwikowski et al., 2012; Samimi et al., 2017). This method was
originally proposed by Dick and Erven, (1978) where diagnostic
results are derived by comparing the measured winding transfer
function with reference measurements. However, this comparison
introduces significant subjectivity, as the reference values are
obtained from measurements on another transformer with a
similar structure, making it difficult to assess the severity of the
fault occurrence. It is evident that SFRA’s primary drawback lies in
its subjectivity, as the diagnostic process heavily relies on engineers’
experience. To mitigate this, establishing commonly used criteria for
interpretation becomes crucial. Bjelić et al. (2022) computed
statistical fault indicators for various types of internal short-
circuit faults in SFRA and introduced a new indicator based on
reverberation time commonly utilized in acoustics. This allows for
the utilization of low-cost measurement and signal processing
equipment (Bjelić et al., 2022). Zhao et al.(2019) addressed the
often-overlooked factors of capacitance and inductance in coil
windings, establishing a comprehensive high-frequency circuit
model for transformers, thereby enhancing SFRA analysis
accuracy. Shamlou et al. (2021) introduced a fully automated

FIGURE 4
Schematic diagram of PDC measuring device (A) and typical waveform (B) (Mousavi et al., 2020).
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technique for interpreting SFRA in power transformers, as depicted
in Figure 5. Their approach combines digital image processing with
evidence theory for analysis. Both simulation and experimental
results indicate that this method achieves a high level of accuracy
in fault reporting (Shamlou et al., 2021). Their approach
circumvents the subjective diagnosis inherent in traditional
methods, enhancing fault diagnosis efficiency by employing
algorithmic techniques to analyze SFRA. Hence, within the
context of leveraging efficient analysis methods like neural
networks to optimize feature parameter analysis, the future
trajectory of SFRA lies in employing artificial intelligence
algorithms to interpret SFRA signals. This, combined with
diverse comparison indicators, aims to mitigate the need for
expert subjective judgment (Zhao et al., 2017; Abu-Siada and
Aljohani, 2018).

3.3 Dissolved gas analysis

When the mineral oil in the transformer is exposed to high heat
and electrical stress, it breaks, and gas is produced as a result (Islam
et al., 2018). Different forms of stress produce different gases, which
can be divided into fault gases and non-fault gases. Fault gas is
further divided into organic hydrogen (CH4, C2H6, C2H4, C2H2 and
H2) and carbon oxide gas (CO2 and CO). The analysis of these fault
gases and investigating their correlation with faults constitutes the
Dissolved Gas Analysis (DGA) method used in transformer fault
diagnosis. Its advantage lies in the ability to detect early occurrences
of faults such as overheating, partial discharge, and breakdown in
transformers. However, its disadvantage is the lack of accuracy and

inability to detect and diagnose faults when the ratio codes fall
outside the specified range (Rao et al., 2021). In early fault diagnosis,
the amount of H2 and CO can be used to identify and diagnose early
transformer faults according to temperature gas and key gas method
(KGM) (Irwanto, 2021). However, this diagnostic method suffers
from significant drawbacks due to the absence of clear indicators to
confirm fault types. The type of gases detected depends on the
severity of the specific transformer fault. With the progress of
detection equipment and the development of DGA analysis,
more mapping relationships between gas characteristic
parameters and faults have been discovered, and more effective
transformer fault analysis methods have been produced (Poonnoy
et al., 2021), Such as Doernenburg Ratio Method (DRM) (Gouda
et al., 2018), IEC Ratio Method (IRM) (Li et al., 2016) and Duval
Triangle Method (DTM) (Barbosa et al., 2017). Bustamante et al.
(2019) summarized and compared these methods, and summarized
the characteristics of different gas analysis and diagnosis methods, as
shown in Table 1.

Compared to earlier methods like KGM, DTM offers a more
precise fault diagnosis partitioning. It transitions from relying solely
on the quantity and type of gases to utilizing the proportion of fault
gases, thereby enhancing diagnostic accuracy. Rodríguez et al.
(2021) assessed the gas production of three common transformer
faults using different DGA diagnostic methods. The findings suggest
that DTM is a more reliable approach for diagnosing faults in
natural ester liquids. Lakehal and Tachi, (2017) developed a
Bayesian model incorporating DTM, highlighting its advantages
in fault detection, and successfully applied it to five power
transformers. The utilization of DTM proves effective in
identifying localized discharge, thermal faults, and electrical faults
in transformers (Golarz, 2016; Wattakapaiboon and Pattanadech,
2016; Pattanadech et al., 2019; Pattanadech and Wattakapaiboon,
2019). However, DTM operates as a closed diagnostic system,
providing results regardless of the presence of all gases. It resides
at the boundary of two fracture zones, unable to pinpoint the actual
fault zone, posing a limitation. Therefore, the Duval Pentagon
Method (DPM) was developed to enhance the accuracy of DGA.
By integrating two Duval pentagons without interference, DPM can
identify different types of faults from the same set of DGA data,
significantly improving the range of faults identified compared to
DTM (Pattanadech et al., 2019; Pattanadech and Wattakapaiboon,
2019). Pattanadech and Wattakapaiboon, (2019) examined the
performance of different DGA analysis methods, applying DTM
and DPM to specific cases. The results showed that DPM exhibited
the best consistency and could identify transformer insulation aging
that DTM could not detect. Building upon DPM, Gouda et al.
proposed the Seven Pentagon Method based on the seven fault gases
produced in transformer faults, as illustrated in Figure 6. Their
research added CO2 and CO to the five gases in DPM, enabling the
differentiation between cellulose insulation faults caused by heating
and transformer faults, thereby enhancing the accuracy of fault
diagnosis for specific transformer types. However, excessive
classification makes it challenging to determine subcategories of
faults. Artificial intelligence algorithms have shown promising
applications in analyzing data and correlations between faults,
suggesting that combining artificial intelligence algorithms with
DPM and other DGA analysis methods is the primary direction
for current and future developments (Sutikno et al., 2024).

FIGURE 5
The fully automated frequency signal analysis method (Shamlou
et al., 2021).
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TABLE 1 Comparison of dissolved gas analysis methods (Bustamante et al., 2019).

Method Description Fault identification Gas used

Key gas method (KGM) Uses individual gas concentrations to identify the fault PD, arcing, overheated oil, overheated cellulose CO, H2,
C2H2, C2H4

Doemenburg ratio
method (DRM)

Uses four gas concentration ratios: CH4
H2

, C2H2
C2H4

, C2H2
CH4

, C2H6
C2H2

Thermal decomnosition,
PD, arcing

H2, C2H2,
CH4,

C2H6, C2H4

Rogers ratio method (RRM) Uses three gas concentration ratios: CH4
H2

, C2H2
C2H4

, C2H4
C2H6

Normal aging, PD, arcing, low temperature fault, thermal
fault < 700°C,

thermal fault > 700°C

H2, C2H2,
CH4,

C2H6, C2H4

IEC ratio method (IRM) Uses three gas concentration ratios: CH4
H2

, C2H2
C2H4

, C2H4
C2H6

PD, low energy discharge, high energy discharge,
thermal faults < 300°C,

between 300°C and 700°C,
and > 700°C

H2, C2H2,
CH4,

C2H6, C2H4

Duval triangle method (DTM) Uses three gas corresponding to the increasing energy
content or temperature of the faults

PD, low energy discharge, high energy discharge,
thermal faults < 300°C,

between 300°C and 700°C,
and > 700°C

C2H2, CH4,
C2H4

Duval pentagon method (DPM) Uses five gas corresponding to the increasing energy content
or temperature of the faults

PD, low energy discharge, high energy discharge,
thermal faults < 300°C,

between 300°C and 700°C,
and > 700°C

H2, C2H2,
CH4,

C2H6, C2H4

FIGURE 6
The fault type regions of the Seven Pentagon Method (Gouda et al., 2018).
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3.4 Vibration analysis

Mechanical faults, insulation faults, and other issues can all affect
the vibrations of the windings and core in a transformer. Hence,
conducting vibration analysis enables the diagnosis of transformer
faults (Granados-Lieberman et al., 2023). In comparison to traditional
fault detection methods, vibration analysis offers distinct advantages
in terms of electrical isolation. It stands out as an efficient and reliable
non-invasive technique for detecting faults in transformer windings
(Bagheri et al., 2018). Despite this, vibration-based transformer
diagnostic technology has not gained widespread usage and
discussion compared to other approaches. Part of the reason for
this issue is the lack of unique interpretation methods for vibration
signals. Another part is the challenging nature of noise removal from
vibration signals and the complex effects various factors have on
vibrations (Yang et al., 2004).

Vibration analysis emerged in early transformer fault diagnosis
due to its non-electrical nature and non-invasive measurement
approach (Borucki et al., 2015). Bartoletti et al. (2004) employed
experiments and field tests to distinguish faulty transformers. They
mitigated the impact of noise on fault analysis to some extent by
constraining the frequency range of vibration sources and integrating
themwith voltage signals. However, the presence of considerable noise
and various influencing factors affected the diagnosis. Subsequent
researchers have sought different avenues to enhance diagnostic
accuracy. Borucki, (2012) introduced an improved vibro-acoustic
method known as Mechanical Vibration Measurement (MVM),
utilizing transient operational conditions of transformers to assess
the status of windings and cores. This approach circumvents the
influence of the measured object’s current load on vibration acoustic
signals, thereby enhancing diagnostic accuracy. Meanwhile, Zheng
et al. (2015) employed laser Doppler vibrometry for non-contact
measurement of transformer vibration signals and established a
winding vibration analysis system based on laser measurement.
Both Borucki’s and Zheng’s studies aimed to bolster vibration
analysis accuracy by mitigating influencing factors in the
measurement process, thereby reducing errors at the source. Shen
et al. (2015) established and analyzed the relationship model between
the surface vibration of the fuel tank and the insulation weakening of
transformer windings. By monitoring the vibration signal of the tank
and integrating information about the load current, as well as the
normal and fault states of the transformer, the fundamental frequency
signal of the transformer tank’s surface vibration is computed. His
research focused on the impact of transformer current signals on
vibration signals, aiming to enhance diagnostic accuracy through
model analysis. Zhang et al. enhanced the vibration analysis
method through mathematical statistical techniques. They analyzed
by comparing the slope value of the cumulative probability distribution
curve of transformer vibration signals, as illustrated in Figure 7. This
analysis allows for the examination of the energy spectrum of the
signals, enabling the rapid and accurate identification of the short-
circuit fault degree in transformer windings (Zhang et al., 2019).
Algorithmic optimization of vibration analysis itself has been
conducted, resulting in improved diagnostic accuracy and efficiency.

While the efforts of the researchers have propelled the
advancement of vibration analysis, their focus has predominantly
centered on dry-type transformers, rendering their findings
potentially inapplicable to oil-immersed transformers. Addressing

this gap, Miao et al. (2023) conducted a comprehensive study on the
vibration signals of oil-immersed transformers. They established a
three-dimensional electromagnetic-mechanical-acoustic coupling
analysis model specifically tailored for oil-immersed power
transformers. Their research primarily concentrated on
scrutinizing the vibration characteristics unique to oil-immersed
transformers, thereby further fostering the evolution of vibration
analysis within the domain of transformer diagnostics.

As transformer technology progresses, there emerges a
heightened demand for the precision of vibration analysis
techniques. While many researchers have contributed to
enhancing diagnostic accuracy to some extent in their respective
studies, the varied sources of vibration signals and the diverse array
of transformer models impose distinct impacts on vibration signals.
Consequently, there remains a pressing need for further research
and standardization within the realm of transformer vibration
analysis. The integration of artificial intelligence algorithms with
vibration analysis techniques represents a pivotal direction for the
advancement of this technology. Such integration enables the swift
analysis of diverse factors influencing vibrations, facilitates noise
removal and signal delineation, and promises significant
advancements in the underlying technology itself (Xu et al., 2010).

4 Intelligent diagnosis method of
transformer

Chapter 3 provides an exposition on the evolution of different
diagnostic techniques. As transformer technology advances and the
electricity market develops, relying solely on diagnostic techniques
proves insufficient for achieving rapid fault diagnosis and adapting
to the complex realities of the modern transformer industry. A
multitude of influencing factors, along with the increasingly intricate
data analysis processes, have compromised the reliability of fault
diagnosis, thereby impeding transformer progress (Wani et al.,
2021). The development of artificial intelligence (AI) technology
has simplified data analysis and prediction. Even in the absence of

FIGURE 7
Cumulative probability distribution curve of vibration signal
under different working state of transformer (Zhang et al., 2019).
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structural information, AI can derive relatively accurate models
through training, addressing the challenging multifactorial analysis
inherent in traditional methods. To further enhance the accuracy
and efficiency of transformer fault diagnosis, the integration of AI
technology into transformer fault diagnosis represents the primary
direction of current development. This aims to achieve intelligent
diagnosis of transformers, enabling them to adapt to the evolving
demands of the industry. This chapter categorizes different AI
technologies and combines intelligent analysis methods with
traditional diagnostic techniques to discuss the development of
intelligent transformer diagnosis technology.

4.1 Neural networks

Neural networks are artificial intelligence models inspired by the
biological nervous system. Through training, neural networks learn the
features and patterns of input data, enabling them to perform various
tasks such as classification, regression, and clustering. Neural networks
possess strengths such as strong adaptability, parallel processing
capabilities, and robust generalization abilities, making them
suitable for application in transformer fault diagnosis. Many
researchers utilize neural network technology for the analysis and
diagnosis of transformer faults, such as Radial Basis Function (RBF)
neural networks (Mi et al., 2021), Probabilistic Neural Networks
(PNN) (Yi et al., 2016), Elman neural networks (Li et al., 2022),
andmore. PNN demonstrates robustness, performing well in scenarios
with limited sample data and high levels of noise interference.
Consequently, it has been widely adopted by researchers in the field
of transformer fault diagnosis. For instance, Bigdeli et al. (2013) applied
vector fitting and PNN in transfer function analysis to identify winding
faults in transformers, significantly improving diagnostic accuracy
compared to traditional methods. Zhang et al. proposed a fault
diagnosis method based on the vibration and noise characteristics
of transformers, using PNN to predict transformer faults based on
vibration and noise signals under different fault conditions (Zhou et al.,
2023). Their approach can be applied to various types of transformers,
enhancing the adaptability of vibration analysis techniques. However,
the performance of PNN is significantly influenced by the smoothing
factor of its hidden layer elements, which may reduce fault
classification accuracy when applied in other diagnostic techniques.

To further enhance the accuracy of intelligent diagnosticmethods,
Yang et al. (2019) conducted research on intelligent diagnosis
methods for Dissolved Gas Analysis (DGA). They employed the
Bat Algorithm (BA) to optimize the smoothing factor, effectively
mitigating the drawback of PNN’s susceptibility to local optima. The
diagnostic method of BA-PNN is illustrated in Figure 8. When
evaluated using real-world cases, BA-PNN demonstrated
exceptional accuracy, achieving an accuracy rate of approximately
98%. Velásquez and Lara, (2020) proposed a new method with the
lowest computational cost, utilizing a genetic algorithm to optimize an
Artificial Neural Network (ANN) classifier for fault classification.
They replaced the traditional Reinforcement Learning (RL) action
selection process with a genetic algorithm-based optimizer. Their
research, based on the combination of traditional diagnostic methods
and neural network technology, further enhanced the accuracy of
intelligent diagnosis through algorithm optimization and tailored
design for transformer fault diagnosis scenarios. It is evident that

different neural network training algorithms encounter various
challenges. Therefore, it is necessary to employ appropriate
optimization methods to address issues like local non-convergence
and the significant impact of a small number of anomalous samples.

However, it is imperative to recognize that transformers exhibit
diverse characteristics across various aspects following a fault
occurrence. Integrating multiple diagnostic methods through
artificial intelligence (AI) technology stands as a pivotal direction
for the advancement of intelligent diagnostic techniques. Wang
et al. (2014) proposed a transformer fault diagnosis method based
on multi-source information fusion, incorporating SCADA data,
dissolved gas sensor data, relevant electrical test data, operational
maintenance records, and more. Employing a time-space weighted
fusion method using BP neural networks, this intelligent approach
significantly enhances the accuracy of transformer fault diagnosis. Xing
and He, (2023) employed a one-dimensional convolutional neural
network for extracting dissolved gas features and a deep residual
compression activation neural network for extracting infrared image
features, presenting a power transformer health assessment method
based on multi-modal mutual neural networks. By amalgamating
DGA with the infrared imaging method and utilizing multi-modal
mutual neural networks for training, this method achieves high
classification accuracy and precision, albeit with a longer training
duration. In forthcoming developments, adopting intelligent
diagnostic techniques that amalgamate multi-source information is
imperative. Enhancing algorithm adaptability to complex sample data
and real-world applications will be critical for advancing neural
network technology in the field of intelligent diagnostics.

4.2 Deep learning

Deep learning, with its capability for performing more layers of
nonlinear operations, has transcended the depth limitations of
traditional neural networks. The features learned by deep learning
models demonstrate a higher level of representativeness of raw data,
significantly easing classification and visualization tasks.
Consequently, deep learning has garnered increasing favor among
researchers in the realm of transformer fault diagnosis (Liu et al., 2022;
Jimenez-Navarro et al., 2023). Duan et al. (2019) employed deep
learning to analyze inter-turn short-circuit faults in transformers,
optimizing the input characteristics of three-phase transformer signals
and thereby enhancing the robustness of inter-turn fault detection
within the deep learning framework. Zhang et al. (2020a) proposed a
transformer fault diagnosis method based on monitoring systems and
integrated machine learning approaches. Liang et al. (2018)
introduced a deep belief network (DBN) based on a deep genetic
algorithm, which automatically establishes mapping relationships
between feature gases and fault types, achieving accurate diagnosis.

Their studies have demonstrated that the integration of deep
learning into transformer intelligent diagnostic methods results in
enhanced accuracy. Nonetheless, they have overlooked the impact of
noise and uncertainty factors on measurement data. In practical
applications, sample data often exhibit issues such as imbalance,
scarcity, and poor quality. Further research is required to improve
the accuracy of intelligent diagnostic methods. De Andrade Lopes et al.
(2021) employed the Borderline Synthetic Minority Over-Sampling
Technique (SMOTE) for oversampling to balance the dataset. Their
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deep neural network, which integrates the Borderline SMOTEmethod
with traditional DGA methods, artificial neural networks, and deep
neural networks trained on imbalanced data, demonstrated the highest
diagnostic accuracy. Zhang et al. (2020b) proposed a cost-sensitive
learning-based one-dimensional convolutional neural network (1D
CNN) model, optimizing its cost matrix using the particle swarm
algorithm. This model places greater emphasis on minority fault types.
Xing et al. (2023) introduced a deep noise-filtering diagnostic model
based on noise vibration signals. They employed the balanced isolation
forest method to detect abnormal data in the original vibration signals
and used two deep noise filtering networks to suppress noise levels,
effectively reducing the impact of abnormal sample data on diagnostic
results. Vatsa et al. (2024) developed an intelligent diagnostic technique
based on residual long short-term memory (LSTM) networks to
analyze FDC. The structure of the system is illustrated in Figure 9.
They utilized the Monte Carlo dropout prediction method to estimate
uncertainty in polarizing current predictions. This approach not only
addresses the inherent time-consuming nature of PDC measurements
leading to vulnerable data but also further mitigates the impact of
uncertainty factors on diagnostic results, significantly enhancing
diagnostic accuracy.

The researchers have effectively enhanced the precision of
intelligent diagnostic techniques through the optimization of deep
learning methods and denoising of measurement features, thus
increasing the adaptability of intelligent diagnostic approaches to
complex operational environments. Moreover, some researchers have
further improved diagnostic accuracy and adaptability by integrating
multiple sources of information. Zhang et al. (2020c) monitored and
collected information on transformer faults, coupled with variations
in transformer temperature and electrical signals, to establish a
computational model for transformers based on multi-level faults
and multiple feature parameters. By employing the Deep Belief
Network Identification (DBNI) algorithm for fault detection and
utilizing an optimal fusion algorithm to construct training samples
for the transformer diagnostic model, they achieved improved
diagnostic accuracy through joint analysis of two sets of feature
information. Meanwhile, Liu et al. (2023) identified insufficient
sample data and uneven distribution of collected data among faults
as crucial factors limiting the application of machine learning in
transformer fault detection. Therefore, they developed a power
transformer fault warning system based on electrical quantities and
vibration signals, incorporating multi-source information processing

FIGURE 8
Transformer diagnosis method based on BA-PNN (Yang et al., 2019).
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to simultaneously enhance cost-effectiveness and fault warning
accuracy. Their research indicates that intelligent diagnostic
methods integrating oil and gas features, electrical characteristics,
vibration features, and other information can significantly improve
data utilization efficiency and diagnostic accuracy, thereby showing
promising development prospects in the field of deep learning
technology capable of handling more complex feature sets.

4.3 Support vector machine

SVM has also been widely applied in fault diagnosis to enhance the
accuracy of fault classification. SVM is an effective method for handling
high-dimensional independent variables without the need to recalculate
from initial conditions to obtain new decision boundaries (Kim et al.,
2019). However, the classification accuracy of an individual SVM may
not reach optimal levels. Many researchers combine other intelligent
methods with SVM to effectively improve classification performance
and achieve convincing results. Illias and Zhaoliang, (2018) proposed a
hybrid SVM algorithm based on an improved Evolutionary Particle
Swarm Optimization (EPSO) algorithm to determine transformer fault
types. EPSO combines particle swarm optimization with an

evolutionary strategy, maintaining the superior characteristics of
particles by introducing variation operations. To enhance the
algorithm’s robustness, they introduced Time-Varying Acceleration
Coefficients (TVAC) based on EPSO. Finally, the SVM-MEPSO-tvac
method, a combination ofMEPSO and SVM, not only reduced training
time but also maintained high accuracy, providing a solution and
insight for transformer fault type identification based on DGA data in
practical applications. Hong et al. (2015) established a probability-based
real-time detection and classification model for power transformer
faults, combining SVM with vibration analysis. They categorized the
transformer operating states into healthy, aging, and abnormal, then
performed SVM classification associated with the sigmoid function.
Through this method, they estimated the membership probability of
each class of the binary decision tree.

However, SVM-based approaches also exhibit certain limitations,
such as a tendency to misclassify samples near the decision boundary,
which can reduce diagnostic accuracy (Zhang et al., 2020d). Therefore,
many researchers have optimized the performance of intelligent
transformer fault diagnosis methods by selecting the most relevant
feature sets (Kari et al., 2018). They propose selecting feature subsets
and employing intelligent algorithms to optimize the SVM method for
transformer fault diagnosis. Hong et al. (2022) addressed the issue of

FIGURE 9
The architecture of the residual LSTM model (Vatsa et al., 2024).
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fuzzy decision boundaries in SVM by proposing a Support Vector
Feature-based Parameter Optimization Algorithm (SVFB). This not
only shortened training time but also improved diagnostic accuracy.
Zhu et al. (2022) optimized SVM using an Improved Seagull
Optimization Algorithm (ISOA) and introduced the Henon chaotic
map for population initialization. By combining Differential Evolution
(DE) based on an adaptive formula, they improved the foraging formula
of the Seagull Optimization Algorithm (SOA), enhancing algorithm
diversity and the ability to find optimal SVM parameters. Hendel et al.
(2023) applied Dempster-Shafer fusion to the results returned byMulti-
class Support Vector Machine (M-SVM) to enhance accuracy and
decision support. They also proposed an output post-processing
method to address evidence conflict issues.

In the integration of SVM technology with transformer fault
diagnosis, researchers have capitalized on the advantages of rapid
training andminimal sample requirements. Simultaneously, they have
addressed its drawbacks of low accuracy and subpar classification.
Through algorithmic optimizations and other approaches, they have
advanced the application of SVM technology in the domain of
intelligent transformer fault diagnosis.

4.4 Intelligent diagnosis and multi-source
information fusion

Incorporating intelligent algorithms for further analysis and
optimization of traditional transformer fault diagnosis techniques
significantly enhances both the applicability and diagnostic accuracy
of conventional methods. However, faults often present in various
forms, and detecting their abnormal characteristics from multiple
perspectives yields superior diagnostic outcomes (Cao et al., 2020).
Historically, utilizing features from different sources for fault diagnosis
posed significant challenges due to their complex relationships and
increased errors. Nevertheless, artificial intelligence algorithms excel in
managing the intricate relationship between faults and features, as well
as mitigating the negative impact of uncertainties inherent in
measurements. Therefore, integrating the concept of multi-source
information fusion into intelligent diagnosis technology stands as a
key developmental trajectory.

Ni et al. combined Case-Based Reasoning (CBR) with Rule-Based
Reasoning (RBR) and established a rapid transformer fault diagnosis
system based on this approach (Ni et al., 2020). The system divides the
structural characteristics and fault modes of equipment such as winding,
core, bushing, on-load tap changer, cooling system, and non-electrical
protection. Although multiple features are jointly analyzed for fault
detection, there has been a lack of analysis regarding the relationship
between faults and these features. Consequently, diagnostic outcomes
rely heavily on the provided fault cases. Xiao et al. (2020) utilized
Bayesian networks to establish the correlation between faults and various
diagnostic tests. Expanding on this framework, they also considered
factors such as insulation resistance, dielectric loss tangent, oil gas
content, power frequency voltage, and leakage current. This
approach notably improved the efficiency of on-site maintenance
and fault identification. Their study comprehensively integrated
multiple tests, employing Bayesian network diagnostic methods for
the fusion of multi-source information, offering valuable guidance in
this area. Luo et al. (2021) proposed an intelligent mining and early
warning algorithm for transformer operation faults. This algorithm

collects data from various dimensions, including electrical variables,
non-electrical variables, and multiple source channels of the
transformer. The framework of the intelligent mining algorithm is
illustrated in Figure 10. The core of this framework lies in collecting
a large amount of diverse, multi-dimensional, and heterogeneous data.
By integrating the Pearson product-moment algorithm and Gran
causality relationship algorithm, it ensures the inclusion of a
substantial amount of electrical and non-electrical variable data. The
correlation also ensures causality relationships. Therefore, it can analyze
the intrinsic mechanisms between faults and feature quantities,
significantly enhancing the reliability of fault warnings. His research
effectively circumvented the drawbacks of the black-box nature of
artificial intelligence algorithms, providing explanations for the fault
diagnosis process under intelligent diagnostic technology.

The transformer intelligent diagnosis method based on multi-
source information fusion integrates multiple fault diagnosis
approaches. While using diverse types of information for diagnosis
mitigates the reliance on sample data inherent in traditional intelligent
diagnosis algorithms and enhances diagnostic accuracy, the complexity
of fault features and classification processes increases the difficulty of
model training. Therefore, future development should emphasize the
careful selection of fault features and the optimization of training
models. Additionally, the scale of transformer intelligent diagnosis
models should be tailored to different operational environments. In
practical applications, the design of diagnosismodels should account for
the required accuracy and scale of fault diagnosis.

5 Conclusion

Transformers are a crucial component of power systems, and
transformer fault diagnosis is essential for maintaining the stable
operation of the power grid. This paper provides a comprehensive
discussion on the development of transformer fault diagnosis
techniques. Firstly, it introduces the types and causes of
transformer faults. Then, it analyzes the evolution of traditional
fault diagnosis methods from the perspectives of electrical and non-
electrical detection. Given issues such as complex influencing factors
and lengthy measurement analysis times, different researchers have
advanced PDC development by reducing polarization current
measurement time and integrating artificial intelligence algorithms
to optimize the analysis process. Early DGA methods had problems
like incomplete coding and incorrect fault identification. With the
advancement of detection equipment and technology, new methods
like DTM and DPM were proposed, and neural network model
training was used to improve DGA analysis accuracy. Refining the
relationship between transformer fault classification and characteristic
gas ratios has become a major focus in DGA development. It is evident
that traditional diagnosticmethods are limited by increasingly complex
fault characteristics, difficulty in improving detection accuracy, and
complex fault analysis. Consequently, more researchers are combining
neural networks, machine learning, and other AI technologies with
traditional methods. These intelligent algorithms excel in data analysis
and feature classification, addressing issues such as low correlation
between characteristic parameters and faults, vague fault descriptions,
and difficult feature analysis in traditional fault diagnosis. This
significantly enhances the accuracy of transformer fault diagnosis
and promotes the development of the transformer industry.
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In the process of integrating AI into transformer fault
diagnosis methods, intelligent algorithms also face challenges
like difficulty in convergence, long training times, and high
sensitivity to sample data. To solve these issues and further
improve the accuracy and practicality of intelligent transformer
diagnosis technology, researchers are combining multiple
intelligent algorithms to leverage their strengths. Additionally,
some researchers are using mathematical analysis to preprocess
and denoise fault sample data, thereby reducing the negative
impact of anomalous samples on the diagnostic model training.
On the other hand, integrating various fault parameters such as
electrical parameters, vibration parameters, and oil gas parameters,
and using AI algorithms to establish models relating multi-source
fault features to fault types, is also a significant direction of current
development. This approach not only avoids diagnostic accuracy
issues caused by inherent sample data errors but also provides a
more comprehensive consideration, leading to more precise fault
diagnosis. However, this also increases the complexity of the
algorithms to some extent. Therefore, in the future development
of transformer fault diagnosis, the optimization of algorithms and
the enhancement and intelligentization of fault diagnosis
technology will be crucial.
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