
Enhancing power quality
monitoring with discrete wavelet
transform and extreme learning
machine: a dual-stage pattern
recognition approach

Reagan Jean Jacques Molu1*, Wulfran Fendzi Mbasso1*,
Kenfack Tsobze Saatong1, Serge Raoul Dzonde Naoussi1,
Mohammed Alruwaili2, Ali Elrashidi3 and Waleed Nureldeen3*
1Technology and Applied Sciences Laboratory, U.I.T. of Douala, University of Douala, Douala, Cameroon,
2Department of Electrical Engineering, College of Engineering, Northern Border University, Arar, Saudi
Arabia, 3College of Engineering, University of Business and Technology, Jeddah, Saudi Arabia

Monitoring energy quality events is crucial for maintaining the stability and
reliability of power grids. This paper presents a novel system integrating
Discrete Wavelet Transform (DWT) and Extreme Learning Machine (ELM) for
detecting and classifying power quality disturbances. The DWT performs multi-
resolution analysis to decompose signals into time-frequency components,
capturing various disturbances such as sags, swells, and harmonics. The ELM
classifier, trained on these decomposed signals, achieves an impressive
classification accuracy of 99.69%, significantly outperforming conventional
methods like STFT with SVM (97.22%) and FFT with ANN (99.30%). The system
was validated on a Xilinx Zynq-7000 SoC FPGA, demonstrating real-time
processing capabilities with a latency of 1.5 milliseconds and a power
consumption of 1.8 W. These findings highlight the effectiveness of the
proposed method for real-time, accurate, and energy-efficient power quality
monitoring.
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1 Introduction

1.1 Background of study

In recent years, the measurement of power and energy quality in the electrical grid has
gained significant importance. Furthermore, there is a growing demand for improved
energy quality and greater reliability of the electrical grid, which is undeniably deteriorating
due to various disturbances. The main source of disturbances is the increased use, both in
industry and in households, of non-linear loads such as rectifiers, dimmers, computer
equipment, fluorescent tube lighting, etc. In practice, electrical energy is primarily
distributed in the form of a sinusoidal three-phase system, which provides the
necessary electrical power to equipment. It is particularly important to preserve the
sinusoidal aspect of the original voltage in order to maintain its essential qualities for
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the transmission of useful power to the terminal equipment. When
the waveform of the voltage is no longer sinusoidal, disturbances
occur that generate malfunctions and overheating of the receivers
and equipment connected to the same power supply network. These
electrical disturbances are characterized by fluctuations in frequency
at 50 Hz, variations in amplitude, deformation of the voltage or
current waveform, and asymmetry in the three-phase system.

In order to prevent malfunction or destruction of equipment,
it is necessary to compensate for these observed disturbances. In
order to develop robust compensation solutions, it is important
to understand the causes and origins of these disturbances. In
order to address this concern, it is recommended to early detect
the faults that may occur in these networks and thus develop
methods for monitoring operation or preventive maintenance.
This requirement calls for several diagnostic techniques that
possess different characteristics and enable the resolution of
these issues.

1.2 Literature review

The importance of reliable power quality monitoring in modern
electrical systems has been underscored by recent advances in signal
processing and machine learning techniques. Traditional methods
like Short-Time Fourier Transform (STFT) and Fast Fourier
Transform (FFT) have limitations in non-stationary signal
analysis, which has driven research towards more advanced
approaches such as the Discrete Wavelet Transform (DWT) and
machine learning models.

Recent studies have highlighted the efficacy of DWT in
decomposing complex, non-stationary signals for detailed
analysis. For instance, (Yang et al., 2024), demonstrated the use
of symmetric differential demodulation-based heterodyne laser
interferometry for wide frequency-band vibration calibration,
emphasizing the precision and versatility of wavelet-based
methods in various signal processing applications. Research in
(Gao et al., 2024) explored the design of an ultra-broadband
composite meta-absorber for a wide frequency range, showcasing
the potential of advanced signal processing techniques in enhancing
system performance and robustness. Study in (Wu and Ismail, 2024)
presented a generalized RIS tile exclusion strategy for indoor
mmWave channels, highlighting the integration of wavelet
transforms in modern communication systems to mitigate signal
distortion under concept drift scenarios.

The application of machine learning in power quality
monitoring has gained significant attention due to its ability to
classify complex patterns and anomalies. (Cheng et al., 2024).
developed a RANSAC-based real-time kinematic positioning
system utilizing GNSS triple-frequency signals, illustrating the
effectiveness of machine learning models in real-time signal
processing. (He et al., 2024). proposed a dynamic graph
transformer-based framework for anomaly localization in cloud
infrastructures, demonstrating the applicability of advanced
machine learning techniques in diverse domains including
power systems.

(Hao et al., 2024) explored multi-task federated learning-based
anomaly detection in microservices architecture, which parallels the
need for efficient and scalable solutions in power quality monitoring.

Authors in (Yu et al., 2022) proposed an intelligent detection
method for forging defects using an improved EfficientNet and
Memetic Algorithm, illustrating the benefits of combining machine
learning with advanced feature extraction for robust fault detection.
In the same line, research in (Zhang et al., 2019) developed an
accurate calibration method for shadow moiré measurement
sensitivity, highlighting the precision improvements achievable
with advanced signal processing techniques like DWT.

Recent advancements in simultaneous information and power
transfer systems have also demonstrated the potential of wavelet-
based methods for optimizing signal processing in various
applications. Indeed, authors in (Yang et al., 2023) designed a
system based on the modulating feature of a magnetron, which
underscores the relevance of precise signal decomposition and
feature extraction in improving system performance.

The proposed integration of DWT with the Extreme Learning
Machine (ELM) in this study builds on these advancements,
offering a robust solution for power quality disturbance
detection and classification. ELMs, known for their fast-
training speed and high generalization capability, have shown
promise in handling large datasets and complex classification
tasks efficiently. (Zhang et al., 2023a). highlighted the
development of a fast GNSS acquisition algorithm with high
noise immunity, which parallels the need for robust noise
handling in power quality monitoring systems.

In addition to signal processing and machine learning
advancements, the security and reliability of data transmission in
power systems have been a focus of recent research. (Li et al., 2024).
discussed the trade-offs in code estimation error rate and terminal
gain in secure communication scenarios, which is relevant for
ensuring the integrity of power quality monitoring data
Supplementary Table S1 summarizes all the previous points
highlighted.

The proposed system’s high accuracy highlights its potential for
real-time power quality monitoring; however, its robustness to noise
is crucial for practical deployment. In real-world scenarios, power
quality signals are often contaminated with various types of noise
due to environmental and operational factors, which can affect the
accuracy and reliability of detection systems.

The system maintained high classification accuracy across
varying noise levels, demonstrating its resilience. (Xie et al.,
2024). noted similar findings in their study on GNSS acquisition
algorithms, which showcased high noise immunity in signal
processing applications. (Ju et al., 2022). demonstrated the need
for robust anomaly detection systems in cloud infrastructures, which
parallels the importance of robust power quality monitoring in noisy
environments.

The practical implications of the proposed system for real-world
power quality monitoring are significant. Its low resource utilization
and power consumption, as demonstrated on the Xilinx Zynq-7000
SoC FPGA, make it ideal for energy-efficient power quality
monitoring systems. (Zhang et al., 2023b). emphasized the
importance of efficient and low-cost sensorless control methods
for high-speed brushless DC motors, which aligns with the need for
cost-effective solutions in power quality monitoring.

Future research should focus on extending noise testing and
real-world deployment to validate the system’s performance in
diverse environments. Integrating more advanced noise reduction
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techniques, such as those discussed by (Zhang et al., 2024) for
distributed power flow in AC/DCmicrogrids, could further enhance
the system’s robustness and applicability.

1.3 Research gap and contributions

Despite the advancements in the detection and classification of
power quality disturbances, several gaps remain in the literature,
particularly in the effectiveness and efficiency of current
methodologies under varying conditions. Our review of the
literature reveals that:

• Noisy Environments: Existing methods, while robust in
controlled environments, often fail to maintain accuracy in
noisy, real-world settings.

• Computational Efficiency: Many current algorithms,
including those that employ wavelet transforms and
machine learning, suffer from high computational
demands, limiting their applicability in real-time systems.

• Integration of Multi-Resolution Analysis: While wavelet
transforms are utilized, there is a lack of integration with
advanced machine learning techniques that can optimize the
feature extraction and classification processes.

• Hardware Implementation: Few studies provide detailed
insights into the effective implementation of these
sophisticated algorithms in hardware, such as FPGAs,
which can significantly influence the practical deployment
of these systems.

Considering all those gaps, the contributions of this work can be
stated as follows:

• Advanced Dual-Stage Detection and Classification Framework:
We introduce a novel framework that combines DiscreteWavelet
Transform (DWT) with Extreme Learning Machine (ELM) for
enhanced detection and classification of power quality
disturbances. This framework is designed to improve the
robustness and accuracy of power quality monitoring,
especially in noisy environments.

• Optimization of Computational Efficiency: By integrating
multi-resolution analysis with a single-layer feedforward
neural network, our approach reduces computational
complexity. This makes it feasible for real-time applications
without sacrificing performance.

• FPGA Implementation: We provide a comprehensive
methodology for the FPGA implementation of our
proposed algorithm. This includes detailed steps for
converting MATLAB code to VHDL, offering a blueprint
for replication and practical application in industrial settings.

• Extensive Validation: The proposed method is rigorously
validated through simulations and hardware
implementation. We demonstrate superior performance not
only in terms of accuracy but also in speed and operational
efficiency, making it suitable for real-timemonitoring systems.

• Theoretical and Practical Implications: Theoretical
implications extend to the understanding of multi-
resolution signal processing in conjunction with machine

learning. Practically, the study provides insights into the
deployment of complex algorithms on hardware platforms,
bridging the gap between theoretical research and industrial
application.

In addition, as potential impact of this research, it is crucial to
notice that the dual-stage approach and its efficient hardware
implementation can significantly impact how power quality
monitoring systems are designed and deployed, particularly in
smart grids and industrial settings where reliability and speed are
critical. Furthermore, the methodology developed can serve as a
foundation for future research exploring the integration of different
machine learning models and signal processing techniques.

1.4 Paper organization

This paper is organized as follows:

• The second section provides an overview of network
disturbance detection and classification techniques. In this
section, we will specifically discuss the detection and
classification of network disturbances, by introducing the
concept of power quality, the main disturbances affecting
the network, and the techniques for detecting and
classifying these faults. We conclude this section with a
brief historical overview of the implementation of control
laws for electrical systems on FPGAs.

• The third section is dedicated to a presentation of methods
and tools. We will begin this part of work with an introduction
to the model used, followed by a description of the multi-
resolution analysis of signals and the architecture of the
learning through the ELM algorithm. We will conclude this
chapter with an overview of the process of converting
MATLAB code to VHDL.

• Finally, in the last section, we will present the various
simulation models of our disturbances, and then we will
implement the ELM technique applied to the detection and
classification of network disturbances and present its
conversion into VHDL.

2 State of the art on network
disturbance detection and
classification

Electrical equipment requires voltages and currents for their
operation, the magnitudes of which are defined by standardization
bodies. Increasingly, the presence of electrical disturbances that
degrade the quality of electrical energy is being observed,
resulting in significant damage. In order to prevent this, it is
necessary to implement systems for compensating for these
disturbances. This is only possible if we know the origins of
these disturbances and if we are able to classify them accurately.
Several detection and classification techniques have already been
implemented, however, in this document, we will focus solely on
machine learning techniques. In this section, we will discuss the
exploration of detection and classification techniques using modern
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methods, and finally, a description of the implementation of a
control law.

2.1 Signal feature extraction techniques

The performance of the approach for network disturbance
detection and classification generally depends on the accuracy of
the intelligent classifier. The input to the intelligent classifier is the
feature vector; therefore, the extraction of the most distinctive
features from the original signal is even more important.

The process of feature extraction is typically performed using
signal processing techniques (SPT), as suggested by various
researchers. Several signal processing techniques have been used
for feature extraction, such as Fourier Transform (FT), Wavelet
Transform (WT), Short-Time Fourier Transform (STFT), Hilbert
Transform (HT), Kalman Filter (KF), and Gabor Transform (GT).
Figure 1 presents an advanced taxonomy of SPTs used for feature
extraction from power quality events.

2.1.1 The Fourier Transform
Frequency domain analysis is commonly performed using the

Fourier Transform (FT) technique. The selected input signal for
analysis can be characterized as the summation of fundamental
sinusoids with varying frequencies. Three variants of the Fourier
Transformr (FT), namely, Discrete Fourier Transform (DFT), Fast
Fourier Transform (FFT), and Short-Time Fourier Transform
(STFT), have commonly been employed by researchers for the
purpose of disturbance recognition during the last 20 years. The
Discrete Fourier Transform (DFT) is the most commonly used
signal processing technique. It is commonly considered for steady-
state analysis of stationary signals. It is achieved by extracting the
spectrum at specific frequencies. Unfortunately, the events of the PQ
are typically non-stationary signals. It is therefore not possible to
detect immediate variations in PQ disturbances, such as their initial
and final points. It is particularly suitable for stationary PQ events.

The Fast Fourier Transform (FFT) yields results similar to those
of the Discrete Fourier Transform (DFT), but with faster execution
time. It is widely applied for the harmonic study of disturbances in
power quality. The Fast Fourier Transform (FFT) technique
provides a similar result to the Discrete Fourier Transform
(DFT), but in a shorter amount of time. It is widely used for
harmonic estimation (Huang et al., 1999). The Short-Time

Fourier Transform (STFT) is another variant of the Fourier
Transform (FT), which divides the waveform into small
stationary segments. In this regard, the Short-Time Fourier
Transform (STFT) is employed to acquire the frequency/phase
information of signals that vary over time. By using a mobile
window, the relationship between time and frequency variation
can be recognized [(Dash et al., 2003; Lee and Dash, 2003)]. Gu
et Bollen (Gu and Bollen, 2000) applied the Short-Time Fourier
Transform (STFT) for the analysis of non-stationary disturbances.

2.1.2 The Wavelet transform
The WT has several advantages compared to the FT as

presented in Addison (Addison, 2017). This is one of the most
powerful feature extraction methods for energy quality signals,
considering a multi-resolution analysis technique (MRA) (Nath
et al., 2012). The wavelet transformation coefficients possess the
attributes and key characteristics of energy quality disturbance
signals in various frequency subbands. Several statistical
parameters of the disturbance signals of the waveform quality
such as amplitude, mean, median, kurtosis, energy, standard
deviation, and entropy can be calculated from the
approximate and detailed coefficients of the Wavelet
Transform (WT) to recognize waveform quality events.
Therefore, the wavelet transform (WT) has been widely
applied by academic researchers to characterize and classify
power quality disturbances. Three variants of the wavelet
transform, namely, the continuous wavelet transform (CWT),
the discrete wavelet transform (DWT), and the wavelet packet
transform (WPT), have commonly been employed by various
researchers over the past 2 decades for power quality disturbance
recognition.

Initially, the application of wavelet transforms (WT) for the
detection of non-stationary signals was performed by the authors
(Santoso et al., 1996). Santoso et al. (Santoso et al., 1996)
proposed in 1996 an approach based on wavelet transform
(WT) to detect and classify power quality events. Here, the
multi-resolution signal decomposition (MSD) technique was
used to decompose the signals into different frequency levels,
and unique features were extracted from the WT coefficients.
Recent research in (Liu et al., 2021) demonstrated the efficacy of
DWT in decomposing non-stationary signals for power quality
analysis, outperforming traditional STFT methods in accuracy
and computational efficiency.

FIGURE 1
The different methods of extracting the characteristics of a signal.
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2.1.3 The Gabor Transform
The GT (Qian and Chen, 1993) is an innovative signal

processing tool used for perfect phase estimation. Concerning the
Fourier Transform, the GT provides better information about the
time and frequency of a studied signal. He maps time series data in
the time and frequency domains. Cho et al. (Cho et al., 2010) utilized
this GT as a time-frequency based feature extraction technique to
detect disturbances in power quality.

2.1.4 The Kalman Filters
It is a renowned signal processing tool that is commonly used for

the estimation of the amplitude, phase angle, and frequency of noisy
harmonic signals. In Abdelsalam et al. (Abdelsalam et al., 2012), a
method for detecting and classifying power quality disturbances was
proposed by combining the Discrete Wavelet Transform (DWT)
and the Kalman Filter (KF) with the Fractional Exponential
Smoothing (FES). Here, the wavelet transform (WT) was used to
detect the presence of noise in the extracted voltage signal, and the
Kalman filter (KF) was used to accelerate its convergence rate. As a
drawback, the state observation is non-linear; it could cause the
Kalman Filter to deviate under certain poorly chosen initial
conditions. This type of instability can lead to an inaccurate
assessment of the fundamental and harmonic states of sinusoidal
signal components in a noisy environment. This is due to
linearization and imprecise parameters, expensive calculations of
Jacobian matrices, and the biased nature of approximations. Here,
signal decomposition is not possible in the time and
frequency domains.

2.1.5 The Stockwell transform
The Stockwell transform (ST) is a signal processing tool that

combines the properties of the wavelet transform (WT) and the
short-time Fourier transform (STFT). It provides a better temporal
and frequency representation of a signal. It exclusively combines a
frequency-dependent resolution that simultaneously localizes the
real and imaginary spectra. The fixed modulating sinusoids that
adhere to the time axis and the properties of the mobile and evolving
Gaussian window of the Short-Time Fourier Transform (STFT) can
be used for improved recognition of power quality events.

Given the excellent time-frequency resolution properties of the
Short-Time Fourier Transform (STFT), it was initially used for
analyzing power quality disturbances in the early 20th century
(Mishra et al., 2008; Zhang et al., 2024). Lee and Dash (Lee and
Dash, 2003) proposed a PQD&C approach based on ST and neural
networks. Mishra et al. (Mishra et al., 2008) proposed the Short-
Time Fourier Transform (ST) as a simple and effective tool for
Power Quality Detection and Classification (PQD&C), and
demonstrated that the ST can operate efficiently even in an
extremely noisy environment.

Another variant of ST called Discrete S Transform (DST) has
been proposed for accurate detection of Power Quality Disturbances
(PQD) and energy counting, and has been numerically implemented
in Jaiswal and Ballal (Jaiswal and Ballal, 2017). The results
demonstrate that the energy counting system based on FDST is
highly efficient compared to other recent algorithms in terms of
accuracy, adaptability, and complexity in the context of PQ events.
As a drawback, this technique is not well suited for practical
applications because the frequency window widths in the ST are

directly linked to their central frequency, which results in an
inappropriate measurement of harmonics.

2.1.6 The Hilbert-Huang Transform
The HHT (Hilbert-Huang Transform) has been recently

developed to study non-stationary PQ (Power Quality)
disturbances. Generally, this technique is the combination of two
techniques known as Empirical Mode Decomposition and Hilbert
Transform. Shukla et al. (Shukla et al., 2009) proposed a PQD&C
technique based on EMD and HT. The proposed HHT algorithm
has been compared to the technique based on Hilbert transform to
demonstrate the superiority of this technique in detecting power
quality disturbances such as notches and flickers. Kumar et al.
(Kumar et al., 2015) proposed a PQD&C algorithm based on the
Hilbert-Huang Transform (HHT) and Probabilistic Neural Network
(PNN) for single and multiple PQ disturbances. Study in (Zhao
et al., 2022) showed that HHT could accurately identify various
power disturbances in real-time.

2.1.7 Methods based on variational mode
decomposition

The variational mode decomposition (VMD) is a signal
processing tool that decomposes a signal into a set of band-
limited IMF components. The Variational Mode Decomposition
(VMD) has several advantages over the Empirical Mode
Decomposition (EMD): Recursive Variational Decomposition
(RVD) and Empirical Wavelet Transform (EWT)
(Dragomiretskiy and Zosso, 2014). In recent years, the VMD
method has been widely used for the analysis of power quality
signals. Achlerkar et al. (Achlerkar et al., 2018) presented a method
based on VMD and DT for Power Quality Detection and
Classification in a microgrid environment. Similarly, in Sahani
and Dash (Sahani and Dash, 2018), the authors employed the
Variational Mode Decomposition (VMD) and the Extreme
Learning Machine (ELM) kernel for real-time Power Quality
Disturbance Classification and Compensation (PQD&C) in an
environment.

2.1.8 Methods based onmathematical morphology
The MM is a non-linear signal processing tool that alters the

shape of a signal. It was initially introduced by Serra (Serra, 1982).
This technique is based on set theory and integral geometry. Unlike
FT or WT, which allows obtaining frequency information in signals,
MM primarily operates in the time domain. The feature extraction
approaches based on MM are adopted by various authors to identify
and classify stationary/non-stationary PQ disturbances.
Furthermore, it also emphasizes the significance of the proposed
technique for detecting the location and duration of disturbances.

2.2 Automatic classification of electrical
disturbances

Intelligent classifiers are tools based on artificial intelligence (AI)
technique, commonly used for automatic classification and/or
decision-making. AI, or Artificial Intelligence, can be generally
defined as the process of automation of actions related to human
cognitive abilities such as learning, perception, reasoning,

Frontiers in Energy Research frontiersin.org05

Molu et al. 10.3389/fenrg.2024.1435704

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1435704


problem-solving and decision-making. In recent years, several
intelligent classifiers have been used for the automatic
classification of power quality disturbances by various
researchers, such as RNA, SVM, fuzzy logic, extreme learning
machine, and k-nearest neighbor (k-NN).

2.2.1 RNA-based approach
Within the field of electrical network disturbance classification,

the RNA (Recurrent Neural Network) is the most commonly
employed intelligent classifier, as documented in the literature.
Artificial neural networks exhibit high efficacy in diverse
domains, including but not limited to shape recognition,
classification, function approximation, optimization, and data
aggregation. Various RNA variants are employed for the
categorization of feeding system defects, such as the multi-layer
perceptron (MLP) and the radial base function (RBF). The
Multilayer Perceptron (MLP) is a type of feedforward artificial
neural network that produces a collection of outputs based on a
given input set. Multi-Layer Perceptrons (MLPs) are widely
acknowledged for their capacity to acquire knowledge and
categorize data in situations where mathematical representation
of signals is not feasible. On the other hand, Multilayer
Perceptron (MLP) poses various challenges, including the need to
determine a suitable architecture (number of layers and hidden
nodes), which can be a time-consuming and computationally
intensive process. A radial basis function (RBF) is a type of
artificial neural network (ANN) that consists of a single layer of
hidden neurons. A Radial Basis Function-based Recurrent Neural
Network (RBF-based RN) exhibits characteristics that are
comparable to retro propagation networks, including the ability
to generalize and robustness. Furthermore, it offers supplementary
benefits such as rapid acquisition of knowledge and the capacity to
detect anomalous values during the process of estimation.

The ADALINE (Adaptive Linear Neuron) algorithm has been
employed for the estimation of the harmonic and interharmonic
components, enabling the determination of the root mean square
voltage and total harmonic distortion. These parameters were then
used to classify electrical disturbances such as voltage sags, voltage
swells, interruptions, harmonics, and interharmonics. Bhende et al.
(Mishra et al., 2008) presented a modular neural network based on
short-term Fourier transform (ST) for classifying power quality
disturbances.

2.2.2 Vector machine-based approach (SVM)
The Support Vector Machine (SVM) was initially introduced by

Vapnik (Vapnik, 2013). It is an automated learning tool that utilizes
machine supervision to recognize and classify forms. This tool for
supervised learning is commonly utilized based on the principles of
statistical learning. The successful application of Support Vector
Machines (SVM) encompasses a wide range of domains, including
dependency estimation, forecasting, defect classification in the
electrical system, and the development of intelligent machines.
The primary advantage of Support Vector Machines (SVM) over
other conventional tools in major classification problems is their
ability to effectively utilize large-scale input vectors. Furthermore, it
exhibits enhanced generalization capabilities in comparison to
conventional classifiers. The Support Vector Machine (SVM)
algorithm was originally developed for binary classification tasks,

where it can only handle two classes with values of one and −1.
However, in a real-time setting, it is crucial to perform multi-class
event classification. Two distinct methodologies are commonly
employed in multi-class classification, namely, “one against all”
(OAA) and one against one (OAO).

In De Yong et al. (De Yong et al., 2015), the authors proposed a
multi-class SVM based on WT to classify power quality
disturbances. Here, the One-Against-One (OAO) approach has
been considered for the multi-class Support Vector Machine
(SVM). Hu et al. (Hu et al., 2008) proposed an automatic
technique for detecting and classifying power quality disturbances
using the energy entropy of wavelet packets and weighted SVM.
Furthermore, several other techniques based on the WT classifier
and SVM for automatic detection and classification have been
presented in the literature. A technique for detection and
classification of electrical disturbances based on WPT (Wavelet
Packet Transform) and multi-class SVM (Support Vector
Machine) was presented by Zhang et al. (Zafar and Morsi, 2013)
to classify energy quality disturbances.

2.2.3 An approach based on a fuzzy expert system
Fuzzy logic simplifies standard binary logic for reasoning under

ambiguity. The motivation behind the concept of fuzzy logic stems
from the observation of human thinking in order to apply ideas and
information. A fuzzy set is a function that maps objects in the
relevant domain to their membership values in the set. This function
can be described as a membership function. A system that utilizes a
fuzzy set and fuzzy rule for data interpretation can be referred to as a
fuzzy expert system. The multi-resolution ST classification system
and the fuzzy logic-based classification system were used for the
extraction of optimal features and the classification of PQD
(Chilukuri and Dash, 2004).

2.2.4 Neuro-fuzzy -based approach
The authors (Huang et al., 2002) proposed a fuzzy neural PRT

using the LVQ architecture and the fuzzy associative memory
(FAM). LVQ (Learning Vector Quantization) is highly suitable
for pattern recognition, while FAM (Fuzzy Associative Memory)
is highly flexible in handling uncertainties.

Liao and Yang (Liao and Yang, 2009) presented a novel
approach for recognizing power quality disturbances using a
noise suppression algorithm, a feature extraction algorithm based
on wavelet transform, and a neuro-fuzzy classifier. The proposed
technique has been tested on simulated noise cancellation energy
quality data and field data.

2.2.5 Extreme learning machine (ELM)-based
approach

Typically, the learning speed of non-functional requirements
(NFPs) is significantly lower. The primary causes can be attributed
to the following factors: (1) the prevalent utilization of slow gradient
learning algorithms for training Recurrent Neural Networks (RNs),
and (2) the iterative adjustment of all necessary RN parameters
using these learning algorithms. The ELM (Extreme Learning
Machine) was initially developed by Huang et al. (2016). This is
a single-layer feedforward neural network (SLFN) that employs a
random selection process for hidden nodes and a systematic
calculation method for determining the output weights of SLFNs.
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An alternative non-iterative approach to solving the Extreme
Learning Machines (ELMs) yields an acceleration that is five and
six orders of magnitude greater than that of the Multilayer
Perceptron (MLP) and Support VectorMachine (SVM) respectively.

Ucar et al. (2018) proposed a technique for detecting and
classifying power quality disturbances using ELM based on
continuous wavelet transform. Babu et al. combined the Short-
Time Fourier Transform (S-T) with the Extreme Learning Machine
(ELM) technique for the automatic recognition of non-stationary
power quality disturbances in (Babu et al., 2014). In Sahani andDash
(Shani and Dash, 2018), a combination of the HHT technique and
the WBELM classifier (weighted bidirectional ELM) was used for
real-world detection and classification. Recent work by Chen et al.
(Chen et al., 2022) demonstrated that ELMs could achieve
classification accuracies comparable to more complex models like
Deep Learning networks, with significantly lower
computational costs.

2.2.6 Deep learning system-based approach
In recent years, research on Deep Learning (DL) algorithms has

garnered significant attention from researchers. It has been
effectively utilized in various research fields, such as speech
recognition, human face recognition, computer vision, signal
processing, image processing, and information processing. The
DL algorithms have the built-in capability to automatically learn
the optimal features from the original input signal. This technique
thus allows for the avoidance of the time required for feature
extraction in other engineering domains. The application of DL
algorithms to automatic detection and classification approaches for
power system faults has been carried out by various authors in
previous studies. The technique involves a powerful LSTM
architecture, which is a variant of RNN. A study by Kim et al.
(Kim et al., 2023) highlighted that LSTM networks could handle
time-series data effectively, making them ideal for power quality
monitoring.

2.3 Implementation of control laws on field-
programmable gate arrays (FPGAs): Utilizing
FPGA input for the control of
electrical systems

An FPGA (Field-Programmable Gate Array) is a type of digital
integrated circuit that contains numerous programmable and
reconfigurable logic elements or blocks, allowing for flexibility in
circuit design without the need for extensive hardware
modifications. In contemporary digital systems, Field-
Programmable Gate Array (FPGA) components have become
essential and are widely employed across various application
domains owing to their numerous advantages. Among all these
benefits are: Enhancing real-time performance levels while
minimizing cost and burden, - Enhancing performance. This
mode of deployment enables the reduction of algorithm
execution time, facilitating the FPGA-based controller to achieve
performance comparable to analog controllers. It eliminates the
drawbacks associated with analog controllers such as divergence,
lack of flexibility, and electromagnetic compatibility issues.
Additionally, the high programming flexibility of FPGA allows

for easy reusability across different algorithms, all within a short
timeframe using the same development platform.

One of the key advantages of using an FPGA is its ability to be
reconfigured multiple times to implement the desired features with
high speed and ease. Due to their numerous benefits, Field-
Programmable Gate Arrays (FPGAs) are currently employed in a
wide range of applications that necessitate significant digital
processing. These applications include signal and image
processing, control of electrical machines, speed measurement,
control of static power converters, medical equipment,
telecommunications, aeronautics, transportation, bio-informatics,
automotive, robotics, and scientific calculations acceleration.

Within our specific domain of network detection and
disturbance systems, we have effectively utilized FPGAs (Field-
Programmable Gate Arrays) for the purpose of system control.

Alben Cardenas et al. (Cardenas. et al., 2022.) conducted a real-
time assessment of energy quality in 2010 using a measurement
system that relied on the Global Energy Framework (GEF). K. Vani
parimala et al. (Vani parimala and Nisha, 2016) in 2016 proposed
the development of an energy quality monitoring system using the
Fast Fourier Transform (FFT) method on a Field-Programmable
Gate Array (FPGA) platform. The system is designed specifically for
single-phase energy counting. Recent research by Brown et al.
(Brown et al., 2023) showed that FPGA implementations could
achieve real-time processing with lower power consumption
compared to traditional microprocessor-based systems.

2.4 Comparative analysis with existing
techniques

Supplementary Table S2, presents a comprehensive comparison
of various methodologies utilized in the detection and classification
of power quality disturbances. The provided table offers a thorough
comparison, emphasizing the advantages and disadvantages of the
current work in relation to other advanced techniques in detecting
and classifying power quality disturbances. The present study
showcases notable benefits in terms of classification accuracy,
computational speed, and feasibility for real-time deployment,
rendering it a resilient solution for practical use in power quality
monitoring.

At the conclusion of this section, we have presented advanced
techniques for detecting and classifying network disturbances.
Ultimately, it is evident to us that Field-Programmable Gate
Arrays (FPGAs) have emerged as significant contenders against
microcontrollers and System-on-a-Chip (SoC) devices, both in
terms of their performance capabilities and cost-effectiveness.
The prevailing market dynamics indicate a highly competitive
landscape driven by the substantial decline in FPGA prices.

3 Materials and methods

In order to meet the real-time requirements of a large number of
signal processing and digital control applications, hardware
implementations on reconfigurable FPGA platforms are
increasingly being used. FPGAs offer numerous prospects for the
implementation of real-time algorithms. In addition,
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computer-aided design tools are used to directly convert a functional
description (such as VHDL) into a logic gate diagram ready to be
implemented on an FPGA. In this section, we will present the model
of our study as well as the tools used to simulate this model. In order
to do this, we will present the decomposition of signals into wavelets,
which is a signal processing technique that extracts the
characteristics of the disturbed signal. Then, we will describe the
control algorithm and finally the method of converting ELM
code into VHDL.

3.1 System modelling

The detection and classification of power quality disturbances
involves two main steps: feature extraction and classification. In this
work, the detection and classification of power quality disturbances
are performed based on the model presented in Figure 2 below.

3.1.1 Wavelet transform
Wavelets can be defined as a class of functions used to localize a

given signal in the time and frequency domains. They provide
efficient and fast algorithms to represent a signal division into its
distinct frequency bands using a multi-resolution analysis.

The wavelet transform (WT), unlike the Fourier transform, is
not limited to a frequency analysis technique. By applying the
wavelet transform to a signal (Figure 3), one can observe its
behavior in both the frequency and time domains. This time-
frequency analysis belongs to the group of multi-scale analysis
methods such as the sliding window Fourier transform and the
cosine transform.

The basic principle consists of convolving the analyzed signal
with a function called a wavelet (ψ). An wavelet is a function with
zero mean is expressed in Equation 1 (Mallat, 1997):

∫+∞

−∞
Ψ t( )dt � 0 (1)

A function that can be dilated by a scale parameter s and
translated by u, as presented in Equation 2:

Ψu,s t( ) � 1�
s

√ Ψ t − u

s
( ) (2)

The wavelet ψ, called the mother wavelet, generates an
orthonormal basis of functions called daughter wavelets or
simply wavelets. The wavelet transform of f at scale s and
position u is obtained by correlating f with the wavelet as
presented in Equation 3:

wf u, s( ) � ∫+∞

−∞
f t( ) 1�

s
√ Ψ t − u

s
( )dt (3)

The coefficient of wavelet wf (u,s) is referred to as the wavelet
coefficient at scale s and position u of the function f. The result of a
wavelet transformation is presented in a time-frequency domain,
with u as the abscissa and scale s as the ordinate (Mallat, 1997).

3.1.2 Discrete Wavelet transform
The discrete wavelet transform (DWT) is the numerical

application of the wavelet transform (WT). Its usage is popular
due to its easy implementation on digital circuits (FPGA, DSP). The
DWT (Discrete Wavelet Transform) employs a windowing

FIGURE 2
System modelling for disturbance detection and classification.
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technique, which involves processing the signal piece by piece. The
general principle of the Discrete Wavelet Transform (DWT) is to
decompose a signal into multiple sub-signals. In 1989, Mallat
(Mallat, 1989) discovered an efficient approach for implementing
the Discrete Wavelet Transform (DWT) using filter banks. The
principle is explained in Figure 4.

The input signal ST(n) (the signal to be processed) is passed
through a high-pass filter and parallelly through a low-pass filter.
This discrete signal is dyadic, meaning it is composed of 2k samples
where k is an integer. It should be noted that the coefficients of the
high-pass and low-pass filters are identical. Only their order is
reversed, meaning that the first coefficient of the low-pass filter
corresponds to the last coefficient of the high-pass filter, and so on.
The coefficients of the filters are defined based on the nature of the
mother wavelet (see (Mallat, 1989)), which allows the dyadic
decomposition of the signal x into j stages according to the
defined mother wavelet. After each filter, a downsampling
operation is performed by a factor of 2. The coefficients a and d
are obtained (Equations 4 and 5), respectively called approximation
coefficients and detail coefficients.

a k( ) � ∑N
n�1

g n − 2k( )ST n( ) (4)

d k( ) � ∑N
n�1

h n − 2k( )ST n( ) (5)

Where g(n) and h(n) correspond to the low-pass and high-pass
filters, respectively. By performing the operation shown in Figure 7,
we transition from level j to level j+1. The base signal, conventionally
at level j = 0, can be expressed as A0 and D0 for the level 1 coefficients
A and D. To generalize, Aj and Dj correspond respectively to the
approximation and detail coefficients for level j (where 0 < j <

log2(N), N being the length of ST(n)). Using the coefficients Aj, we
can obtain, according to the operation in Figure 4, the coefficients
Aj+1 and Dj+1. Continuing in this manner until the desired level is
reached. Figure 5 depicts a DWT structure decomposed into three
levels, obtained by implementing these filters in cascade.

3.1.3 The selection of the family
The selection of the mother wave function is a critical factor in

the process of extracting the desired features. Multiple waveforms
have been examined for the purpose of decomposing power
disturbance signals. The mentioned wavelet families include
Daubechie (specifically db4, db6, db8, db10), Symlets, Coiflets,
and bi-orthogonals. Typically, the selection of the mother wave is
contingent upon the nature of the disturbance signal that is to be
analyzed. In the context of low-level decompositions, specifically
high-frequency decomposition, the mother wave exhibits high
temporal localization and rapid oscillations within a narrow time
interval. As the decomposition level increases, the wave becomes less
localized over time and exhibits reduced oscillations. This is
attributed to the dilated nature of the DWT force tube.
Consequently, the system will be able to detect faster and shorter
disturbances at lower thresholds, while slow and long-lasting
variations will be detected at higher thresholds. The
Daubechie4 waveforms have been found to be more suitable for
short and fast transients, as well as slow and stable disturbances.
Therefore, the Daubechie4 wavelet is selected as the reference
wavelet in this study.

3.1.4 Details on the DWT
The Discrete Wavelet Transform (DWT) is a signal processing

technique that is used to analyze signals in both the time and
frequency domains. The system offers both temporal and

FIGURE 3
Wavelet transform.

FIGURE 4
The principle of wavelet decomposition of the signal ST(n).
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frequency localization. Unlike the Fourier Transform, which solely
provides frequency information, the Wavelet Transform is
particularly advantageous for the analysis of non-stationary
signals, such as power quality disturbances.

Various steps are involved in Discrete Wavelet Transform
(DWT), namely:

• Signal Decomposition:

The input signal undergoes a process of decomposition where it
is separated into approximation and detail coefficients. This is
achieved by applying a series of high-pass and low-pass filters.
The iterative nature of this procedure allows for the generation
of a multi-resolution analysis of the signal through repeated
repetitions.

• Filtering:
- High-pass filter (g): Extracts the high-frequency components
(details) of the signal.

- Low-pass filter (h): Extracts the low-frequency components
(approximations) of the signal.

• Downsampling:

Following the application of a filter, the signal undergoes
downsampling with a downsampling factor of 2, resulting in a
reduction of the sample count by half.

• Recursive Decomposition:

The approximation coefficients acquired from the low-pass filter
undergo further decomposition into additional sets of
approximation and detail coefficients. This procedure is iterated

for multiple levels, resulting in a hierarchical organization of the
signal’s particulars.

Another crucial aspect to consider is the Multi-Resolution
Analysis (MRA). The Multi-Resolution Analysis (MRA) is a
technique that involves the decomposition of a signal into
multiple resolution levels in order to analyze its frequency
components at different scales. This process is essential to the
Discrete Wavelet Transform (DWT) and offers a comprehensive
analysis of the signal’s properties.

The following is the pseudocode for the Discrete Wavelet
Transform (DWT) and Multiresolution Analysis (MRA).

def dwt(signal, wavelet, levels):
"""
Perform Discrete Wavelet Transform (DWT) and Multi-

Resolution Analysis (MRA)
:param signal: Input signal to be decomposed
:param wavelet: Wavelet function to use (e.g., ‘db4′)
:param levels: Number of decomposition levels
:return: List of approximation and detail coefficients
"""
approximations = []
details = []
for level in range(levels):
# High-pass filter (detail coefficients)
detail_coeff = high_pass_filter(signal, wavelet)
details.append(detail_coeff)
# Low-pass filter (approximation coefficients)
signal = low_pass_filter(signal, wavelet)
approximations.append(signal)
# Downsampling
signal = downsample(signal)
return approximations, details

FIGURE 5
Example of wavelet decomposition.

Frontiers in Energy Research frontiersin.org10

Molu et al. 10.3389/fenrg.2024.1435704

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1435704


def high_pass_filter(signal, wavelet):
# Apply high-pass filter
# (Implementation depends on the chosen wavelet function)
pass
def low_pass_filter(signal, wavelet):
#Apply low-pass filter
# (Implementation depends on the chosen wavelet function)
def downsample(signal):
# Downsample the signal by a factor of two
return signal[::2]
The flowchart for Discrete Wavelet Transform (DWT) and

Multiresolution Analysis (MRA) is presented below:

1. **Start**
2. **Input Signal**
3. **Apply High-Pass Filter (Detail Coefficients)**
4. **Apply Low-Pass Filter (Approximation Coefficients)**
5. **Downsample Signal**
6. **Store Coefficients**
7. **Repeat for Desired Levels**
8. **End**

3.1.5 Justification for the choice of the DWT over
other methods

Within the field of power quality analysis, the selection of a
signal processing technique plays a critical role in accurately
detecting and categorizing disturbances. The Discrete Wavelet
Transform (DWT) has been selected for this investigation
because of its distinct benefits in dealing with non-stationary
signals, such as those commonly encountered in power
quality events.

The Discrete Wavelet Transform (DWT) offers several
advantages over alternative methods:

• Time-Frequency Localization:
- DWT (Discrete Wavelet Transform) provides both time and
frequency localization, unlike Fourier Transform (FT)
methods that only offer frequency information. This is
especially crucial for non-stationary signals, where the
signal’s properties can vary over time. For instance, within
the realm of power quality, disruptions such as voltage sags,
swells, and transients manifest within defined temporal
intervals. The Discrete Wavelet Transform (DWT) is
capable of achieving more precise localization of these
events in comparison to the Fourier Transform (FT). The
FT would necessitate conducting multiple analyses with
different window sizes in order to obtain
comparable outcomes.

• Multi-Resolution Analysis (MRA):
- The Discrete Wavelet Transform (DWT) is a mathematical
technique that enables the analysis of signals at multiple
resolutions. It achieves this by decomposing signals into
different frequency bands. This enables the detection of
both high-frequency transient events and low-frequency
steady-state conditions within the same framework. Indeed,
a power quality signal containing both high-frequency noise
and low-frequency voltage variations can be effectively
analyzed by decomposing it into various resolution levels.

• Noise Robustness:
- The Discrete Wavelet Transform (DWT) exhibits greater
noise robustness in comparison to alternative techniques
such as the Short-Time Fourier Transform (STFT). The
multi-resolution capability enhances the ability to separate
noise from genuine signal characteristics, resulting in
enhanced accuracy for detecting disturbances. For
instance, in settings with significant electrical
interference, the Discrete Wavelet Transform (DWT) is
capable of accurately identifying and categorizing power
quality disruptions. In contrast, the Short-Time Fourier
Transform (STFT) may encounter difficulties due to its
fixed window sizes that do not effectively adjust to changing
signal properties.

• Efficient Computation:
- The utilization of Discrete Wavelet Transform (DWT)
exhibits a high level of computational efficiency,
rendering it well-suited for real-time applications. The
efficiency of this algorithm is especially advantageous
when it is implemented on hardware platforms such as
Field-Programmable Gate Arrays (FPGAs). For real-time
monitoring systems, the efficient calculation of Discrete
Wavelet Transform (DWT) enables the timely
identification and categorization of disruptions. This
capability is essential for ensuring power quality and
mitigating potential equipment harm.

However, there are certain limitations that can be observed in
the Discrete Wavelet Transform (DWT) technique, including:

• Choice of Wavelet Function:
- The performance of the Discrete Wavelet Transform (DWT)
is significantly influenced by the selection of the mother
wavelet. Improper selection of parameters can result in
decreased accuracy in detecting the desired target. As a
mitigation strategy, conducting extensive testing and
validation can aid in the selection of the most appropriate
wavelet function for the specific types of disturbances
anticipated in power quality signals.

• Computational Load for Higher Decomposition Levels:
- As the level of decomposition increases, the computational
load also increases. This can pose a constraint for highly
complex multi-resolution analyses. As a temporary solution,
the application of optimization techniques and the
implementation of efficient algorithms on hardware
platforms such as Field-Programmable Gate Arrays
(FPGAs) can assist in effectively managing the
computational workload.

A comparison with Other Methods leads to the
following remarks:

• Fourier Transform (FT) and Short-Time Fourier
Transform (STFT):

- FT provides only frequency information and is not suitable for
non-stationary signals. STFT offers time-frequency analysis
but with fixed window sizes, limiting its effectiveness for
transient events.
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- DWT, on the other hand, provides adaptive time-frequency
resolution, making it more suitable for a wide range of power
quality disturbances.

• Hilbert-Huang Transform (HHT):
- HHT is effective for non-stationary signal analysis but is
computationally intensive and less robust to noise
compared to DWT.

- DWT provides a balance between computational efficiency
and robustness, making it more practical for real-time
applications.

• Kalman Filters (KF):
- KF is excellent for state estimation in noisy environments but
does not provide the same level of time-frequency
resolution as DWT.

- DWT’s ability to decompose signals into different frequency bands
offers a more detailed analysis of power quality disturbances.

• Variational Mode Decomposition (VMD):
- VMD is a powerful method for decomposing signals into
intrinsic mode functions but is more complex and
computationally demanding than DWT.

- DWT’s simplicity and efficiencymake it a preferable choice for
many practical applications.

This justification and detailed explanation highlight the
suitability of Discrete Wavelet Transform (DWT) for power
quality analysis, considering its advantages in time-frequency
localization, multi-resolution analysis, noise robustness, and
computational efficiency. The comparison with alternative
methodologies further emphasizes the efficacy of the approach in
detecting and categorizing energy quality incidents.

3.1.6 Time-frequency analysis using
Wavelet transform

The power quality disturbances in electrical signals can manifest
as either short, fast transients or slow, stable disturbances. The
Discrete Wavelet Transform (DWT) is particularly effective for
analyzing these disturbances due to its ability to provide detailed
time-frequency localization. This section presents time-frequency
plots of various disturbances and their corresponding wavelet
transforms to illustrate the effectiveness of Daubechies wavelets
in capturing these events.

The disturbance types analyzed are various. We can cite:

• Voltage Sag: A voltage sag is a short-duration decrease in RMS
voltage. It typically occurs due to short circuits, overloads, or
starting of large motors. The DWT using Daubechies wavelets
effectively captures the rapid drop in voltage amplitude,
highlighting the transient nature of the sag

• Voltage Swell: A voltage swell is a short-duration increase
in RMS voltage. It can be caused by a sudden reduction in
load or switching off large loads. The wavelet transform
reveals the swell’s frequency components, showing a clear,
time-localized increase in voltage, which is efficiently
captured by the DWT.

Harmonic Distortion: Harmonic distortion refers to the
presence of frequencies in the power signal that are multiples of
the fundamental frequency. This is often due to non-linear loads.

The DWT using Daubechies wavelets captures the harmonics as
distinct, localized components in the time-frequency plane,
demonstrating the ability to isolate different frequency
components effectively.

Voltage Interruption: A voltage interruption is a complete loss of
voltage for a short duration. It can be caused by faults, equipment
failures, or protective device operations. The wavelet transform
highlights the sudden drop to zero voltage, clearly identifying the
interruption’s time and duration.

Transient Oscillations: Transient oscillations are short-duration
high-frequency disturbances that can be caused by switching
operations, lightning, or other sudden changes in the power
system. The DWT reveals the high-frequency content of the
transient oscillations, providing a detailed view of the
disturbance over time.

3.2 Extreme learning machine (ELM)

The emerging machine learning technique, Extreme Learning
Machines (ELM), has gained significant attention in recent years due
to increasing research activities and significant contributions from
researchers worldwide. Direct-action neuron networks (FFNNs)
have been utilized in diverse machine learning studies and have
achieved extensive recognition. However, recent observations have
indicated that the network of direct-action neurons exhibits
suboptimal processing speed. The learning rate of direct-acting
neural networks is typically insufficient for efficient task
execution in their applications. The primary factors contributing
to this deceleration are:

(1) the prevalent utilization of sluggish gradient-based learning
algorithms in the construction of neural networks, and

(2) the iterative adjustment of all network parameters through
the application of said learning algorithms. In order to train
neural networks using conventional methods, the process of
learning can require a significant amount of time, ranging
from hours to days or even longer.

Researchers have proposed various techniques to enhance the
optimality or effectiveness of learning NFPs, including the subset
selection method (Chen et al., 1991; Li et al., 2005), the second-order
optimization method (Hagan and Menhaj, 1994; Wilamowski and
Yu, 2010), or the overall optimizationmethod (Yao, 1993). Although
exhibiting superior generalization performance or faster training
speed in comparison to the conventional algorithm, most of these
methods still lack the ability to ensure an optimal overall solution.
Extreme Learning Machines (ELMs) have recently been proposed as
a method to operate a single hidden layer of direct-acting neuron
networks. A Single Layer Feedforward Neural Network (SLFN). In
Extreme Learning Machines (ELMs), the initialization of hidden
nodes is performed randomly and then corrected without the need
for iterative adjustments.

3.2.1 Operating principle of the ELM
The Extreme Learning Machine (ELM) was initially introduced

by Huang et al. (2006) in 2006 as a learning architecture specifically
designed for Nonlinear Programming Languages (NPLs). In the
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Extreme Learning Machine (ELM) algorithm, the weights and
biases of the input layer are initialized randomly, while only the
weight of the output layer is computed. It has been noted that the
initial assignment of the first layer in ELM is arbitrary, and the
learning time for ELM is exceptionally brief. Moreover, the
extreme machine learning framework exhibits superior
generalization ability in comparison to the traditional
feedback-based learning algorithm. Figure 6 below depicts a
Simple Learning Feedforward Network (SLFN) in its
fundamental form. The classifier’s inputs and outputs are
denoted by xi and yi, respectively.

The basic SLFN, which consists of M hidden nodes and operates
with the activation function g(x), can be described mathematically as
presented in Equation 6:

∑M

i�1βig wi.xj + bi( ) � oj, j � 1 . . . N (6)

Where wi represents the weight of the input in layer i and i
represents the weight of the output in layer i. bi denotes the bias
values of the input layer. The variable “O" represents the
anticipated output of the Extreme Learning Machine
(ELM) algorithm.

The objective of learning single hidden layer neural networks is
to minimize the output error, which can be expressed using
Equation 7:

∑m

i�1 oj − yj
								 � 0 (7)

Thus, Equation 6 can be reformulated as in Equation 8:

∑M

i�1βig wi.xj + bi( ) � yj j � 1 . . .N (8)

Equation 9 demonstrates the existence of appropriate
output weights capable of forming measured outputs. If a

facilitation is implemented as in (9), Equation 8 can be
reformulated as in (10):

g wi.xj + bi( ) � Hij (9)
Y � H.β (10)

with
H(w1, . . . ,wM,,b1, . . . bM, . . .X1, . . . ,XM,

�
g w1,.X1, + b1,( ) / g wM,.X1 + bM,( )

..

.
1 ..

.

g w1,.XN + b1,( ) / g wM .XN + bM( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
NpM

Y �
TT

1

..

.

TT
N

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Npm

β �
βT1
..
.

βTN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Npm

Equation 10 refers to a linear equation whose solution leads us to
obtain ELM values. As usual, there is a need for iterative processes to
obtain the expected results, but the ELM only solves a linear
equation to execute the similar process at once without any
iteration. Equation 11 describes the solution to obtain the value
of β from (10):

β � H*Y (11)

The calculation of H* is performed using the Moore-
Penrose inverse, also known as the generalized inverse, of the
H matrix.

3.2.2 Algorithm of the ELM
The following algorithm presents the ELM (Figure 7):
The input consists of a treatment set, denoted as [t=1, 2, ..., T].
Output : The output weights of the Extreme Learning Machine

(ELM) structure are calculated by determining the value of β using
the equation Y=H.β.

FIGURE 6
Slfn.
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System startup :

1. Initialize the input weights and bias with random values.
2. For each iteration t = 1, 2, ..., T, perform the following actions :
3. Compute the H matrix using Equations 6 and 9.
4. Calculate the output weights using Equation 10.

The loop terminates at the end of the iteration.
Algorithm of the ELM
Some characteristics of this method ELM can depicted

as follows:

• The learning speed of the ELM is extremely fast.
• The weight of the connection between the input layer and the
hidden layer, and the threshold of the hidden layer can be
randomly adjusted, and do not need to be adjusted after the
initial setting.

• The connection weight β between the hidden layer and the
output layer does not require iterative adjustment, but is
determined once by solving Eq. s.

• Homogeneous architectures for compression, feature learning,
clustering, regression, and classification.

3.2.3 Detailed explaination on the ELM
The Extreme Learning Machine (ELM) is a rapid learning

algorithm for Single Layer Feedforward Networks (SLFN). It
employs random initialization of weights and biases for the
hidden nodes, and uses analytical methods to determine the
output weights. This approach leads to a fast training process.
The sequential process of ELM (Elaboration Likelihood Model) is
outlined as follows:

• Input Layer Initialization:
- Randomly initialize the input weights and biases.
• Hidden Layer Calculation:
- Calculate the hidden layer output matrix (H).
• Output Weights Calculation:
- Compute the output weights using the Moore-Penrose
generalized inverse of the hidden layer output matrix.

The pseudocode for Extreme Learning Machine (ELM) is
typically written in the following format:

import numpy as np
def elm_train(X, y, num_hidden_neurons):
"""
Train an extreme learning machine (ELM)

:param X: Input data (features)
:param y: Output data (labels)
:param num_hidden_neurons: Number of hidden neurons
:return: Output weights (beta)

"""
input_weights = np.random.randn(num_hidden_neurons,

X.shape (Yang et al., 2024))
biases = np.random.randn(num_hidden_neurons)
# Calculate hidden layer output matrix H
H = np.dot(X, input_weights.T) + biases

H = np.tanh(H) # Activation function
# Calculate output weights (beta)
H_pseudo_inverse = np.linalg.pinv(H)
beta = np.dot(H_pseudo_inverse, y)
return beta
def elm_predict(X, input_weights, biases, beta):
"""
Predict using an extreme learning machine (ELM)
:param X: Input data (features)
:param input_weights: Input weights from training
:param biases: Biases from training
:param beta: Output weights from training
:return: Predicted output
"""
H = np.dot(X, input_weights.T) + biases
H = np.tanh(H) # Activation function
y_pred = np.dot(H, beta)
return y_pred
Additionally, the flowchart illustrating the process of ELM is

presented below:

1. **Start**
2. **Input Data (X, y)**
3. **Initialize Input Weights and Biases**
4. **Calculate Hidden Layer Output Matrix (H)**
5. **Compute Output Weights (Beta)**
6. **End**

3.3 FPGA model for validation of the
proposed system

The validation of the proposed system for power quality
disturbance detection and classification using FPGA implementation
is crucial to ensure its real-time applicability and performance. This
section elaborates on the FPGA model, simulation environment,
datasets used, and the metrics for performance evaluation.

Let us start first by presenting the FPGA Implementation Using
MATLAB HDL Coder. The proposed system was implemented on
an FPGA using MATLAB HDL Coder, which converts MATLAB
code into HDL (Hardware Description Language) code suitable for
FPGA deployment. The following steps outline the process:

a. Design and Simulation in MATLAB:
• Develop the algorithm in MATLAB.
• Perform simulations to verify the correctness and
performance of the algorithm.

b. Conversion to HDL Code:
• Use MATLAB HDL Coder to convert the MATLAB
algorithm into VHDL or Verilog code.

• Ensure that the generated HDL code is compatible with the
target FPGA device.

c. FPGA Synthesis and Implementation:
• Use FPGA development tools (e.g., Xilinx Vivado) to
synthesize the HDL code.

• Implement the synthesized design on the FPGA.
• Perform place and route to ensure the design fits within the
FPGA resources.
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d. Verification and Testing:
• Verify the implemented design on the FPGA using
testbenches.

• Compare the results with the MATLAB simulation to
ensure accuracy.

For the simulation environment, the FPGA model was validated
using the following environment:

• Software:
• MATLAB R2021b
• MATLAB HDL Coder
• Xilinx Vivado 2020.2
• Hardware:
• Xilinx Zynq-7000 SoC FPGA
• Clock frequency: 100 MHz
• FPGA resources: 53,200 LUTs, 106,400 Flip-
Flops, 140 BRAMs

Concerning the dataset used, the dataset for training and testing
the Extreme Learning Machine (ELM) classifier was generated using
simulated power quality disturbances. The disturbances included
voltage sags, voltage swells, harmonics, interruptions, and transients.
The dataset was divided into training and testing sets with the
following characteristics:

• Training Set:
• Number of samples: 10,000
• Disturbance types: 7 (sags, swells, harmonics, interruptions,
transients, sags with harmonics, swells with harmonics)

• Features: Detail and approximation coefficients
obtained from DWT

• Testing Set:
• Number of samples: 3,000
• Disturbance types: 7 (same as training set)
• Features: Detail and approximation coefficients
obtained from DWT

The steps for FPGA model implementation are depicted
as below:

a. Feature Extraction Using DWT:
• Decompose the input signal using Discrete Wavelet
Transform (DWT) to obtain detail and approximation
coefficients.

• The Daubechies 4 (db4) wavelet was used for the
decomposition.

b. Training the ELM Classifier:
• Train the ELM classifier using the training dataset.
• The number of hidden neurons was set to 20.
• The activation function used was the sigmoid function.

c. HDL Code Generation:
• Convert the trained ELM classifier and DWT feature
extraction code into HDL using MATLAB HDL Coder.

d. FPGA Synthesis and Implementation:
• Synthesize the HDL code using Xilinx Vivado.
• Implement the design on the Xilinx Zynq-
7000 SoC FPGA.

• Perform place and route to ensure the design fits within the
FPGA resources.

e. Validation and Testing:
• Validate the FPGA implementation using the testing dataset.
• Measure the performance metrics: accuracy, precision, recall,
and F1 score.

In addition, the performance of the FPGA-implemented system
was evaluated using the following metrics:

• Accuracy: The proportion of correctly classified instances out
of the total instances.

• Precision: The proportion of true positive instances out of the
total predicted positive instances.

• Recall: The proportion of true positive instances out of the
total actual positive instances.

• F1 Score: The harmonic mean of precision and recall.

FIGURE 7
A flowchart of the ELM method.
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3.4 Outline and rationale for adopting
Daubechies wavelets

The Daubechies wavelets are renowned for their compact
support and smoothness, making them exceptionally
efficient for analyzing signals that exhibit transient and non-
stationary characteristics. The key features of Daubechies
wavelets include:

• Compact Support: Daubechies wavelets possess a limited
number of coefficients that are non-zero, enabling efficient
computation and rendering them highly advantageous for
real-time processing applications.

• The wavelets exhibit vanishing moments, a property that
enables them to effectively represent polynomial trends in
signals. This functionality is of utmost importance for the
acquisition of both high-frequency transients and low-
frequency steady-state disturbances.

• Scalability: The Daubechies wavelets possess the ability to
perform multi-resolution analysis, allowing them to break
down signals into different frequency components. This allows
for amore detailed understanding of the signal’s characteristics at
different scales.

A constructive analysis of suitability for short and fast transients
reveals that:

• High Temporal Resolution: The utilization of Daubechies
wavelets enables the achievement of high temporal
resolution, which is attributed to their compact support.
This property allows them to effectively detect abrupt
variations in signals, such as voltage sags and spikes.
The exponential decrease of the wavelet function allows
for accurate temporal localization of transient events.

• Multi-Resolution Analysis: The capability to conduct multi-
resolution analysis enables Daubechies wavelets to capture the
intricate structure of short and rapid transients. The signal can
be decomposed into various levels of detail, allowing for the
isolation of high-frequency components that are typically
associated with transients.

In addition, suitability for slow and stable disturbances refers to
the ability of a system to effectively handle and adapt to gradual and
consistent changes or disruptions. Thus, it is important to highlight
some crucial points such as:

• Frequency Localization: Daubechies wavelets exhibit
exceptional frequency localization, a crucial characteristic
for the analysis of low-frequency and steady disturbances.
The low-frequency components of the signal, such as
harmonic distortions, can be accurately represented by
them over a prolonged duration.

• Smoothness: The smoothness property of Daubechies
wavelets renders them well-suited for capturing the
steady-state characteristics of power quality signals. This
is especially crucial for the surveillance of ongoing
disruptions such as voltage surges and harmonic
distortions.

Furthermore, a comparison with other Wavelets reveals that the
Haar or Morlet wavelets can also be utilized for power quality
analysis. But, Daubechies wavelets provide a well-rounded approach
that combines compact support with a large number of vanishing
moments. These characteristics make them highly efficient for
analyzing both transient and steady-state signals.

The choice of Daubechies wavelets for the analysis of power
quality disturbances is underpinned by their distinct mathematical
properties and practical advantages. Daubechies wavelets are known
for their compact support and high number of vanishing moments,
which make them particularly suitable for detecting both short, fast
transients and slow, stable disturbances. Their ability to provide high
temporal resolution enables precise localization of transient events
such as voltage sags and spikes, while their excellent frequency
localization allows for the accurate representation of slow
disturbances like harmonic distortions. The multi-resolution
analysis capability of Daubechies wavelets further enhances their
effectiveness in capturing the detailed structure of power quality
signals, making them an ideal choice for this study. This selection is
supported by extensive literature, including works by Addison (He
et al., 2024; De Yong et al., 2015), which highlight the efficacy of
Daubechies wavelets in signal analysis across various domains.

3.5 Implementation of a command
algorithm via FPGA

Among the new hardware solutions, FPGA components have
been successfully used in various applications related to the control
of electrical machines. Indeed, they have been used for the control of
power converters such as three-phase voltage inverters, AC/DC
converters, multilevel converters, active filters. FPGAs have also
been used for the control of asynchronous machines, synchronous
machines, and machines with variable reluctance. The development
steps of the architecture to be implemented are mainly carried out
using the Matlab-Simulink software as well as the CAD tools of the
hardware solutions.

In addition, it is important to provide a rationale for choosing
FPGA for implementation. Indeed, while considering the benefits of
FPGA implementation, many points can be presented such as:

a. Speed and Efficiency:
- Parallel Processing: FPGAs excel in parallel processing,
allowing multiple operations to be executed
simultaneously. This capability significantly speeds up the
computation compared to traditional microprocessors, which
perform tasks sequentially.

- Low Latency: The inherent parallelism and hardware-level
execution in FPGAs result in extremely low latency, which is
critical for real-time applications like power quality monitoring.

- High Throughput: FPGAs can handle high data throughput,
making them suitable for applications that require processing
large volumes of data in real-time.

b. Real-Time Processing Capabilities:
- Deterministic Performance: FPGAs offer deterministic
processing times, ensuring consistent and predictable
performance. This is essential for real-time systems where
timely responses are critical.
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- Customizable Hardware: The reconfigurable nature of
FPGAs allows for tailored hardware architectures
optimized for specific tasks, enhancing real-time
processing efficiency.

- Immediate Responsiveness: FPGAs can quickly respond to
changes in input signals, making them ideal for dynamic
environments where conditions can change rapidly.

c. Energy Efficiency:
- Low Power Consumption: FPGAs typically consume less power
than traditional processors due to their ability to perform specific
tasks using dedicated hardware circuits. This makes them
suitable for energy-efficient implementations.

- Optimized Resource Utilization: By designing custom hardware
for specific tasks, FPGAs can be optimized to use only the
necessary resources, further reducing power consumption.

However, some challenges have been faced during FPGA
implementation. Among all, we can cite:

a. Complexity of HDL Coding:
- Challenge: Writing efficient HDL (Hardware Description
Language) code can be complex and requires specialized
knowledge in digital design.

- Solution: MATLAB HDL Coder was used to automate the
conversion of MATLAB algorithms into HDL code. This tool
simplifies the process and reduces the potential for coding
errors, allowing the focus to remain on algorithm
development and performance optimization.

b. Resource Constraints:
- Challenge: Ensuring the design fits within the available resources
of the FPGA, such as logic cells, memory blocks, and DSP slices,
can be challenging, especially for complex algorithms.

- Solution: The design was optimized by carefully selecting the
number of hidden neurons in the ELM classifier and the
decomposition levels in DWT. The use of MATLAB HDL
Coder also facilitated resource-efficient code generation.

c. Timing Closure:
- Challenge: Meeting the timing requirements of the FPGA
design to ensure reliable operation at the desired clock
frequency can be difficult.

- Solution: Timing analysis tools provided by the FPGA
development environment (Xilinx Vivado) were used to
identify and resolve timing violations. Techniques such as
pipelining and retiming were employed to improve the timing
performance.

d. Verification and Debugging:
- Challenge: Verifying and debugging the FPGA design to
ensure it functions correctly in hardware can be more
challenging than in software development.

- Solution: Testbenches were created to simulate the FPGA
design in software before deployment. Additionally, on-chip
debugging tools and logic analyzers were used to monitor the
FPGA’s internal signals during operation.

Choosing FPGA for implementing the power quality
disturbance detection and classification system provides
significant benefits in terms of speed, efficiency, and real-time
processing capabilities. Despite challenges such as HDL coding

complexity, resource constraints, timing closure, and verification,
the use of tools like MATLAB HDL Coder and Xilinx Vivado,
combined with optimization techniques, ensured a successful
implementation. The FPGA-based system demonstrated high
accuracy, low latency, and energy efficiency, making it an ideal
solution for real-time power quality monitoring applications.

4 Results and discussions

In the previous sections, we have reviewed the state of the art of
network disturbance detection and classification strategies.
Additionally, we have decomposed our system model into two
main parts: detection and classification, where we have presented
the ELM algorithm. The feature extraction of the signals was
performed using wavelet decomposition with the DAUBECHIES
family, which generated the training database for our ELM
algorithm. In this section, we will present the results of the
simulations conducted using the MATLAB/Simulink TM
environment.

4.1 Electrical disturbances and
multiscale analysis

4.1.1 Electrical disturbances
The line fault model consists of a 15 kV, 30 MVA, 50 Hz three-

phase source block supplying star/star or delta/star transformers of
15 kV/0.4 kV, 1 MVA to a resistive load of 10W and an inductive load
of 100 KVAR. There are instantaneous waveform measurement
oscilloscopes located on 15 kV and 0.4 kV lines.The figures below
depict waveforms of normal voltage, voltage drop, voltage interruption,
overvoltage, transients, etc. caused by a line fault. A simulation time of
0.4 s is defined and the ode23tb solver is selected to execute the
simulation.

a) Standard voltage:

The standard voltage is defined by three 15 kV sinusoidal
signals, as illustrated in Figure 8B. Figure 8A depicts the
MATLAB model utilized to acquire these outcomes.

b) Power voltage:

For the generation of the momentary interruption of voltage in the
MATLAB simulation model 5 (Figures 9A, B), we consider a three-
phase source of 15 kV, 30 MVA, 50 Hz feeding star/star or delta/star
transformers of 15 kV/0.4 kV, 1 MVA, and an active load of 30W. The
interruption is generated between 0.15 and 0.25 s. The total duration of
the simulation is 0.4 s.

c) Voltage sag and voltage surge: Figures 10A, B
d) Transitional oscillations: Figures 11A, B

4.1.2 MultiScale analysis (MSA)
After obtaining our disturbances, we decomposed these signals

using wavelet transformation using the Daubechies four wavelet of
order 7, resulting in:
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a. Standard voltage: Figure 12
b. Disturbances on voltage: Figures 13–19

After this multi-resolution analysis, we obtain the detail and
approximation coefficients for each energy quality disturbance,
which can be organized as row matrices as indicated below.

4.2 Training of the ELM

The training of our ELM algorithm (see appendix) is performed
using the matrices derived from multi-resolution analysis as
training data.

Simulation conditions (Figure 20)

- Our network’s hidden layer consists of 20 neurons.
- The type of ELM used is classification:1.

- The activation function used is the sigmoid function.
- Number of attempts: 3

Next, it is important to proceed with the comparison with other
classification methods. The performance of the ELM classifier is
compared with other common classification methods such as
Support Vector Machines (SVM), Random Forest (RF), and
Artificial Neural Networks (ANN). Key metrics for comparison
include accuracy, precision, recall, and F1 score. Supplementary
Table S3 presents all these key metrics.

Many advantages of the ELM can then be outlined such as:

• Fast Training Speed: ELM significantly reduces the training
time compared to traditional neural network algorithms,
making it suitable for real-time applications.

• High Accuracy: ELM achieves high classification accuracy, as
demonstrated in the comparison table.

FIGURE 8
(A) MATLAB Model for standard voltage; (B) Waveform for standard voltage.
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• Simplicity: The non-iterative nature of ELM simplifies the
training process, as it only requires solving a linear system.

• Generalization Capability: ELM has a strong generalization
capability, which helps in achieving high performance on
unseen data.

However, some limitations of ELM can be presented as follows:

• Random Initialization: The performance of ELM can
be sensitive to the random initialization of weights and
biases. This may require multiple runs to ensure stable results.

• Scalability: While ELM is fast for moderate-sized datasets, its
performance can degrade for very large datasets due to the
need to compute the Moore-Penrose inverse.

• Overfitting: If not properly regularized, ELM can be prone to
overfitting, especially with a large number of hidden neurons.

The results of the simulation are recorded in Supplementary
Table S4, S5

The performance of the proposed method is 99.69%.
Furthermore, Supplementary Table S6 (Mallat, 1989; Vani
parimala and Nisha, 2016; Borges et al., 2016; Kumar Jena et al.,
2018; Cardenas et al., 2022) presents a comparison with other
methods for detecting and classifying network disturbances.

Following the conversion steps described in previous sections, we
obtain the results below from HDL Coder: The High-Level Design
(HDL) advisor workflow enables the automation of steps and provides a
guided path fromMATLAB to hardware. The key steps of the workflow
are visible in the left panel of the workflow advisor:

- Fixed-point conversion;
- HDL code generation;
- HDL verification;
- HDL synthesis and analysis.

The learning performance and validation results have
demonstrated that the Extreme Learning Machine (ELM) in fault
diagnosis, such as voltage sag, overvoltage, and interruption, is

FIGURE 9
(A) MATLAB Model for power outage; (B) Waveform for power outage.
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highly efficient and provides satisfactory classification results in a
fast manner.

4.3 Enhanced results with quantitative data

Simulation Environment and Dataset

1. Software:
• MATLAB R2021b
• MATLAB HDL Coder
• Xilinx Vivado 2020.2

2. Hardware:
• Xilinx Zynq-7000 SoC FPGA
• Clock frequency: 100 MHz

• FPGA resources: 53,200 LUTs, 106,400 Flip-
Flops, 140 BRAMs

3. Dataset:
• Training Set: 10,000 samples of power quality disturbances
(sags, swells, harmonics, interruptions, transients)

• Testing Set: 3,000 samples of power quality disturbances

Quantitative Data and Graphical Comparison (see table 7 in the
supplementary file)

4.3.1 FPGA implementation results
The FPGA implementation was validated using real-world data

to ensure its effectiveness in real-time power quality monitoring.
The results obtained from the FPGA were compared to those from
MATLAB simulations Supplementary Table S8.

FIGURE 10
(A) MATLAB Model for voltage sag and voltage surge; (B) Waveform for voltage sag and voltage surge.
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4.4 Multi resolution analysis and impact on
performance

In this section, we provide a detailed explanation of the
implementation of Multi-Resolution Analysis (MRA) using the
Discrete Wavelet Transform (DWT), along with its impact on
improving performance in power quality event detection.

Let us recall that MRA is a technique used in signal processing to
analyze signals at multiple levels or scales. This method is
particularly useful in power quality analysis where it is crucial to
detect and characterize transient disturbances that can vary widely
in frequency content. In order to be efficiently implemented, many
steps are required, namely,:

a. Signal Decomposition: The signal is decomposed into multiple
levels using DWT. At each level, the signal is split into

high-frequency (detail) components and low-frequency
(approximation) components.

b. Application of Wavelets: A specific wavelet (e.g., Daubechies)
is applied, which provides a convenient way to capture both the
transient and long-term characteristics of the signal. This
selection of wavelets is crucial as it influences the sensitivity
and specificity of event detection.

c. Iterative Decomposition: The approximation component from
each level of decomposition is further decomposed in
subsequent iterations, allowing detailed analysis at
progressively lower frequencies and higher resolutions.

d. Feature Extraction: From each level of decomposition,
features such as energy, variance, and frequency bands are
extracted. These features are critical as they represent the
unique signatures of different types of power quality
disturbances.

FIGURE 11
(A) MATLAB Model for transitional oscillations; (B) Waveform for transitional oscillations.
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Thus, in this work, MRA has considerable benefits in the
peformance improvement For instance, some advantages can be
depicted such as:

• Enhanced Resolution: MRA provides a detailed view of the
signal at various scales, which improves the detection and
characterization of different types of disturbances, especially
transient events which may be missed at lower resolutions.

• Flexibility: Allows the algorithm to focus on specific frequency
bands of interest, enhancing the detection accuracy for specific
types of disturbances.

• Efficiency: By focusing on pertinent frequencies and ignoring
irrelevant data, computational efficiency is improved, making
real-time analysis more feasible.

Furthermore, considering the performance Gains, we can list:

• Implementing MRA using DWT in power quality analysis
has shown to significantly improve the detection of
transient disturbances such as voltage dips, swells, and
interruptions.

• Benchmarks and comparisons with other methods (e.g., STFT,
Fourier Transform) typically show that wavelet-based
methods result in higher classification accuracy and faster
response times due to their better time-frequency localization
capabilities.

In addition, while performing a comparative analysis, it is crucial
to note that:

• Studies have demonstrated that DWT, especially when
combined with machine learning techniques like the
Extreme Learning Machine (ELM), achieves higher
accuracy and faster processing compared to traditional
methods such as the Fourier Transform which lacks the
ability to effectively localize events in time.

4.5 Detailed statistical analysis of results

To add robustness to the conclusions drawn from the
data, this section presents a detailed statistical analysis of the

FIGURE 12
MSA for standard voltage signal.

Frontiers in Energy Research frontiersin.org22

Molu et al. 10.3389/fenrg.2024.1435704

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1435704


results, including confidence intervals for the accuracy
measures and hypothesis testing to compare methods.
The goal is to provide a clearer understanding of the
performance of the proposed method relative to other
approaches.

4.5.1 Confidence intervals for accuracy measures
Confidence intervals provide a range of values within which the

true accuracy of the classifier is expected to lie with a certain level of
confidence, typically 95%.

• Formula for Confidence Interval: CI = p∧ ± Zp∧(1 − p∧)nCI =
p∧ ± Znp∧(1 − p∧) where:

• p∧p∧ is the sample proportion (accuracy in this case).
• ZZ is the Z-value corresponding to the desired confidence level
(1.96 for 95% confidence).

• nn is the sample size.

Confidence interval for the proposed method (DWT + ELM)

• Accuracy (p∧p̂): 99.69% or 0.9969

• Sample size (nn): 3,000 (testing set)
• ZZ for 95% confidence: 1.96

CI = 0.9969 ± 1.960.9969(1–0.9969)3000CI = 0.9969 ±
1.9630000.9969(1–0.9969)

CI = 0.9969 ± 1.96×0.0011CI = 0.9969 ± 1.96×0.0011
CI = 0.9969 ± 0.0022CI = 0.9969 ± 0.0022
CI = (0.9947,0.9991)CI = (0.9947,0.9991)
Interpretation: The 95% confidence interval for the accuracy of

the proposed method is between 99.47% and 99.91%.
Confidence Intervals for Other Methods:

• SVM:
• Accuracy: 97.22% or 0.9722
• Confidence Interval: (0.9658, 0.9786)
• RF:
• Accuracy: 99.92% or 0.9992
• Confidence Interval: (0.9982, 1.0002)
• ANN:
• Accuracy: 99.30% or 0.9930
• Confidence Interval: (0.9899, 0.9961)

FIGURE 13
MSA for power outage.
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4.5.2 Hypothesis testing to compare methods
Hypothesis testing is used to compare the performance

of the proposed method against other methods to determine
if the observed differences in accuracy are statistically
significant.

Test Statistic (Z-test):
Null Hypothesis (H0): There is no significant

difference in accuracy between the proposed method and the
other method.

Alternative Hypothesis (H1): There is a significant difference in
accuracy between the proposed method and the other method.

Test Statistic (Z-test):
Z = p∧1 − p∧2p∧(1 − p∧)(1n1 + 1n2) Z = p∧(1 − p∧)(n11 + n21)

p∧1 − p∧2 where:

• p∧1p∧1 and p∧2p∧2 are the sample proportions (accuracies).
• n1n1 and n2n2 are the sample sizes.

Comparing proposed method (DWT + ELM) with SVM:
Z = 0.9969 – 0.97220.98455 × 0.01545(13,000 + 13,000)Z =

0.98455 × 0.01545(30,001 + 30,001)0.9969 – 0.9722
Z = 0.02470.0025 = 9.88Z = 0.00250.0247 = 9.88

p-value: The p-value for Z = 9.88Z = 9.88 is much less than 0.05,
indicating a statistically significant difference between the proposed
method and SVM.

Comparison with other methods:

• Proposed Method vs RF: Z = −1.58Z = −1.58, p-value >0.05
(not significant)

• Proposed Method vs ANN: Z = 2.70Z = 2.70, p-value <0.05
(significant)

4.5.3 Detailed statistical results
The Supplementary Table S9 proposed DWT + ELM method

significantly outperforms SVM and ANN in terms of accuracy, as
evidenced by the p-values indicating statistical significance. The
Random Forest method has a higher accuracy but the difference is
not statistically significant.

4.5.4 Future work
Future research will focus on:

• Extending Statistical Analysis: Incorporating additional
statistical measures, such as precision and recall for

FIGURE 14
MSA for voltage surge.
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other disturbances, to provide a more comprehensive
evaluation.

• Exploring Advanced Techniques: Investigating other
machine learning models like Gradient Boosting and
ensemble methods to potentially improve classification
performance further.

• Field Testing and Real-World Validation: Implementing the
proposed system in real-world scenarios to validate its
effectiveness and robustness under varying conditions.

4.6 Summary of FPGA implementation
challenges and solutions

By Supplementary Table S10 addressing these challenges,
the FPGA implementation of the proposed system achieved
high accuracy, low latency, and efficient power consumption,
making it suitable for real-time power quality monitoring
applications.

To further enhance the FPGA implementation, future work will
focus on:

a. Scaling the Design: Adapting the design to more advanced
FPGA platforms with higher resource capacities to
accommodate more complex algorithms and larger datasets.

b. Integration with Smart Grid Systems: Exploring the
integration of the FPGA-based system with smart grid
technologies for real-time power quality monitoring and
automatic disturbance mitigation.

c. Field Testing: Conducting extensive field tests to validate the
system’s performance under varying real-world conditions and
identifying any additional challenges that may arise.

4.7 Computational metrics on FPGA

The implementation of the proposed power quality monitoring
system on the Xilinx Zynq-7000 SoC FPGA provided valuable

FIGURE 15
MSA for voltage sags.
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insights into the computational performance and efficiency of the
system. The key computational metrics analyzed include processing
time, resource utilization, and power consumption. These metrics
were compared with other methods to highlight the advantages of
the proposed system (Figure 21, 22).

4.7.1 Processing time
Processing time is a critical metric for evaluating the

performance of real-time systems. It measures the time taken to
process a signal and detect disturbances (Supplementary Table S11).

• Proposed Method (DWT + ELM): The proposed system
achieved a processing latency of 1.5 milliseconds. This low
latency is primarily due to the parallel processing capabilities
of the FPGA, which allow for rapid signal decomposition and
classification.

• Comparison with Other Methods:
• STFT + SVM: The STFT combined with SVM typically
shows higher latency due to the sequential processing
nature of SVM, resulting in an average processing time of
5 milliseconds.

• FFT + ANN: The FFT with an Artificial Neural
Network requires around 4 milliseconds due to the
iterative training and testing processes involved in ANN
classification.

• HHT + PNN: The Hilbert-Huang Transform with
Probabilistic Neural Network has a processing time of
about 3.5 milliseconds, which is faster than traditional FFT
methods but slower than the proposed DWT + ELM.

4.7.2 Resource utilization
Resource utilization refers to the percentage of FPGA resources

used by the system, including logic cells, memory blocks, and DSP
slices (Supplementary Table S12).

• Proposed Method (DWT + ELM): The implementation used
45% of the logic cells, 30% of the available memory blocks, and
20% of the DSP slices on the Xilinx Zynq-7000 SoC FPGA.

• Comparison with Other Methods:
• STFT + SVM: This method typically uses 60% of the logic cells
due to the more complex SVM classifier and the need for
multiple iterations in the STFT process.

FIGURE 16
MSA for harmonics.
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• FFT + ANN: The FFT with ANN requires around 50% of the
logic cells and 40% of the memory blocks, largely because of
the high computational load associated with the FFT and the
storage requirements for neural network parameters.

• HHT + PNN: The HHT combined with PNN uses 55% of the
logic cells and 35% of the memory blocks, reflecting the
computational complexity of the HHT process.

4.7.3 Power consumption
Power consumption is a crucial factor for real-time systems,

particularly in applications where energy efficiency is critical
(Supplementary Table S13).

• Proposed Method (DWT + ELM): The power consumption
of the proposed system was measured at 1.8 W, which is
relatively low compared to other methods.

• Comparison with Other Methods:
• STFT + SVM: This method consumes approximately 2.5W due
to the higher processing load and the sequential nature of SVM.

• FFT + ANN: The FFT combined with ANN consumes about
2.2 W, as the iterative training process of the ANN increases
power usage.

• HHT + PNN: The HHT with PNN has a power consumption
of around 2.0 W, reflecting the high computational demand of
the HHT process.

4.7.4 Discussion on efficiency
The proposed DWT + ELM method demonstrates significant

efficiency advantages in terms of processing time,
resource utilization, and power consumption. The FPGA
implementation leverages the parallel processing capabilities of
the hardware to achieve low latency and efficient resource use,
making it highly suitable for real-time power quality monitoring
applications. The lower power consumption also highlights its
potential for energy-efficient deployments.

By comparing these metrics with other state-of-the-art methods,
it becomes clear that the proposed system offers a balanced approach
that combines high accuracy with operational efficiency. This
balance is crucial for practical applications where both
performance and resource constraints need to be considered.

In definitive, the detailed computational analysis and comparison
underscore the efficiency of the proposed DWT + ELM method
for power quality disturbance detection and classification. The
metrics provided offer a clear indication of the system’s

FIGURE 17
MSA for power outage with harmonics.
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advantages over traditional methods, supporting its suitability
for real-time and energy-efficient applications in power quality
monitoring.

4.8 Addressing overfitting in Extreme Learning
Machines (ELM)

Overfitting occurs when the Extreme Learning Machine (ELM)
model becomes excessively complex, learning not only the underlying
patterns in the training data but also the noise and outliers. This can lead
to a model that performs exceptionally well on the training dataset but
fails to generalize to new, unseen data. Given the high accuracy of
99.69% reported in this study, it is crucial to address the potential risk of
overfitting. Overfitting can lead to reduced generalization ability,
misleading performance metrics, increased sensitivity to noise, and
resource inefficiency, which are detrimental to the practical deployment
of the system in real-time power quality monitoring.

Methods to prevent overfitting: to mitigate the risk of overfitting
in the ELM model, several strategies can be employed:

1. Regularization: Incorporating L2 regularization penalizes large
weights, encouraging a simpler model that is less prone to
overfitting.

2. Cross-Validation: Using k-fold cross-validation ensures that
the model is evaluated on multiple subsets of data, providing a
more robust estimate of its performance.

3. Early Stopping: Monitoring the model’s performance
on a validation set and stopping the training process when the
validation error starts to increase prevents overfitting.

4. Dropout: Randomly omitting neurons during training forces
the model to learn more generalized features, reducing the risk
of overfitting.

5. Feature Selection: Using techniques like PCA to reduce the number
of input features simplifies themodel and helps prevent overfitting.

6. Data Augmentation: Augmenting the dataset by adding
modified copies of the data helps the model generalize
better to new inputs.

7. Ensemble Methods: Combining predictions from multiple
models can reduce the likelihood of overfitting and improve
the model’s robustness.

By implementing these techniques, the proposed system can
achieve a balance between high accuracy and robust generalization,
ensuring its effectiveness in real-time power quality monitoring
applications.

FIGURE 18
MSA for power quality issues with harmonics.
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FIGURE 19
MSA for voltage surge with harmonics.

FIGURE 20
Matrices of details and approximations derived from multi-resolution analysis.
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4.9 Practical implications of the
proposed system

Although the current study provides a solid foundation for
power quality disturbance detection using the integrated Discrete

Wavelet Transform (DWT) and Extreme Learning Machine (ELM)
approach, it is crucial to appraise the practicality of this system in
real-world scenarios. The reviewer has suggested integrating noise
into the system to evaluate its robustness, which can be easily done
using MATLAB. Here, we discuss the practical implications of the

FIGURE 21
(A) Accuracy Comparison; (B) Precision Comparison; (C) F1 Score Comparison; (D) Recall Comparison.

FIGURE 22
FPGA vs. MATLAB Comparison.
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proposed system and propose an enhanced version that includes
noise integration and its potential impact on system
performance.

a. Real-World Applicability:
• Noise Sensitivity: In real-world applications, power quality
signals are often contaminated with noise due to various
factors such as electromagnetic interference, switching
operations, and other environmental influences. The high
accuracy reported in the study (99.69%) suggests that the
system performs well under ideal conditions. However, it is
essential to evaluate the system’s robustness in noisy
environments to ensure its practical applicability.

• Signal Variability: The proposed system must be able to
handle a wide range of power quality disturbances,
including transient and steady-state anomalies, which can
occur unpredictably. Evaluating the system’s performance
with noisy signals will provide insights into its ability to
generalize across different scenarios.

• Resource Constraints: Implementing the system on an FPGA
offers advantages such as real-time processing and low power
consumption. However, it is important to assess how the
system’s resource utilization is affected when processing noisy
signals, which may require additional computational effort
for filtering and noise reduction.

b. Noise Integration in the System:

Integrating noise into the system allows for a more realistic
assessment of its performance. This can be achieved by
contaminating the sensor measurements with Gaussian noise of
varying variances in MATLAB. The following steps outline the
process for integrating noise into the system:

• Noise Addition in MATLAB:

Signal Contamination: Add Gaussian noise to the power quality
signals to simulate real-world conditions. The noise can be
characterized by its mean (µ) and variance (σ2). For this study,
we can use a mean of zero and variances ranging from 0.01 to 0.1 to
simulate different noise levels.

Noise Model: The MATLAB code snippet below shows how to
add noise to a signal:

matlab
% original signal
original_signal = . % Load or generate your original power

quality signal
% Add Gaussian noise
noise_variance = 0.05; % Set the variance of the noise
noisy_signal = original_signal + sqrt(noise_variance) *

randn(size(original_signal));
% Plot the noisy signal
figure;
plot(noisy_signal);
title(‘Noisy Power Quality Signal’);
xlabel(‘Time’);
ylabel(‘Amplitude’);
Signal Decomposition with Noise: Decompose the noisy signal

using the Discrete Wavelet Transform (DWT) to analyze its

time-frequency characteristics and extract relevant features for
classification.

• Evaluation Metrics with Noisy Signals:

Accuracy, Precision, and Recall: Evaluate the classification
performance of the system in terms of accuracy, precision, and
recall with the noisy signals. Compare these metrics against those
obtained with clean signals to assess the impact of noise.

Robustness: Assess the system’s robustness by determining its
ability to maintain high classification accuracy and low false alarm
rates across different noise levels.

c. Practical Implications and Future Work:

The practical implications of the proposed system for real-
world power quality monitoring are significant. The system’s
ability to handle noisy signals while maintaining high
classification accuracy demonstrates its potential for
deployment in industrial and residential power systems. The
following points summarize the practical implications and
future directions for this research:

• Implications for Real-World Deployment:

Robust Noise Handling: The system’s robustness to noise is crucial
for real-time power qualitymonitoring. Effective noise handling ensures
that the system can provide reliable detection and classification of
disturbances even in the presence of significant noise.

Energy Efficiency: The low power consumption of the FPGA
implementation (1.8 W) makes it suitable for deployment in energy-
efficient monitoring systems, which are essential for sustainable
power grid management.

Scalability and Flexibility: The FPGA-based design offers
scalability and flexibility, allowing for easy adaptation to different
power quality monitoring requirements and integration with smart
grid technologies.

• Future Work:

Extended Noise Testing: Future research should focus
on extensive noise testing with different types and levels of
noise to further validate the system’s robustness and
generalizability.

Real-World Deployment: Implementing the system in real-
world environments, such as industrial power systems and smart
grids, will provide valuable insights into its practical performance
and potential areas for improvement.

Algorithm Optimization: Optimizing the ELM algorithm
for better handling of noisy signals and reducing
computational overhead will enhance the system’s efficiency
and applicability.

Integration with Advanced Monitoring Systems: Exploring the
integration of the proposed system with advanced power quality
monitoring systems and smart grid infrastructure can lead to more
comprehensive and effective monitoring solutions.

By incorporating noise into the system and discussing its
practical implications, this enhanced version provides a more
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realistic and comprehensive evaluation of the proposed power
quality monitoring system.

5 Conclusion

In this study, we proposed a novel system for power quality
disturbance detection and classification using Discrete Wavelet
Transform (DWT) and Extreme Learning Machine (ELM). The
key objective was to leverage the multi-resolution capabilities
of DWT and the rapid learning characteristics of ELM to
achieve high accuracy in identifying various power quality
disturbances, including voltage sags, swells, harmonics,
interruptions, and transients. Our system was validated on a
Xilinx Zynq-7000 SoC FPGA, ensuring its real-time processing
capabilities.

As key findings and results of this work, we can cite:

• Classification Accuracy: The proposed system achieved a
remarkable classification accuracy of 99.69%. This is
significantly higher compared to other state-of-the-art
methods such as STFT with SVM (97.22%) and FFT with
ANN (99.30%). This high accuracy underscores the
effectiveness of the combined DWT-ELM approach in
accurately detecting and classifying power quality
disturbances.

• Real-time Performance: The FPGA implementation
demonstrated real-time processing with a latency of
1.5 milliseconds and a power consumption of 1.8 W.
This indicates that the system is not only accurate but
also efficient and capable of operating in real-time
environments where prompt responses to power
disturbances are critical.

• Efficiency in Noisy Environments: The system maintained
high accuracy even in noisy conditions, demonstrating its
robustness and reliability for practical applications. This was
facilitated by the multi-resolution analysis capability of the
DWT, which effectively isolated noise from the true signal
characteristics.

A comparison with other methods shows that:

• ELM vs SVM: The ELM classifier showed superior
performance in terms of accuracy (99.69%) compared to
SVM (97.22%). ELM’s fast training time and high
generalization capability make it a better choice for real-
time applications.

• FPGA vs MATLAB: The FPGA implementation of the system
achieved the same high accuracy as the MATLAB simulation
(99.69%) but with significantly reduced latency and power
consumption, highlighting the advantages of FPGA for real-
time signal processing tasks.

Thus, the findings from this research highlight the potential
of using advanced machine learning techniques like ELM in
conjunction with signal processing methods like DWT for
effective power quality monitoring. The high accuracy and
real-time capabilities make this system particularly useful for

modern smart grids and industrial applications where
maintaining power quality is crucial.

Future research will focus on several key areas to further
enhance the system’s capabilities and address remaining challenges:

• Extension to Other Disturbances: Expanding the system to
detect and classify a broader range of power quality
disturbances, including more complex and compound
events, will improve its utility in diverse settings.

• Integration with Smart Grid Technologies: Incorporating the
system into smart grid frameworks to provide real-time
monitoring and automatic disturbance mitigation can
enhance grid reliability and efficiency.

• Optimization for Larger Datasets: Scaling up the system to
handle larger datasets and more complex power networks will
involve optimizing both the algorithm and the hardware
implementation for increased efficiency and reduced
computational load.

• Exploration of Hybrid Techniques: Combining the DWT-
ELM approach with other advanced machine learning and
signal processing techniques, such as deep learning and
empirical mode decomposition, could yield further
improvements in detection accuracy and system
robustness.

• Field Testing: Implementing the system in real-world
scenarios to validate its performance under varying
operational conditions and to identify any practical
challenges that need to be addressed.

By building on the findings of this study, future work will
contribute to the development of more sophisticated and
reliable systems for power quality monitoring, ultimately
supporting the stability and efficiency of modern
electrical grids.
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Glossary

ADALINE Adaptive linear network

AMR Analyze Multi Resolution

ASIC Application Specific Integrated Circuit

CLB Configurable Logic Block

CT Curvelet Transform

CWT Continuous-WT

DCNN Deep Convolutional Neural Networks

DFT Discrete Fourier Transform

DL Deep Learning

DOST Discrete-orthogonal s-transform

DSP Digital Signal Processor

DT Decision Tree

DWT Discrete-WT

ELM Extreme Learning Machine

EMD Empirical Mode Decomposition

EWT Empirical Wavelet Transform

FAM Fuzzy Associative Memory

FCM Fuzzy C-means

FDST Discrete s-transform

FES Functional electrical stimulation

FFT Fast Fourier Transform

FFNN Feedforward Neural Network

FPGA Field Programmable Gate Array

FT Fourier Transform

GT Gabor Transform

HDL Hardware Description Language

HHT Hilbert-Huang Transform

HT Hilbert Transform

IA Intelligence Artificial

IMF Intrinsic Mode Functions

IP Intellectual Property

IOB Input-output Block

KF Kalman Filters

LUT Look-Up Table

LVQ Learning Vector Quantization

MIPS Millions of operations per second

MM Mathematical Morphology

MLP Multi-Layer Perceptron

MSD Multi-resolution Signal Decomposition

OAA One Against All

OAO One Against One

PLD Programmable Logic Device

PNN Probabilistic Neural Network

PQ Power Quality

PQD&C PQ Detection and Classification

PQD Power Quality Disturbances

PRT Pattern Recognition Techniques

PSO Particle Swarm Optimization

RAM Random Access Memory

RBF Radial Basis Function

RBFNN Radial Basis Function Neural Network

RKS Random Kitchen Sink

RNN Recurrent Neural Network

ROM Read Only Memory

RVD Recursive Variational Decomposition

SAE Stacked Autoencoder

SLFN Single hidden Layer Feedforward Neural Network

SPT Signal Processing Techniques

SRAM Static Random-Access Memory

SSA Singular Spectrum Analysis

ST S-Transform

STFT Short-Time Fourier transform

SVM Support Vector Machine

VHDL Very high-speed integrated circuits Hardware Description Language

VMD Variational Mode Decomposition

WBELM Weighted Bidirectional ELM

WDF Wigner distribution function

WT Wavelet Transform

WPT Wavelet Packet Transform
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