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Recent research generally reports that the intermittent characteristics of
sustainable energy sources pose great challenges to the efficiency and cost
competitiveness of sustainable energy harvesting technologies. Hence, modern
sustainable energy systems need to implement a stringent power management
strategy to achieve the maximum possible green electricity production while
reducing costs. Due to the above-mentioned characteristics of sustainable
energy sources, power management systems have become increasingly
sophisticated nowadays. For addressing the analysis, scheduling, and control
problems of future sustainable power systems, conventional model-based
methods are completely inefficient as they fail to handle irregular electric
power disturbances in renewable energy generations. Consequently, with the
advent of smart grids in recent years, power system operators have come to rely
on smart metering and advanced sensing devices for collecting more extensive
data. This, in turn, facilitates the application of advanced machine learning
algorithms, which can ultimately cause the generation of useful information
by learning from massive data without assumptions and simplifications in
handling the most irregular operating behaviors of the power systems. This
paper aims to explore various application objectives of some machine
learning algorithms that primarily apply to wind energy conversion systems
(WECSs). In addition, an enhanced proportional integral (PI) (2DoF) algorithm
is particularly introduced and implemented in a doubly fed induction generator
(DFIG)-based WECS to enhance the reliability of power production. The main
contribution of this article is to leverage the superior qualities of the PI (2DoF)
algorithm for enhanced performance, stability, and robustness of the WECS
under uncertainties. Finally, the effectiveness of the study is demonstrated by
developing a virtual reality in a MATLAB-Simulink environment.
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1 Introduction

Because of the large fluctuations and uncertainties in generating renewable energy, the
associated power systems have become increasingly sophisticated nowadays. For addressing
the analysis, scheduling, and control issues of future renewable power systems, it is difficult
to use conventional model-based methods. With the advent of smart grids in recent years,
power system operators have come to rely on smart metering and advanced sensing devices
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for collecting more extensive data. This facilitates the application of
advanced machine learning algorithms, which can ultimately cause
the generation of useful information by learning from massive data
without assumptions and simplifications in handling the complexity
of the nonlinear operating behavior of power systems (Desalegn
et al., 2023a; Singh and Rizwan, 2021). Briefly, an illustration that
involves the study’s problem statements and methodical flows for
addressing the problems is given in Figure 1. In the subsequent
paragraphs of this section, based on recently published studies, this
paper thoroughly summarizes various application objectives of
machine learning algorithms in renewable power systems that
primarily include the wind energy conversion system (WECS).

First, advanced machine/deep learning algorithms can be
applied for the optimization and control of power and energy
systems (Figure 2). In this regard, multiple studies utilizing
various techniques were introduced. For instance, Wei et al.
(2022) proposed a method based on a “multi-objective
optimization for enhancing the operation of an
electricity–hydrogen integrated system.” In this study, an
“enhanced multitasking multi-objective optimization algorithm”

was developed using the “implicit information of different
optimization tasks.” Finally, comparative-based tests by this study
demonstrated that the implemented method can perform a superior
convergence compared to conventional methods. Wang D. et al.
(2022) introduced further optimization techniques for realizing an
ideal “dispatch of a multi-energy complementary power generation
system.” Enhanced “cuckoo search, hybrid firefly, and particle
swarm optimization techniques” were used for the “short-term
and mid–long-term scheduling,” respectively. Comparative-based
tests finally demonstrated the effectiveness of the techniques used in
achieving “joint scheduling of the multi-energy complementary

power generation system.” A “reactive power dispatch method,”
which relies on the “Gaussian bare-bones bat algorithm,” was
introduced by Qu et al. (2022) to enhance the safety and stability
of the power system. This study evaluated the performance of the
proposed method by conducting simulation tests on “IEEE 14-bus,
57-bus, and 118-bus systems,” and the robustness and effectiveness
of the proposed reactive power dispatch method were finally
demonstrated by the comparison results.

As part of achieving optimization and control objectives, Wang
Q. et al. (2022) used a PID control strategy for a boost converter,
which is applied in renewable power generations, relying on a
“genetic algorithm and back-propagation neural network.” The
employed method combined the global optimization capability of
the genetic method and the adaptive features of a neural network for
achieving the desired optimization and control objectives. In
addition, the effectiveness of the proposed method was validated
through comparative tests. On the other hand, a deep reinforcement
learning-based algorithm was proposed by Li et al. (2022a) for the
power management of an interconnected energy conversion system.
In order to determine the control decisions, this work implemented
a “swarm intelligence-based deep deterministic policy gradient
algorithm.” The effectiveness of the study method was
demonstrated by carrying out comparative evaluations on a four-
area (two areas in West China and two areas in England) load
frequency model. Moreover, a data model-driven “rescheduling
method of a large-scale power grid” that implements “deep
reinforcement learning” was implemented by Li et al. (2022b) to
enhance both rotor angle and transient voltage stabilities. A Markov
decision process was initially modeled by considering the transient
stability constraint. In solving the Markov decision process, an
enhanced distributed distributional deep deterministic policy

FIGURE 1
Study problems and methodical flows for addressing the problems.
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gradient method was used. The effectiveness of the proposed
method was finally demonstrated by conducting comparative
tests on the New England 39-bus system and an actual power grid.

Second, advanced machine learning algorithms can be used in
power systems and electrical equipment for parameter
identification, state estimation, and fault detection (Figure 2).
Under this category, numerous studies proposed different
machine learning algorithms and also demonstrated the
effectiveness of the methods on different models of power
systems and electrical equipment. Some of these works are
discussed briefly. A “fast low-frequency oscillation identification
method” was introduced by Zhang et al. (2022) to improve power
system operation. First, the “low-frequency oscillation and
attenuation factor” were divided into 12 and 4 segments,
respectively, and then the oscillation identification task was
adapted using a “two bi-directional long short-term memory
neural network.” The effectiveness of this study was validated to
confirm the outperforming capability of the proposed method
against other benchmark methods through comparative results.
Peng et al. (2022) proposed a method of impedance identification
for maximum power point tracking (MPPT)-controlled
photovoltaic converters based on a model-agnostic meta-learning
algorithm. According to this study, using data collected under
different weather conditions, the employed method was observed
to tune its initial model. After finishing the learning process, the

adaptive model would adapt to new conditions using only few
samples. The effectiveness and superiority of the proposed model
were finally demonstrated through comparative results.
Furthermore, Wang Y. et al. (2022) proposed a “clustering
method for the wind turbines in a wind farm” through ensemble
modeling. In order to identify the clustering indicators and simplify
the wind farm model, “blending and extreme gradient boosting”
algorithms were combined, and “density-based spatial clustering of
applications with a noise” algorithm was utilized to realize clustering
and fuse the clustering results. The effectiveness of the proposed
study model was finally verified by conducting simulation tests.

Third, enhanced machine learning algorithms can be considered
for advanced application in power plants in the case of forecasting
sustainable energy generation (Figure 2). Similarly, a large number
of studies have recently introduced various algorithms for
application in forecasting the generation of sustainable energy,
including wind and solar power. A few of these studies are
summarized here. A smoothing method for wind energy
fluctuation considering the short-term forecasting results was
designed by Zheng and Jin (2022). In obtaining the forecasting
results of wind power, the method based on the “multi-dimensional
nonlinear exponential smoothing prediction” algorithm was first
used, and then frequency conversion entropy was utilized. Finally,
the reliability and feasibility of the employed method were verified
through simulation results. On the other hand, Shan et al. (2022)

FIGURE 2
Applications of advanced machine learning algorithms in renewable power systems.
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proposed the recurrent neural network-based solar irradiance
forecasting method using historical climate and irradiance data.
By considering different input factors, comparative evaluations were
conducted on an open-access dataset, and the advantages of the
implemented algorithm over other benchmark algorithms were
conclusively demonstrated by comparison results.

1.1 Advanced algorithms for addressing
some issues in wind power generation

Advanced algorithms that include model predictive, fuzzy logic
inference systems, neural networks, and different machine and deep
learning models were broadly introduced in recent works for
enhancing wind power systems by tackling some specific issues.
First, as stated by Xiong et al. (2022) and Chaka et al. (2024), for
instance, advanced machine/deep learning algorithms that utilize
long short-term memory (LSTM) and convolutional neural
networks (CNNs) can be applied to improve the accuracy of
wind forecasting, which is crucial for the effective management
of wind power systems. These algorithms can help provide more
genuine forecasts, capacitating better scheduling and planning of
wind power generation by analyzing historical weather data, sensor
inputs, and other pertinent parameters. Second, the application of
advanced machine/deep learning algorithms that use support vector
machines (SVMs) and recurrent neural networks (RNNs) can be
observed in the detection and diagnosis of faults in wind power
system devices according to problem statements provided by Dhibi
et al. (2022) and Liang et al. (2020). According to these statements,
the proposed algorithms can have the following objectives: deviation
identifications, potential failure predictions, enabling prompt
maintenance or repairs, downtime minimization, and system
performance optimization by analyzing real-time data from
sensors and comparing them to conventional operating patterns.
Third, enhanced algorithms that implement adaptive fuzzy PI and
model predictive control (MPC) can optimize various control

strategies applied in WECSs (Aissaoui et al., 2013; Huang et al.,
2019). In the control of power systems and electrical equipment, as
shown in Figure 3, these algorithms can dynamically tune control
parameters for maximizing power output, enhancing system
stability, and responding to grid requirements by regularly
analyzing real-time sensor data, weather conditions, and power
grid dynamics.

Fourth, the implementation of advanced machine learning
algorithms based on support vector regression (SVR) and
random forest (RF) can be seen in terms of the effective
prediction of the power output and wind power system load
demand (Ighravwe and Mashao, 2020; Qureshi et al., 2023). They
can provide correct forecasts of power production and consumption,
allowing reliable grid integration and energy management by
analyzing historical data, weather conditions, and remaining
pertinent factors. Fifth, control optimization of individual wind
power plants within a wind farm can also be achieved through the
application of advanced algorithms that rely on MPC (Liao et al.,
2023), fuzzy logic control (FLC) (Rekioua et al., 2023), and
reinforcement learning (RL) (Huang et al., 2023). These
algorithms can regulate power system settings in real time for
power production maximization, system fatigue reduction, and
overall improvement of system efficiency by considering factors
including wind speed, turbine wellbeing, wake effects, and grid
conditions. Sixth, machine learning models that realize the
applications of a genetic algorithm (GA) and particle swarm
optimization (PSO) can help in estimating the optimal layout
and positioning of wind power plants within a wind farm (Liu
et al., 2021; Song et al., 2023). They can optimize the arrangement of
power plants for increasing power production, minimizing wake
losses, and reducing interference among plants by inspecting factors
that include wind conditions, terrain, and wake effects.

Moreover, machine/deep learning algorithms can inspect large
volumes of data collected from wind power systems for extracting
useful insights, identifying patterns, and supporting decision-
making processes (Brahmane and Deshmukh, 2023; Javaid et al.,

FIGURE 3
Control objectives of advanced algorithms in power systems and electrical equipment.
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2023; Elyasichamazkoti and Khajehpoor, 2021). This can
incorporate the inspection of historical performance,
identification of trends, optimization of maintenance schedules,
and facilitation of sophisticated decision-making for the power
system operators. Figure 4 shows the application of an advanced
machine learning approach in enhancing wind farm optimization
and control objectives. It is essential to underscore that the choice of
algorithm relies on the specific dataset, control strategy,
optimization objectives, features, and other factors. The capability
of machine learning algorithms can vary depending on factors,
including the sophistication of the system dynamics, control
constraints, and existing computational tools. Hence, it is
important to test with various algorithms and fine-tune them
depending on specific optimization and control problems to
attain the expected results. In general, despite challenges related
to data availability and quality, complex system dynamics,
regulatory and compliance issues, system adaptation and
robustness, integration with existing infrastructure, etc. (Lipu
et al., 2021; Ahmed et al., 2020; Abkar et al., 2023), the
investigation of real-world case studies demonstrates the practical
applications and capabilities of machine learning algorithms in the

optimization of wind farm power production, monitoring and fault
detection of wind turbine conditions, forecasting wind power,
enhancing wind turbine control strategies, and optimization of
the wind farm layout (Göcmen et al., 2020). Evaluations of
performance metrics and findings from case studies also offer
valuable insights into the effectiveness and innovative features of
these algorithms.

By considering the above summaries that are made on the
applications of machine/deep learning-based algorithms in wind
power systems, Section 1.2 specifically proposes a novel proportional
integral (PI) algorithm for application in smoothing electric power
production with a WECS that is based on a doubly fed induction
generator (DFIG).

1.2 Innovative features of the PI (2DoF)
algorithm and study objectives for its
application in the DFIG-based WECS

This paper introduces an improved machine learning algorithm
based on the PI (2DoF) algorithm for application in the optimization

FIGURE 4
Advanced approach in wind farm optimization and control.
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and control of a DFIG-based wind power system. In addition to
utilizing control gain values, the PI control (2DoF) algorithm uses
set-point control optimization for adjusting the WECS parameters,
which can result in enhanced power production compared to the
regular PI control algorithm (Desalegn et al., 2022a). This proposed
algorithm develops a novel controller model that works based
on “two degrees of freedom” to adjust control loop parameters,
and this controller is often identified to be a PI (2DoF) model.
Unlike the conventional controller model that mostly works
well only for the normal operating condition of the power
system, the employed model of controller or PI (2DoF) is
distinguished by its efficiency of rapidly rejecting the power
signal disturbances without causing a significant generation of
overshoots in the tracking of control set points, and this is what
makes it a better candidate for enhancing the overall efficiency
of wind energy conversion (Huba et al., 2021; Karanam and
Shaw, 2022; Abdel-hamed et al., 2023). The PI controller
(2DoF) is also an excellent choice for alleviating the impact
of power harmonic distortion that could result from the changes
between the generated signal statistics of input and control
parameters (Das et al., 2023; Bingi et al., 2019; Guras et al.,
2022). Consequently, the stated novel feature of the proposed

controller model can lead to a desirable improvement in the
overall performance of the system.

As the PI controller (2DoF) involves a supplementary degree of
freedom, it enables the autonomous control of the proportional and
integral objectives. This allows great adaptability in adjusting the
controller and boosting its operational capability compared to a
traditional PI controller. This study aims to deploy optimization
techniques by estimating the optimal control parameters for the PI
controller (2DoF). This enables calibrating the controller to increase
power output, enhance stability, and improve tracking performance.
This paper focuses on introducing robust control strategies that can
manage unpredictable operating patterns and disturbances usually
created in a DFIG-based WECS. The proposed PI control (2DoF)
algorithm is required to offer enhanced robustness and flexibility to
fluctuating conditions of wind and system dynamics. In general, this
review signifies a broad evaluation of the performance of a wind
power system that relies on a DFIG utilizing a PI controller (2DoF).
This involves evaluating performance metrics such as effective
power transfer, power quality, and tracking precision.

This work endeavors to convey multidimensional contributions
that generally portend theoretical and practical aspects. These
contributions include inspiring future researchers to work on

FIGURE 5
Benefits of the PI (2DoF) algorithm in wind power system application.
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continuous improvements of existing algorithms through further
advanced research studies and developments, enabling discoveries of
the newest algorithms for applications in wind farm systems, and
helping the development of the most reliable model platforms for
evaluating the performances of machine/deep learning algorisms in
real-world emulations. The main contribution of this work is
endeavoring to leverage the superior features of the PI (2DoF)
algorithm, which are shown in Figure 5, in the optimization and
control of a DFIG-relying wind power system more efficaciously,
resulting in enhanced capability, stability, and robustness under the
occurrences of uncertainties.

Furthermore, this review presents a comparative evaluation and
quantification of the performances of the PI (2DoF) algorithm-
based controller model against that of the “traditional
(conventional) PI” model under the consideration of both
normal- (linear) and low-voltage (nonlinear) operating modes of
a 2-MW power rating DFIG-based system. In order to further
demonstrate the study’s effectiveness, the overall system model is
developed in a MATLAB-Simulink software environment by
enacting an “indirect field-oriented control (IFOC) strategy” on
the rotor side converter (RSC) of the power system. In addition, this
discusses the simulation findings against “the recommended
practice and requirements” introduced by IEEE for “modern
power system harmonic distortion control.”

The remainder of the paper is organized as follows: Section 2
demonstrates the method for the application of an enhanced PI
(2DoF) algorithm in a DFIG-based WECS. This section also
presents control configurations and mathematical models for the
mechanical and electrical systems and the proposed controller
model are illustrated. Section 3 constitutes MATLAB-Simulink
environment-based simulations of the DFIG system and
controller models, which use different parameters and a wind
speed of 10 m/s. Section 4 displays the simulation results and

discusses the results against power system requirements and
expected standards, and the overall efficiency of the proposed
controller model is also quantified compared with that of the
conventional counterpart. Finally, Section 5 presents the
conclusion and future research opportunities.

2 Method for application in a DFIG-
based wind power system

A DFIG-based WECS that is assumed to be connected to a
power grid system and comprising a three-bladed turbine, gearbox
system, electric generator, power electronic device, and step-up
transformer is considered in this work. The overall structure of
this proposed system is shown in Figure 6. Furthermore, the turbine
system is tied to the generator via the gearbox for adapting the slow
speed of the turbine shaft to the machine speed. The generator stator
is directly connected to the grid, whereas the rotor is coupled to it via
the power converter. Two stages of the control system could be
established: 1) the rotor-side converter (RSC) allows a regulation of
the active and reactive power generations of the stator such that the
active power reference is transferred from the MPPT strategy and 2)
the grid-side converter (GSC) ensures control of the DC voltage link
and the rotor reactive power. The RSC control alone is implemented
by this study.

The RSC control method is considered for developing an
electrical control system that can robustly and smartly respond to
irregular variations in electrical control parameters, including the
rotor direct and quadrature (alternating) currents. This can thereby
allow an indirect implementation of the rotor speed. Unlike the
control methods widely considered in numerous published works
for enhancing the operations of various wind power systems by
adjusting mechanical control parameters, the RSC control method is

FIGURE 6
General control structure of the proposed DFIG-based WECS.
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the most compelling and effective in addressing crucial control
challenges that include alternating current harmonic distortions and
direct current switching transients, which could affect the proper
functioning and safety of the most core subsystem of the WECS
(Benbouhenni et al., 2024a; Benbouhenni et al., 2024b). Moreover,
using this method can result in a better enhancement of power
production reliability by enabling safe operations of the electrical
components of a system and ensuring overall system automation.
Accordingly, “IFOC” accompanied with a “PI controller (2DoF)” is
provided to smooth the DFIG system operation mode that relies on
variable wind speed. More details are presented in Sections 2.1–2.3.

2.1 Control method for the mechanical
subsystem of the DFIG system

For the maximum extraction of wind energy with the turbine
system, a control algorithm implemented on the set-point
parameters is necessary, and this algorithm may help facilitate
the development of the device with enhanced performance
(Desalegn et al., 2022b). Mathematically, optimal wind power
production can be estimated according to the relation provided
in Eq. 1:

POpt � CPOpt λOpt( ) × ρ × π × R2 × V3

2
. (1)

In the most recent studies, two types of control strategies were
primarily stated for the enhancement of wind power production: the
first is an MPPT strategy without the mechanical speed regulation of
the system, whereas the second is an MPPT strategy that is based on
mechanical speed regulation.

The MPPT strategy without mechanical speed regulation is
considered in this study as realizing a correct estimation of wind
speed would be much harder with the mechanical speed control-
based MPPT strategy due to the following reasons (Ihedrane et al.,
2019; Zamzoum et al., 2018; Boubzizi et al., 2018; Okedu, 2017):

⁃ The wind speed-measuring device (an anemometer) would
usually be installed at a location behind the rotor of the turbine,
which would result in an incorrect estimation of
wind-speed data.

⁃ A significant variation in the wind-speed measurements could
result from the heights at which the measuring device
(anemometer) is set up, especially when the range
(diameter) of the swept area of the blades is large. For
example, the range (diameter) of the swept area of the
blades is normally taken to be 70 m for a wind turbine with
a rotor radius of 1.5 m. Consequently, an anemometer
application might use the wind-speed data measured over a
very limited area, which is evidently insufficient to represent
the measurement of the mean wind speed blowing over the
broader surface surrounding the blades.

In general, as the inefficiency of the MPPT strategy that
implements mechanical speed control would not lead to an
accurate measurement of wind-speed data, this could
ultimately cause a suboptimal production of wind power. The

inefficiency of the mechanical speed control-based MPPT
strategy stems from its use of an anemometer as an
unavoidable requirement. Given that wind speed is typically
characterized as frequently fluctuating over a larger area, it is
hard to obtain an accurate estimation of the mean wind speed
using an anemometer as the device is naturally limited to
measuring wind speed in a very limited area. Consequently, a
large number of wind turbine systems now rely on the application
of a novel MPPT strategy that does not require the use of
anemometers for wind-speed data estimations, and the wind-
speed data are assumed to change constantly, as shown by the
control structure in Figure 7. Furthermore, Eq. 2 defines the new
MPPT strategy without needing to rely on mechanical speed
regulation:

J
dΩmec

dt
� Tg − Tem − f × Ωmec � 0. (2)

With the omission of the “mechanical torque” Tmec and the
“effect of the coupling of viscous friction” f × Ωmec, Eq. 2 may be
rewritten as Eq. 3:

Tem � Tg. (3)

The “reference value” for the system’s “electromagnetic torque”
may be obtained by relying on the computation using the
mathematical expressions given in Eqs 4–6:

Temref � Taeroref

G
. (4)

Moreover, aerodynamic torque Taero, turbine’s angular speed
Ωt, and estimated wind speed Vest would be quantified based on the
following set of equations:

Taeroref � CP λ, β( ) ρ × π × R2 × V3

2 × Ωt

Ωt � Ωmec

G

Vest � R
Ωtest

2 × λtest

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (5)

By making substitutions and rearrangements serially, the rotor’s
(reference) electromagnetic torque Temref could be rewritten as
Eq. 6:

Temref � CP λ, β( )
λ3opt

×
ρ × π × R3

2
×
Ω3

mec

G3
. (6)

On the other hand, the aerodynamic torque (reference) may be
defined as a function of its coefficient Ct according to Eq. 7 (Gohar
and Servati, 2014):

Taeroref � 1
2
ρπR3V2Ct,whereCt � CPopt

λopt
. (7)

Accordingly, the (reference) electromagnetic torque should be
redefined using Eqs 4, 7 in order to derive an expression given in
Eq. 8:

Temref � ρπR3V2CPopt

2λoptG
. (8)
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2.2 Control strategy for the electrical
component of the DFIG system

The control principle of FOC involves orienting the field along
one of its axes in order to make the operating modes of the induction
machine resemble those of an independently excited DC machine.

Accordingly, the stator field (Bs) is oriented along the “d-axis,”
as shown in Figure 8. Hence, Eq. 9 (Kerrouche et al., 2013) defines
the stator fluxes:

Φsd � Φs

Φsq � 0{ . (9)

Based on the “Park transformation” specifically applied to the wind
power system relying on the DFIG, an expression for the “voltage at the
terminals of phase “i” of the stator” can be derived, as given in Eq. 10:

vsi � Rs × Isi + dΦsi

dt
, (10)

such that i � 1, 2, 3.
Electrical machines with medium- and high-power scales are

often used in wind power generation, and in these cases, the stator
winding resistance ′Rs′ is omitted such that Eq. 9 can be redefined as
represented by Eq. 11:

vsi � dΦsi

dt
. (11)

Under the assumption that the “electrical grid voltages and the
stator flux” are constant, the stator voltage components are
represented as shown in Eq. 12:

Vsd � 0
Vsq � Vs � ωs × Φs

{ . (12)

Furthermore, under a similar choice where the “stator field” is
oriented along the “d-axis,” the stator’s current components (direct
and quadrature) can be represented according to mathematical
models, which are given in Eq. 13:

Isd � 1
Ls

× Φs −M × Ird( )

Isq � −M
Ls

× Irq

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
. (13)

On the other hand, the mathematical expression for the system
rotor electromagnetic torque (Tem) can be developed in terms of the
rotor quadrature current (Irq), as indicated in Eq. 14:

Tem � p × Isq × Φs � −p ×
M

Ls
× Φs × Irq. (14)

Using the expressions for Isd and Isq as indicated in Eq. 13 and
recalling that Vsd � 0, the “active power” (Ps) and “reactive power”
(Qs) of the stator can be mathematically modeled in terms of the
current components of the rotor, as shown in Eq. 15:

Ps � Vsq × Isq � −Vs ×
M

Ls
× Irq � −ωs × Φs ×

M

Ls
× Irq � ωs

p
Tem

Qs � Vs × Isd � V2
s

ωs × Ls
− Vs ×

M

Ls
× Ird

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
.

(15)

With ωs
p � ωr, the stator active power can be represented by the

most simplified expression, as shown in Eq. 16:

Ps � ωrTem. (16)

In order to develop themathematical expressions for the rotor voltage
components as functions of the rotor current components, the rotor field
flux components (Փrd andՓrq) should first be defined as the functions of
the direct- and quadrature-current components of the rotor. Accordingly,
these field flux components can be obtained according to Eq. 17:

Φrd � Lr − M2

Ls
( ) × Ird + M × vs

Ls × ωs

Φrq � Lr − M2

Ls
( ) × Irq

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
. (17)

Finally, using the expressions for the rotor field flux components
(Փrd and Փrq) (Eq. 17), the rotor voltage components (Vrd andVrq)
as functions of the field flux components (Փrd and Փrq) can be
obtained, and hence, the dependencies of these voltage components
(Vrd and Vrq) on the rotor current components (Ird and Irq) could
be obtained according to Eq. 18:

Vrd � Rr + S Lr − M2

Ls
( )[ ]Ird − ωs × g Lr − M2

Ls
( )Irq

Vrq � Rr + S Lr − M2

Ls
( )[ ]Irq − ωs × g Lr − M2

Ls
( )Ird + g × M × Vs

Ls

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
.

(18)

Among the mathematical illustrations given in Figure 5, ′g′
represents the induction machine slip, ′ω′

s symbolizes the stator’s
angular speed, and ′ωr′ the represents the rotor’s angular speed. ′ωr′
can be mathematically defined as the product of the induction
machine’s slip (g) and the stator’s angular speed (ωs): ωr � g.ωs.
Furthermore, some important assumptions should be considered
while implementing Figure 9 in model development for the control
of the DFIG system, which are outlined as follows:

⁃ The rotor voltage components (Vrd and Vrq) and the stator
active/reactive power (Ps and Qs) should be interlinked using
first-order transfer functions. This facilitates a field-oriented
control to be configured with the coupling inferences and,
hence, an independent control to be implemented with a given
controller on each one of the control axes.

⁃ For a given (proposed) model of a controller, the rotor ′q′ axis
uses active power as a reference (input) value, and the rotor ′d′
axis uses reactive power as its reference value.

⁃ The reactive-power reference value should be set to zero, which
results in achieving a unity power factor on the stator side, and
consequently, an enhanced power quality would ultimately be
delivered to the grid. In addition, the ideal value of the power
factor should be maintained by the active power reference.

2.3 Proposed control structure with PI
(2DoF) controller parameters

Figure 10 shows the proposed control setup with the study
parameters based on the implementation of an “IFOC” strategy for
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FIGURE 8
Stator field set to be oriented along the “d-axis”.

FIGURE 7
Control structure of the mechanical component of the proposed system.
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maximum electrical power point tracking (MEPPT). A power
control method that uses a “two-level pulse width modulation
(2L PWM)” and that involves an application of a machine
learning algorithm-based controller model was illustrated to
implement the IFOC strategy for MEPPT under linear (normal)
and nonlinear (low voltage) operating scenarios of a 2MW electric
power rating DFIG-based wind energy harvesting machine. By

computing the “harmonic distortion factors” of the rotor
alternating (quadrature) current (Iqr) signals of the machine and
evaluating the rotor direct correct (Idr) offsets, the amounts of
effective power (Ps) transfer and the qualities of reactive power (Qs)
generations are ultimately discussed under both linear (normal) and
nonlinear (low voltage) operating scenarios of the proposed DFIG-
based wind power system. Accordingly, an enhanced and

FIGURE 9
Simplified model of the DFIG WECS according to Eqs 15, 18.

FIGURE 10
Proposed control diagram according to the IFOC strategy.
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two-degree-of-freedom (2DoF) tuning method-based PI controller
model, commonly named “PI controller (2DoF),” is developed
(Figure 11) for independently regulating Idr and Iqr components
of the rotor current and the electromagnetic torque (Tem) of the
system under both linear (normal) and nonlinear (low voltage)
operating scenarios. Furthermore, Table 1 shows the optimal values
for the control gains and set-point weights of the PI controller
(2DoF) using the model-based tuning method. Normal- and low-
voltage operating specifications are also given in Table 1, such that
the normal-voltage operating specification was adopted to be 690V,
while the low-voltage operating scenario was specified to be 69V by
assuming that the normal specification for the stator voltage (Vs)
would decrease by 90% under a possible sudden disturbance of the
power system.

Moreover, the principle of control optimization using the “PI
controller (2DoF)” for the Idr and Iqr components of the rotor
current is shown based on Eq. 19, whereKP is the proportional gain,
KI is the “integral gain,” b is the “control set-point weight,” r − y
defines the “difference between the reference and measured control
parameters,” Ts symbolizes the “integrator time,” and z is the
“discrete time interval.” The optimal values of control gains and
set-point weights for the model of the proposed controller are also
given in Table 1 on the basis of the model-based tuning method.

UPI 2DOF( ) � KP b.r − y( ) +KI.Ts
1

z − 1
r − y( ). (19)

3 Model simulation

A model simulation of the proposed DFIG-based wind energy
harvesting system is built by applying “MATLAB-Simulink”
platform-based different built-in blocks of the system’s
components in order to achieve the effectiveness of the
previously outlined power control objectives. A wind speed of
10m/s is used to estimate the system’s mechanical input
parameters, and the specifications of the system’s electrical input
parameters are also provided in Table A5. The system’s simulation

components include an “electrical system model,” “aerodynamic
systemmodel,” “wind speed model,” “control systemmodel,” and PI
controller (2DoF) model. The Simulink built-in electrical blocks,
including the “three-phase programmable-voltage source,” “three-
phase V-I measurement,” “asynchronous-machine,” and “DC
voltage source-based universal bridge,” are primarily considered
to simulate the electrical system model. The “wind speed model,”
“turbine or aerodynamic system model,” and “mechanical system
model” are simulated in alignment with the electrical system model.

Furthermore, the “PI controller (2DoF)” model simulation (in
controlling rotor current components and electromagnetic torque)
and MPPT model simulation (for transforming rotor speed, rotor
current components, and electromagnetic-torque based on IFOC
strategy) are incorporated in the control system model simulation.
The “electrical system model” simulation, “control system model”
simulation, “mechanical system model” simulation, “aerodynamic
system model” simulation, “wind speed model” simulation, and
other components, including the two-level-based PWM generator
and powergui and involving input specifications, are integrated to
form the overall system model simulation, as shown in Figure 12.
Model simulation for wind speed estimation (Figure 13) and the PI
controller (2DoF) (Figure 14) are specifically illustrated. The PWM
block is designed to regulate the rotor current (direct and quadrature)
components’ signal amplitudes in order to protect the electrical
components (particularly the generator) of the system from
possible damage as a result of overcurrent. The “powergui block”
is used for the discretization of the system’s electrical component so
that the simulation is run at fixed time steps, and with this study, a
“discrete phasor” method is set to be used.

4 Simulation results and discussion

In this study, the impact of the rotor current components on the
power reliability under both linear/normal and nonlinear (low-
voltage) operating modes of the “2-MW DFIG WECS” is
investigated using the “IFOC-based PI controller (2DoF).” A
random simulation of wind speed was performed at 10 m/s, as

FIGURE 11
PI controller (2DoF)’s power control loop.

TABLE 1 Proposed optimal values for the control gains and set-point weights of PI (2DoF) based on the model-based tuning method.

Operating scenario Voltage (V) KPidr KIidr KPiqr KIiqr KPTem KITem bidr biqr bTem

Normal 690 0.5771 491.5995 0.5771 491.5995 5,080 203,200 0 1 0

Nonlinear 69 0.5771 491.5995 0.5771 491.5995 5,080 203,200 0 0.9 0

Frontiers in Energy Research frontiersin.org12

Desalegn and Tamrat 10.3389/fenrg.2024.1435455

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1435455


shown in Figure 15, such that it was used to numerically estimate
electromagnetic torque [reference] (Tem ref).

The simulation visualization shown in Figure 16 represents
the operating characteristics of the proposed DFIG technology-
based wind power system under the assumption that the system
would behave according to the normal specification of the
voltage that was rated to be 690 V. In addition, the
visualization shown in Figure 17 reveals the capability of this
same proposed system in the nonlinear scenario such that the
rated stator voltage would instantaneously decrease by 90% as
per the assumption of this study, forcing the system to operate

under a low-voltage scale of 69 V. As shown in Figures 16, 17,
the two operating scenarios of the system result in significantly
different qualities of power production performances as the
generated signal distortions of the control parameters are
observed to be lower under a normal-voltage operating
scenario (Figure 16) and highly notable under a low-voltage
operating scenario (Figure 17). High total harmonic distortion,
particularly due to the alternating current signal, may cause the
system to produce power with significantly compromised
quality; hence, modern power systems are required to
operate within the acceptable limits of harmonic distortions.

FIGURE 12
Overall simulated model of the proposed system in the MATLAB-Simulink platform (Desalegn et al., 2023b).

FIGURE 13
Wind speed model simulation at 10 m/s.
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In addition, the evaluations of the signal statistics that are
generated to represent the control parameters in Tables 2, 3
show that the qualities of the system’s operating performances
for the two operating scenarios are comparatively
and objectively quantified. Accordingly, the performances of
the proposed PI (2DoF) model under both linear/normal
and nonlinear/low-voltage operating scenarios can be
comparatively demonstrated relying on the statistics given
in Tables 2, 3.

By utilizing the “signal statistics” given in “Tables 2, 3,” one
of the ways to quantify the PI (2DoF) performances is
computationally determining the values of the “total
harmonic distortion factor” of the system’s quadrature/
alternating current signals. The “total harmonic distortion
factor” is dimensionally expressed in percentage (%) after
subtracting the “root mean square (RMS)” values of the

“reference quadrature-current” signals from those of the
measured quadrature current signals and then dividing the
substation results by the RMS values of the reference current
signals, as mathematically defined in Eq. 20. The estimated
results of the harmonic distortion factor of the quadrature
current signals can eventually be utilized in order to
determine whether the PI controller (2DoF) performances
improve or degrade the quality of power production under
the above-mentioned operating scenarios of the system’s
stator voltage. The estimated values of the harmonic
distortion factor generally indicate the levels of peaks in the
signals of the rotor quadrature current and identify the DFIG
system’s capacity to produce a certain amount of current. The
level of the harmonic-distortion factor of the output
quadrature-current signal has been recommended to be
within 25% of deviation from the reference current signal for

FIGURE 14
Simulated model of the PI controller (2DoF) for the control of the rotor current components and torque (Desalegn et al., 2022a).

FIGURE 15
Simulation result for wind speed model at 10 m/s.
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a “modern electrical power system” (Distribution Committee of
the IEEE Power and Energy Society, 2014). A higher
percentage of harmonic-distortion factor signifies that a
significant scale of current distortion is generated in the
system, and this could critically compromise the power

production quality by causing serious damage to the system’s
electrical components.

IqrTHDF � Iqr RMS − Iqrref RMS

Iqrref RMS
× 100%. (20)

FIGURE 16
Control parameter simulation results under the normal-voltage operating scenario of the system (Desalegn et al., 2022a).
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Furthermore, the distortion factor of the rotor quadrature
current (Iqr) signal “under both normal- (linear) and low-voltage
operating scenarios” of the “DFIG system” can be determined from
the signal statistics of the current, given in Tables 2, 3, applying Eq.
20. The results of the current distortion factor that are obtained
under both scenarios are compared against the “recommended
upper limit of the harmonic distortion level,” which is 25%, to
ultimately evaluate the capability of the PI controller (2DoF) to
damp the current harmonic distortions for the system. Therefore,
under the normal-voltage operating scenario of the system
(Figure 16; Table 2), the quadrature-current signal’s distortion
factor is estimated at 7.72%, whereas “under the system’s low-
voltage” operating scenario (Figure 17; Table 3), the quadrature-
current signal’s distortion factor is estimated at 28.79%. The
estimated result of the “harmonic-distortion factor” for the
“quadrature-current” under the normal operating scenario of the
system, 7.72%, is a very desirable figure as it is notably less than the
“recommended upper limit” (25%) for the current harmonic-
distortion level. On the other hand, the harmonic-distortion
factor result of the quadrature-current “under the low-voltage”
operating scenario of the system, 28.79%, appears to cross the
recommended limit. Hence, the performance of the “PI controller

(2DoF)” is more pronounced to mitigate the “current harmonic-
distortion level under the normal-voltage” operating scenario of the
system than “under the nonlinear or low-voltage” operating scenario
of the system.

By utilizing Eq. 16, the amount of electrical power transfer under
both scenarios can also be obtained and comparatively discussed
against the baseline rating (1.4MW) provided by Abad et al. (2011)
for a system that is similar to that proposed in this study, with the
same wind speed rating (10m/s). Accordingly, the amount of
electrical power transfer is estimated at 1.473MWin the normal-
voltage operating scenario of the system and 1.44MW in the low-
voltage operating scenario of the system. In addition, the rotor direct
current (Idr) is generated to be 4.180e − 04A (Table 2) in the
normal-voltage operating scenario, indicating excellent tracking
of its reference value (0A) compared to 2.228e − 03A (Table 3)
that is generated with the low-voltage operating scenario. In general,
the PI controller (2DoF) proves to exhibit more robust capability in
mitigating the harmonic-distortion level of the quadrature-current
signal, regulating the direct current, and increasing electric power
transfer “under the normal-voltage” operating scenario of the
system than it does “under the low-voltage” operating scenario of
the system.

FIGURE 17
Control parameter simulation results under the low-voltage operating scenario of the system (Desalegn et al., 2022a).
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The control capability of the “PI controller (2DoF)” can also be
comparatively demonstrated against that of the conventional PI
controller model as follows (Figures 18, 19; Table 4). Under the
normal-voltage operating scenario, both controller models allow an
approximately similar scale of electric power transfer, 1.473MW
with the PI controller (2DoF) and 1.477MW with the PI controller
(conventional), but the PI controller (2DoF) shows exceeding
capability in terms of mitigating the harmonic distortion of the
quadrature-current signal and minimizing the rotor direct current
offset. For instance, the estimated harmonic distortion level of the
quadrature-current signal is 7.72% with the PI controller (2DoF)
and 9.15% with the PI controller (conventional). Similarly, the
generated mean value of the rotor direct current is 4.180e − 04A
with the PI controller (2DoF) and 5.826e − 04A with the PI
controller (conventional). Hence, the PI controller (2DoF)
demonstrates slightly better overall capability in handling power
control and conversion tasks in the normal (linear)-voltage
operating scenario of the system.

Further comparison between the control performances of the
two controller models can also be demonstrated under the low-
voltage operating scenario, where the amount of electric power
transfer is estimated at 1.44MW with the PI controller (2DoF) and

1.42MW with the PI controller (conventional); the quadrature-
current signal’s harmonic distortion level is obtained to be 28.79%
with the PI controller (2DoF) and 35.46% with the PI controller
(conventional); and the generated mean value of the rotor direct
current is 2.228e − 03A with the PI controller (2DoF) and −6.302e −
03A with the PI controller (conventional). The results of the electric
power delivery, the quadrature-current signal’s “harmonic-
distortion factor,” and the generated rotor direct current show
that the “PI controller (2DoF)” greatly outperforms the “PI
controller (conventional)” model, which does not satisfy the
required control performance standards. Yet, a low-voltage
operating scenario demands more consideration in order to
achieve further improvements in electric power control and delivery.

Once again, a document introduced by a prestigious institution
in the Distribution Committee of the IEEE Power and Energy
Society (2014) indicated recommendations for modern power
system requirements and expected standards that involve setting
a maximum limit for the total harmonic distortion level of the
alternating current and mitigating a switching transient that could
result from a sudden reverse of the flow direction of the direct
current in power systems’ electrical components. This document
states that the maximum limit of the harmonic distortion factor

TABLE 2 Generated signal statistics of the control parameters under the normal-voltage operating scenario.

Parameter Signal statistics

Maximum Minimum Peak toPeak Mean Media RMS

Rotor omega ref 1.713e + 02 1.713e + 02 0.000e + 00 1.713e + 02 1.713e + 02 1.713e + 02

Rotor omega m 1.909e + 02 1.388e + 02 5.208e + 01 1.709e + 02 1.713e + 02 1.709e + 02

iqr ref 2.449e + 03 −2.449e + 03 4.898e + 03 1.636e + 03 1.672e + 03 1.748e + 03

iqr 1.716e + 04 −9.655e + 03 2.682e + 04 1.636e + 03 1.672e + 03 1.883e + 03

Tem ref 1.273e + 04 −1.273e + 04 2.546e + 04 −8.508e + 03 −8.694e + 03 9.085e + 03

Tem 6.663e + 04 −1.273e + 05 1.942e + 05 −8.622e + 03 −8.720e + 03 1.010e + 04

idr ref . 0.000e + 00 0.000e + 00 0.000e + 00 0.000e + 00 0.000e + 00 0.000e + 00

idr 1.452e + 04 −1.153e + 04 2.605e + 04 4.180e − 04 2.764e − 1 5.683e + 02

TABLE 3 Generated signal statistics of the control parameters under the low-voltage operating scenario.

Parameter Signal statistics

Maximum Minimum Peak toPeak Mean Media RMS

Rotor omega ref 1.713e + 02 1.713e + 02 0.000e + 00 1.713e + 02 1.713e + 02 1.713e + 02

Rotor omega m 2.808e + 02 1.055e + 02 1.753e + 02 1.727e + 02 1.713e + 02 1.773e + 02

iqr ref 2.449e + 03 −2.449e + 03 4.898e + 03 1.414e + 03 2.449e + 03 2.254e + 03

iqr 2.214e + 04 −1.499e + 04 3.713e + 04 1.463e + 03 1.542e + 03 2.903e + 03

Tem ref 1.273e + 04 −1.273e + 04 2.546e + 04 −7.350e + 03 −1.273e + 04 1.172e + 04

Tem 8.250e + 04 −1.427e + 05 2.251e + 05 −8.384e + 03 −8.760e + 03 1.540e + 04

idr ref 0.000e + 00 0.000e + 00 0.000e + 00 0.000e + 00 0.000e + 00 0.000e + 00

idr 2.600e + 04 −1.319e + 04 3.919e + 04 2.228e − 03 −1.032e + 01 2.980e + 03
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equaling 25% is acceptable only if the switching transient is not
encountered in the power systems’ electrical components.
Furthermore, a harmonic distortion factor that is lower than the

maximum limit (25%) is desirable only if the switching transient can
be proven to be mitigated. When a harmonic distortion factor that is
larger than the maximum limit results from an alternating current’s

FIGURE 18
Active power control with PI (2DoF) vs. PI under the normal-voltage operating scenario.

FIGURE 19
Active power control with PI (2DoF) vs PI under the low-voltage operating scenario.
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signal, a given power system tends to produce electric power with an
undesirable quality. When a flow direction of direct current is found
to be reversed under a sudden voltage disturbance in a given power
system, it may cause the generation of a high amount of heat in an
electrical component of the power system, which could ultimately
cause a total electric power outage by damaging the system
electrical component.

In general, the above-mentioned requirements and expected
standards apply to any modern power system operating in two
possible modes: linear (normal) voltage operating mode and
nonlinear (low voltage) operating mode, according to the
assumptions set forth by this work. Hence, in this work, the
results of the harmonic distortion factor of the rotor alternating
(quadrature) current and the switching transient of the direct
current with the proposed and conventional algorithms can be
comparatively validated accordingly. The summarized results of
the total harmonic distortion factor of the rotor quadrature
current and the mean signal of the direct current (Table 4) show
that the PI (2DoF) algorithm closely performs according to the
recommended requirements and expected standards for modern
power systems, while the conventional PI algorithm performs
against the recommended requirements and expected standards,
particularly during the nonlinear operating mode of the
DFIG system.

5 Conclusion and future research
opportunities

• This study developed an enhanced PI (2DoF) algorithm-
based controller model in a DFIG-based WECS for
enhancing the reliability of wind energy conversion by
regulating total harmonic distortions and ensuring an
optimal electric power transfer along with mitigating
switching transients. The linear and nonlinear
operational characteristics of a system have been
separately examined by implementing control on the
rotor alternating current in keeping the harmonic
distortions at reasonable factors, and a similar control
strategy has also been applied on the rotor direct current
in mitigating the switching transients such that the effective
power transfer is deemed optimal. Subsequently, the
performances of the simulated PI controller (2DoF)
model have been evaluated and validated based on the
harmonic distortion and switching transient
requirements that were recommended for the operation
of modern power systems. In addition, the performances of

this controller model have been comparatively tested
against those of the conventional PI model. Ultimately,
the simulation results have shown that the PI (2DoF)
controller performs well compared with the
conventional PI.

• By utilizing noble features of the PI (2DoF) algorithm, the
results of this work are mainly associated with enhancing
control for minimizing the total harmonic distortion by
regulating the proposed power system’s alternating current
and mitigating switching transients by regulating the direct
current of the system, thereby maximizing the effective electric
power transfer. The results have indicated that the utilized
algorithm has enhanced wind power production potential by
sublimating the operating modes of the DFIG-based wind
power system. However, these results may only signify that
further applications and investigations of machine learning
algorithms are needed in future work for revolutionizing wind
farm industries.

• On the other hand, this study indicates that the low-voltage
operating behavior of the DFIG system is the most relevant
research problem, and consequently, the low-voltage
operating scenario-based results of the system need to be
further improved in future research. To this end, more
robust controller models are required to be implemented
for significantly minimizing the distortion factor of the
rotor quadrature current, thus achieving a reliable electric
power transfer. In this regard, the most recent literature
reviews suggest the implementation of hybrid controller
models by claiming that two different controller models
can significantly enhance power reliability when used
jointly rather than independently. This is because the
operations of sustainable energy conversion technologies,
including the DFIG-based WECS, largely rely on highly
nonlinear parameters, and as each individual controller
model has its own advantages and limitations in managing
different control parameters, integrating different controller
models would allow us to harness their respective control
advantages while alleviating their various limitations. For
instance, the sliding mode controller model is robust at
ensuring maximum power transfer, but it introduces a
chattering problem to a power system, while the fuzzy logic
controller model is intelligent in predicting a phenomenon
with a higher degree of nonlinearity. Thus, the hybridization
of these two controller models may optimize the complexity of
the power system operation.

• Moreover, future research opportunities involve smart
grid integration, machine learning applications, and

TABLE 4 Overall comparison of the PI (2DoF) vs PI performances considering the main control results.

Controller model Operating condition iqr THDF (%) Mean power (MW) Mean idr (A)
PI (2DOF) Normal 7.72 1.473 4.180e-04

Low voltage 28.79 1.44 2.228e-03

PI Normal 9.15 1.477 5.826e-04

Low voltage 35.46 1.42 −6.302e-03
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advanced control algorithms. These require exploring
opportunities for integrating wind power systems into
smart grid systems, qualifying sophisticated grid
management and wind power distribution, examining
machine learning techniques to optimize the power
systems’ adaptive capabilities and performance, and
investigating and introducing the newest control
algorithms to further enhance the efficiency and
reliability of the power systems.
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Appendix

TABLE A5 Data specifications of the parameters of the proposed DFIG-
based system.

Input parameter Rated value

Stator f requency f � 50Hz

Rated stator power Ps � 2MW

Rated rotational speed n � 1500 rev
min

Rated stator voltage Vs � 690V

Rated stator current Is � 1760A

Rated torque Tem � 12732N.m

Pole pair p � 2

Stator/rotor turns ratio u � 1
3

Rated rotor voltage Vr � 2070V

Maximum slip smax � 1
3

Rated rotor voltage ref erred to stator Vrstator � 230V

Stator resistance Rs � 2.6 × 10−3 Ω

Leakage inductance (stator/rotor) Lsi � 0.087 × 10−3 H

Magnetizing inductance Lm � 2.5 × 10−3 L

Rotor resistance ref erred to stator Rr � 2.9 × 10−3 Ω

Stator inductance Ls � 2.587 × 10−3 H

Rotor inductance Lr � 2.587 × 10−3 H

DC bus voltage ref erred to stator Vbus � 325.2691V
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Nomenclature

DFIG Doubly fed induction generator

WECS Wind energy conversion system

PI(2DOF) Proportional integral (2 − degree − of − freedom)

IFOC Indirect field oriented control

MPPT Maximumpower point tracking

Ps ref Stator active power (reference)

Qs ref Stator reactive power (reference)

Vdc Direct current voltage

ωmec Mechanical rotor speed

Popt Optimumpower

CPopt Optimumpower coefficient

ρ Wind air density

R Turbine rotor radius

V Wind speed

Ωopt Optimum turbine rotational speed

β Blade pitch angle

J Turbine inertia

Tg Generator torque

Tem Electromagnetic torque

f Friction

G Gearbox ratio

Taeroref Aerodynamic torque (reference)

Ct Aerodynamic torque coefficient

Temref Electromagnetic torque (reference)

λopt Optimum tip speed ration

PEC Power electronic converter

Φsd Stator direct flux

Φsq Stator quadrature flux

Vsd Stator direct voltage

Vsq Stator quadrature voltage

ωs Stator speed

Isd Stator direct current

Isq Stator quadrature current

Ird Rotor direct current

Irq Rotor quadrature current

M Magnetizing inductance

Ls Stator inductance

p Pole pair

g Slip of the inductionmachine

ωr Rotor electric speed

Vrd Rotor direct voltage

Rr Rotor resistance

S Stator − rotor turns ratio

Lr Rotor inductance

Ls Stator inductance

Vrq Rotor quadrature voltage

THDF Total harmonic distortion factor

RSC Rotor side converter
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