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The Expected Solar Performance and Ramp Rate tool (ESPRR) is an open-source
interactive web-based application that reliably calculates ramp rate (RR) statistics
and an expected power generation time series for prospective photovoltaic (PV)
systems. Users create PV systems by defining site parameters. ESPRR uses those
parameters with irradiance data from the National Solar Radiation Database
(NSRDB) to create a time series of power output from which RR statistics are
calculated. This study rigorously evaluates ESPRR’s performance using 5 years of
measured power output from a fleet of utility-scale systems and finds that ESPRR
calculates stress-case RRs within an error of 0.05 MW/min and 0.42 MW/min for
the worst-case RRs. We evaluate the expected AC power output in clear-sky
conditions and find an NRMSE of less than 10% and an NMBE of less than 6% for
the fleet’s largest system. The NRMSE is 10%–15% of system capacity for non-
clear-sky conditions, and the NMBE is about zero. The evaluation shows that
ESPRR can estimate PV output and RRs that are representative of operational
systems, meaning users can use the results from ESPRR in the decision-making
process for designing new systems or when adding systems to an existing fleet.
Since only system parameters are required to site a proposed system anywhere
on amap, users can site and reposition a fleet of PV systems in a way that reduces
significant RRs. As the grid-tied PV capacity continues to increase, the mitigation
of significant RRs grows in importance. ESPRR can help developers and utilities
create geographically diverse fleets of PV systems that will promote grid reliability
and avoid significant RRs. ESPRR source code is available at https://github.com/
UARENForecasting/ESPRR.
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1 Introduction

A ramp rate (RR) can be defined as a difference in power production from one time to
another. Shadows from passing clouds cause intra-day variations in solar irradiance that can
result in a significant RR in power production from photovoltaic (PV) systems. A lack of
geographic diversity in PV generation sites exacerbates fleet-wide RRs because sites within a
certain location will experience weather conditions at similar times. However, a
geographically diverse fleet will experience weather conditions at different times,
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resulting in a lesser magnitude RR in the aggregated output (Hossain
and Ali 2014; Mills and Wiser 2011).

The continued increase of PV penetration to the grid across the
United States raises questions about power systems’ flexibility and
ability to deliver reliable, high-quality power under variable weather
conditions if fleets of systems are geographically clustered. The
installed capacity of utility-scale PV in the United States is
projected to more than double from 2020 to 2030 (Bolinger
et al., 2021). As the capacity increases, decisions about where to
site new systems will only grow in importance. The availability and
price of land are often drivers of where new systems will be sited.
However, developers and utilities must prioritize geographic
diversity within their fleets when positioning new systems to
avoid significant RRs.

The estimation of the worst expected RRs from PV systems
has been investigated. Jamaly et al. (2013) shows observed RRs
from a fleet and used satellite-derived irradiance to verify RR 57
timing successfully. Wang et al. (2019) and Lappalainen et al.
(2020) developed methodologies to 58 predict the worst expected
RRs using cloud motion vectors, irradiance observations, and
system 59 geometry at existing PV sites. These methods rely on
observations that are not typically available at prospective sites
for PV systems. The Expected Solar Performance and Ramp Rate
tool (ESPRR) is a novel application that estimates RRs for
proposed PV systems without needing additional observations
valid for the proposed location. From user-specified system
parameters only, ESPRR calculates an expected annual
performance time series of power production and the
proposed system’s stress- and worst-case RRs. ESPRR uses
gridded observational irradiance data (NSRDB), meaning users
can interactively site proposed PV systems anywhere on a
geographical map. Multiple proposed systems can be grouped
into a fleet, and their locations can subsequently be optimized to
minimize RR statistics in the aggregated fleet output.

Co-located battery energy storage systems (BESS) can smooth
PV power output and keep RRs within safe limits (Martins et al.,
2019). For safe and efficient operations, system designers must
understand the typical and extreme RRs a system will likely
experience to optimize the size and cost of the BESS. ESPRR
can provide the RR information that could be used to plan co-
located PV-BESS. BESSs can also be used for load-shifting, where
the storage system is charged during the day and dispatched
when most needed, often after sunset. In this situation, ESPRR-
derived RR information could be used to ensure that system
infrastructure, such as voltage tolerances on distribution lines
and inverters, can safely withstand the most extreme intra-day
variations in irradiance. ESPRR could also be used alongside
advanced energy management systems, such as the one described
in Gheorghiu et al. (2024), to assess proposed PV systems’
financial viability and expected load requirements.

ESPRR was developed in collaboration with Salt River Project
Agricultural Improvement and Power District (SRP), a utility
company in the Southwest United States. However, ESPRR has
broad applicability outside this region since the software draws
from open-source packages, is publicly available (repository at
https://github.com/UARENForecasting/ESPRR), and utilizes
publicly available input data. An instance of ESPRR could
quickly be deployed for any region in the contiguous

United States by sub-setting the input data for a different
region (different irradiance and weather data would need to
be used for regions outside the US). This study evaluates the
expected performance time series and RRs using power
observations from a fleet of utility-scale PV solar sites in
Arizona. The evaluation shows that the ESPRR-calculated
expected performance time series and RR statistics represent
the characteristics of operational PV systems and are valuable for
the PV system design and planning process.

The remainder of this article is organized as follows: Section 2.1
gives an overview of ESPRR. Section 2.2 describes the user input
information necessary to create a PV system in ESPRR. Section 2.3
outlines the computational process that generates the expected
power time series and RR statistics. The methods to evaluate
ESPRR’s output are shown in Section 3: evaluation site
descriptions (Section 3.1), quality assurance methods for
observational data (Section 3.2), error metric and confidence
interval definitions (Sections 3.3, 3.4), clear-sky filtering methods
(Section 3.5), and a description of weather in the context of
climatology during the evaluation period (Section 3.6). The
results are shown in Section 4, including the evaluations of RRs
in Sections 4.1–4.3 and the expected performance evaluation in
Section 4.4. Finally, the conclusions of this study are presented
in Section 5.

2 ESPRR methodology

2.1 Overview of ESPRR

ESPRR is an open-source, interactive web application that
calculates an expected power generation time series and stress-
and worst-case RR statistics for proposed PV systems. It accounts
for user-specified system location, size, orientation, and geographic
extent. ESPRR allows users to groupmultiple systems into a fleet and
then modify the location of the systems to minimize RRs in the total
fleet output. ESPRR consists of a user-friendly web-based frontend
backed by a REST API for computations.

2.2 User-defined inputs

To create a proposed PV system, users must first specify system
parameters (e.g., total AC capacity, DC/AC ratio, and panel
orientation for fixed-tilt systems or tracking parameters for a
single-axis tracker). Users then site the new system on an
interactive map; see Figure 1. The new system is initially
represented by a square with an area corresponding to a DC
capacity of 40 MW per km2. However, the system can be
reshaped into a rectangle by modifying the aspect ratio while
maintaining the same density of modules. The new system can
be relocated by dragging it across the map, and transmission lines
can be overlaid onto the map (U.S. Department of Homeland
Security and Oakridge National Lab 2023). A direct path to the
closest transmission line can be toggled on and off, and additional
information about the transmission line (e.g., distance to the line,
owner, type of line, status, and valid date of the information) is
available on-screen.
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2.3 Computational process

2.3.1 Calculating expected power time series and
ramp rates

PV system parameters are input to the NREL PVWatts module/
inverter model chain within the python package pvlib (version 0.9.0,
Holmgren et al., 2018). The model chain outputs a 5-min frequency
time series of expected power generation using the system parameters
and weather data. For weather data, ESPRR inputs gridded air
temperature, wind speed, and clear-sky and all-sky solar irradiance
datasets from the NREL National Solar Radiation Database (NSRDB)
for 2018–2022 (Sengupta et al., 2018). The NSRDB irradiance dataset is
a satellite-derived gridded estimate of observed irradiance with a 2 km
grid spacing. (Yang 2021) evaluated NSRDB irradiance data at several
SURFRAD sites for 2018 and 2019 and concluded that the 5-minute
irradiance data are suitable for solar applications that require long-term
data, such as PV system design, simulation, and performance
evaluation. The NSRDB dataset is considered one of the best
publicly available gridded representations of surface irradiance.

From the expected power generation time series, ESPRR
calculates RRs as the difference in power generation across 5, 10,
15, 30, and 60-min periods. Statistics such as the stress-case RR up/
down are represented by the 95th/5th percentile drawn from the
distribution of RRs. For worst-case RRs up/down, the 99.99th/0.01st
percentile is used. Typical sunrise/sunset ramps are also calculated
using the same method but using clear-sky irradiance data and the
95th/5th percentile. Given a user selection, ramp statistics can be
displayed as absolute ramps (MW) or RRs (MW/min). An
interactive graphic of the expected power generation time series
is shown (Figure 2, panel b), and the time series and ramp statistics

are available for download in CSV format or optimized binary
(Apache Arrow). These options make ESPRR easy to use and fit for
various user applications.

2.3.2 Grouping systems into a fleet
An important part of ESPRR’s value for planning decisions is the

ability to group systems into a fleet, see Figure 3. With two or more
systems made, users can create a group (fleet) for which an expected
power generation time series and RR statistics will be calculated. The
aggregation of proposed systems allows fleet-wide performance to be
assessed. Users can then modify each system in terms of the location,
size, and orientation to minimize RRs in total fleet output.

Alternatively, a distributed group of systems can be auto-
generated given a user-specified distance between systems and a
placement strategy for the fleet, either a grid or line. The distributed
group of systems can later be modified like an individual system.
This system generation method is potentially useful for planning PV
systems that will be co-located but operated independently and
connected to the grid with separate points of interconnection.

2.3.3 Variability multiplier in cumulus cloud
conditions

Initial tests showed that computed RRs could underestimate
observed RRs during intermittent cloud conditions. To address this,
we created an optional “Variability Multiplier” that modifies the
ESPRR estimated power output and aims to better represent
observed RRs during such conditions.

Figure 4A shows a time series of power generation from a PV
system with varying cloud conditions each day in September 2019: a
clear day (9/3), followed by 3 days with partial cloud coverage (9/

FIGURE 1
A screenshot from the ESPRR website on the Create New System page; (A) shows where users define new system parameters and (B) show the
placement of the system (green) on themap and the aspect ratio of the new system. Transmission lines are overlaid on themap in black, the path from the
new system to the transmission line in blue, and other additional transmission line information is shown below the map.

Frontiers in Energy Research frontiersin.org03

Bunn et al. 10.3389/fenrg.2024.1434019

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1434019


4 through 9/6), an overcast day (9/7), and then a day with intermittent
cloud conditions (9/8). On the days with intermittent clouds, e.g.,
September 8th, we see an underestimation of the intraday variability by
comparing the observed power generation to the ESPRR estimate
without the Variability Multiplier. During cloudy conditions, power
generation is overestimated, which stems from an overestimation of
surface irradiance in the input data. The clouds shown in the observed
power generation are likely either misrepresented in terms of cloud
optical thickness or are sub-grid-scale clouds that are missed in the
irradiance data. The NSRDB irradiance data has a 2 km grid spacing,
and cumulus clouds are often less than 2 km in size.

The Variability Multiplier (M) is defined as:

M � 1 − 0.5
sd − smin

smax − smin
( ) (1)

where sd is the standard deviation of power generation for the current
day and smin/smax are the yearly min/max daily standard deviation of
power generation. The Variability Multiplier varies in magnitude since
we want the greatest reductions in estimated power applied on the days
with the greatest variability to better capture the magnitude of intra-day
variability. Equation 1 shows M varies between 0.5 and 1 based on the
daily standard deviation of power generation normalized over the year.
Figure 4 panel (b) shows that themagnitude of theVariabilityMultiplier
is greater on a day with less intraday variability (9/6) and lesser on days
with greater variability (9/8).

As well as being variable in magnitude, the multiplier is
conditional. The Variability Multiplier does not operate on clear-
sky times (September 3rd) or overcast days with low irradiance
(September 7th), where optically thick clouds cause daily generation
to be less than half of clear-sky generation. While Figure 4 panel (a)
shows that the application of the Variability Multiplier decreases the
power estimate for non-clear times and suggests a better match to
the observed variability of power production, a detailed evaluation of
the distribution of RRs from ESPRR with and without the multiplier
applied is presented in Section 4.1.

Another feature not represented by the irradiance data is over-
irradiance, where additional irradiance is reflected downward
toward the surface under a broken cloud field. Over-irradiance is
a feature of observed irradiance time series’ that current datasets and
radiation models cannot represent. Correcting the irradiance data
for these errors is not possible without additional ground-based
irradiance observations.

3 Evaluation methods

3.1 Description of sites used for evaluation

To evaluate ESPRR output, we use observed power generation
data from 2018 through 2022 at four utility-scale SRP solar

FIGURE 2
A screenshot from the ESPRRwebsite on the Results page; (A) shows information about the data processing, (B) a table showing a summary of yearly
average ramp statistics, (C) shows user selection of units of ramp statistics (MW) or (MW/min), (D) shows the download buttons for expected power
generation time series from ESPRR and ramp statistics, (E) shows an interactive graphic of the expected power generation time series, and (F) shows a
breakdown of the ramp statistics by month.
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sites. Table 1 shows the site parameters used to create the
PV systems.

3.2 Quality assurance of observation data

The observed power generation data are quality-assured by
removing known outages from the time series. Then, the
observations pass through a zenith filter <90° to remove any
erroneous non-zero values after sunset. A final filter removes any
observations greater than the system’s capacity to mask out over-
irradiance events from the statistical evaluation.

3.3 Error metrics

We use normalized root mean square error (NRMSE, %) and
normalized mean bias error (NMBE, %) to quantify errors from
observations:

NRMSE � 100
norm

•

��������������
1
N
∑N
i�1

xi,e − xi,o( )2√√
(2)

NMBE � 100
norm

•
1
N
∑N
i�1

xi,e − xi,o( ) (3)

FIGURE 3
Screenshot from the ESPRR website on the Groups page; (A) shows the map with the systems in the fleet color-coded, (B) shows the systems that
the fleet is comprised of and their associated parameters (AC capacity and tracker type) as well as the status of the calculations for each year and system.
(C) Shows the performance results, similar to Figure 2, but for the aggregated group of systems.
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where xi,e, xi,o are the ith entry of the ESPRR estimate (e) and
observation (o), N is the length of the time series, and norm is the
nameplate AC capacity of a PV system. We use SSRMSE to evaluate
RMSE skill from a reference method;

SSRMSE � 1 − RMSE test

RMSEref
(4)

for example, to compare the RMSE from ESPRR with (test) and
without (ref) the Variability Multiplier applied.

3.4 Confidence interval calculations

We use the following method to calculate confidence
intervals for the RR statistics, representing the sampling
error and the system tolerance. We use a bootstrap
randomization sampling strategy to quantify the sampling
error, leaving out 10% of the distribution of RRs for each
random sample. We repeat the percentile calculation for
500 iterations to create a distribution of percentiles. 95%
confidence intervals are drawn from these distributions to
estimate the sampling error.

FIGURE 4
A time series showing (A) the expected power output calculated from ESPRRwith (blue) and without (orange) the Variability Multiplier applied versus
observations (black) and (B) the corresponding daily value of the Variability Multiplier (purple).

TABLE 1 System parameters for the four SRP sites used to evaluate ESPRR performance.

Site AC
capacity [MW]

DC/AC
ratio [-]

Albedo
[-]

Axis tilt, azimuth
[degrees]

Ground coverage
ratio [-]

Back-
tracking

Solar Site 1 52.25 1.30 0.4 0, 180 0.4 True

Solar Site 2 19 1.33 0.4 0, 180 0.35 True

Solar Site 3 45 1.27 0.17 0, 180 0.35 True

Solar Site 4 20 1.18 0.4 0, 180 0.35 True

TABLE 2 The yearly percentage of the 5-min periods determined to be
clear-sky conditions is shown. Also shown are the sample size values (N) per
year from which RR and error statistics are computed. The sample sizes for
greater ramp periods decrease accordingly: 10 min N/2, 15 min N/3,
30 min N/6, and 60 min N/12.

Year % Clear-sky Number of all-sky
5 min periods evaluated

2018 68 52,707

2019 66 52,702

2020 77 52,820

2021 72 52,701

2022 73 52,690
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To incorporate a representation of the system tolerance into the
confidence interval, we add a factor of 10% of maximum plant
generation per hour to the confidence intervals. The aim is to include
a typical yet significant forecast error that a new system could
experience and how that would modify the RR percentiles. As an
example, for Solar Site 1 (52.25 MWp), the system tolerance added
to the confidence interval is (52.25 • 0.1)/60 � 0.09 MW/min.

3.5 Clear-sky filtering for expected
performance evaluation

For system planning purposes, we are most interested in metrics
for all-sky conditions as they represent all operational conditions,
compared to clear-sky metrics that assess the accuracy of irradiance
data and PV system parameters. However, for completeness, we
present both clear and all-sky metrics.

Reliable irradiance observations at the evaluation sites are not
available. Therefore, we determine clear-sky times by comparing the
expected power generation to the clear-sky generation time series,
which is the NSRDB clear-sky irradiance data passed through the
same module and inverter model chain. If the generation estimate
using the all-sky data exceeds 99% of the generation using clear-sky
data, then that time is determined to be clear-sky conditions.

Without observed irradiance data, we can only apply this
method to the expected generation time series rather than the
expected generation and observed time series, meaning a clear-

sky ESPRR estimated value could be evaluated against a non-clear
observed value. Such instances are possible when clouds are missed
in the NSRDB irradiance data, and their inclusion will increase the
magnitude of the clear-sky error; see Supplementary Figure S1 for an
example. Using this clear-sky method presents a useful evaluation of
ESPRR’s expected power generation that includes the NSRDB input
data’s ability to estimate clear-sky conditions.

3.6 Weather and irradiance in the context of
climatology

PV power generation depends primarily on surface irradiance
and temperature, with aerosol load and water vapor concentration
also directly affecting surface irradiance. Here, we briefly summarize
the 5 years of temperature and irradiance information used within
the context of climatology to understand the impact on the inter-
annual variability of power production. We want to show that the 5-
year period analyzed represents conditions operators could face in
the future. We will focus the discussion on the Phoenix metropolitan
area since the solar sites used for evaluation are all within
that region.

Regarding annual precipitation, 2018 was a wetter-than-average
year. 2019 and 2020 were drier than average, with 2020 being
abnormally dry and the lowest total for the 5 years. 2021 and
2022 were wetter than the previous 2 years but had less
precipitation than the typical annual totals (NOAA 2023). Since

FIGURE 5
Ramp rate statistics p95 (A), p5 (B), p99.99 (C), and p0.01 (D) calculated using ESPRR with (spotted) and without (hatched) the variability multiplier
applied are shown. The same statistics are calculated using the observations (solid) for comparison.

TABLE 3 RMSEs of stress- and worst-case RR statistics across all periods. SSRMSE measures the RMSE performance of ESPRR (Variability Multiplier Applied)
relative to the reference ESPRR (No Variability Multiplier).

No Variability Multiplier
Ramp Rate RMSE

Variability Multiplier Applied
Ramp Rate RMSE

SSRMSE

[-]

[%/min] [MW/min] [%/min] [MW/min]

Stress-case (p95, p05) 0.06 0.08 0.04 0.05 0.32

Worst-case (p99.99, p0.01) 0.57 0.78 0.30 0.41 0.48
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module efficiency decreases at greater temperatures, heat waves can
adversely impact solar power generation. All 5 years are near or
above average in terms of annual average temperatures for Phoenix.
2018, 2021, and 2022 were all similarly warmer than average, and
2019 was about average. 2020 was abnormally warm and had the
greatest average temperature for the 5 years.

The percentage of clear-sky conditions is shown in Table 2.
2020 has the greatest percentage of clear-sky conditions, matching
the low annual average precipitation and high temperatures. The
other years have insignificant differences in the percentage of clear-
sky conditions. See Supplementary Table S1 for monthly averaged
clear-sky percentages, where the monthly pattern of clear-sky
follows an expected trend with clear-sky percentages below 75%
during the North American Monsoon (Jul-Aug) and winter
precipitation months (Nov-Mar) and above 75% in typically
clear-sky months (Apr-Jun, and Sept-Oct). The number of 5 min
periods analyzed yearly is slightly different due to outages; however,
the differences in the total sample sizes across the 5 years are
insignificant. In summary, we report that the period
2018–2022 represents weather conditions a proposed PV system
could experience in the next 15–20 years.

4 Results

4.1 Fleet RRs

4.1.1 RR statistics comparison
First, we evaluate the RR statistics representing stress- and

worst-case scenario events (p95/p05 and p99.99/p0.01,
respectively) output from ESPRR. Figure 5 shows RR statistics
drawn from the entire 5-year period for the aggregated four
evaluation sites, with and without the Variability Multiplier
applied, compared to the observed statistics. The stress- and
worst-case RRs are all less than 10% of the maximum fleet
capacity per minute.

For the stress-case statistics, the observed percentiles fall with
the confidence intervals of the ESPRR percentiles across all periods.
Generally, there are minor differences in the stress-case statistics
when the Variability Multiplier is applied compared to when it is
not. For the worst-case statistics, however, the ESPRR percentiles
with the Variability Multiplier applied correspond better to the
observed percentiles than when the multiplier is not applied. This
result is most evident for short-period RRs, e.g., 5–15 min. For

FIGURE 6
Extreme value probability distributions for less than the 10th percentile (A) and above the 90th percentile (B). Histograms calculated using ESPRR
with (blue) and without (light blue) the variability multiplier applied are compared to observations (black). Gamma-fit functions are shown (purple, lighter
purple, and grey, respectively). Each panel shows a different period for the ramp rate; 5, 10, 15, 30 and 60 min.
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periods 30–60 min, the ESPRR calculated RR percentiles match the
observations, but there are only minor differences between having
the multiplier applied or not.

Table 3 shows the RMSEs for the stress- and worst-case RR
events with all periods considered. The error when using ESPRR
with the Variability Multiplier applied is compared to the error
without the multiplier applied using SSRMSE (Equation 4). The
SSRMSE relative performance skill score shows a 32%
improvement in error when the Variability Multiplier is applied
for the stress-case events and a 48% error improvement for the
worst-case RR events.

4.1.2 Extreme value RR distribution comparison
Figure 5 and Table 3 evaluate ESPRR’s ability to estimate four

key percentiles of the observed distribution of RRs. While the
indication is that ESPRR represents the observed RRs well, we
need to compare the distribution of ramp rates next. In
particular, we must examine the extreme values of the
distribution as this is where the Variability Multiplier is expected
to have the greatest impact.

Figure 6 shows the extreme value distributions of RRs for the
fleet. Values less (greater) than the distribution’s 10th (90th)
percentile are shown in the histograms with gamma-fit functions
drawn for both the ESPRR and the observed distribution. Across all
periods, applying the Variability Multiplier acts to make the gamma
function broader and flatter, meaning a distribution with a greater
frequency of extreme values. For periods 10, 15, and 60 min,

applying the Variability Multiplier moves the ESPRR extreme
value distribution closer to the observed distribution. However,
there is a trade-off; for 5- and 30-min RR periods, applying the
Variability Multiplier takes the extreme value distribution to a more
extreme than observed profile.

Overall, across the various RR periods, the net effect of applying
the Variability Multiplier is an extreme value distribution closer to
or fractionally exceeding observations. Ideally, we would want new
PV systems and fleets to be resilient to all RRs they could face, even
those not in the observed record, meaning a fractional
overestimation is preferential to any underestimation. Therefore,
we recommend using ESPRR with the Variability Multiplier applied
for the best RR estimation.

4.2 Single-site RR evaluation

4.2.1 Yearly RR statistics
Here, we evaluate the RR statistics for a single PV system by year

to highlight inter-annual variations. Figure 7 shows the worst-case
RR statistics for Solar Site 1. Across the 5 years, we see consistency in
observed RR percentiles for periods of 10 min and greater. However,
for 5-min periods, there is a slight increase in the percentiles for
2021 and 2022. Figure 7 shows that applying the Variability
Multiplier increases the ESPRR calculated percentiles, which
generally better match the observed percentiles than without the
multiplier. Like Figure 5, the impact of the Variability Multiplier is

FIGURE 7
Ramp rate statistics p99.99 (A) and p0.01 (B) calculated for each year using ESPRR with (spotted) and without (hatched) the Variability Multiplier
applied is compared to observations (solid). The period for the ramp rates is shown by the colors referenced in the legend.
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most evident for 5- to 15-min periods and less so for 30- to 60-min
periods, where both ESPRR percentiles match the observations
within confidence intervals.

4.2.2 Monthly RR statistics
Figure 8 shows the same worst-case RR statistics as Figure 7 but

split by month. The worst-case scenario RR percentiles are greatest
for February, March, August, and September. During February and
March, the Southwest is transitioning out of the winter precipitation
season, and for the 5 years studied, clear-sky percentages were 64%
and 62%, respectively. With the seasonal transition bringing a
greater variability of weather conditions, the intermittency of
cloud conditions is expected to be greater compared to the most
and least clear months (e.g., May and December). August and
September are the latter part of the monsoon season, again
meaning a greater variability of cloud conditions is expected.

Comparing the percentiles from ESPRR with and without the
multiplier applied in Figure 8 supports a similar interpretation to
Figures 5, 7. ESPRR with the Variability Multiplier applied matches
observations closer than without the multiplier for shorter periods
(5, 10, 15 min). There is good correspondence with the observed
percentiles for the longer period RRs (30, 60 min), though there are
insignificant differences between the two EPSRR calculated
percentiles.

4.2.3 Exceedances of worst-case RRs in
observations

The number of observed RRs that exceed the ESPRR calculated
monthly worst-case percentiles are shown in Supplementary Figures
S2, S3 to understand the likelihood of these RR events occurring
yearly. For 30-to-60-min period ramps, on average, there is less than
or equal to one event that exceeds the worst-case scenario RR
percentile per year. For 5-to-15-min period ramps, in some
months, there can be more than one exceedance per year on
average. The monthly exceedances do not follow a distinct
pattern; however, winter and monsoon precipitation months
generally have greater exceedances.

4.3 Fleet RRs compared to a theoretical
geographically diverse fleet

To evaluate the importance of geographic diversity in
minimizing fleet RRs, we create a theoretical fleet named the
Geographically Diverse Fleet (GDF), which is of equal capacity to
the fleet used for evaluation (136.25 MWp). Each system in the GDF
is situated on the four opposing sides of Phoenix rather than the
southeast side where the fleet used for evaluation is located (see
Supplementary Figure S5 for map). As expected, we see lesser RRs

FIGURE 8
Ramp rate statistics p99.99 (A) and p0.01 (B) calculated for each month using all years of data. ESPRR with (spotted) and without (hatched) the
Variability Multiplier applied is compared to observations (solid). The period for the ramp rates is shown by the colors referenced in the legend.
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FIGURE 9
Ramp rate statistics p99.99 (A) and p0.01 (B) calculated for each year for the SRP fleet (spotted) versus a theoretical geographically diverse fleet
(solid) using all years of data. The periods of the ramp rates are shown by the colors referenced in the legend.

FIGURE 10
Normalizedmean bias errors (A) and normalized root mean square errors (B) for each year of data for all-sky (blue) and clear-sky (green) conditions.
Metrics for ESPRR with (solid) and without (hatched) the Variability Multiplier applied are shown and since the Variability Multiplier only operates on non-
clear conditions there is only one clear-sky value.
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for the GDF than the evaluation fleet, with significant differences for
5-to-15-min periods and differences within the confidence intervals
for 30- to 60-min periods (see Figure 9).

4.4 Single site expected performance
evaluation

Lastly, we evaluate the expected AC power time series from
ESPRR at Solar Site 1. Figure 10 shows yearly error statistics, (a)
NMBE and (b) NRMSE (Equations 2, 3), for clear and all-sky
conditions. Figure 11 shows the same error metrics split by
month. During clear-sky conditions for all years and months, the
NMBE is less than 6%, and the NRMSE is 10% or less. In all-sky
conditions, comparing the errors for ESPRR with and without the
Variability Multiplier shows that the NMBE is reduced closer to zero
when applying the multiplier. However, the RMSE increases by 1%–
5% with the Variability Multiplier applied.

5 Summary and conclusions

In this study, we describe the development of the ESPRR
tool and evaluate its output expected power generation time
series and ramp rate statistics. ESPRR computes an expected
power generation time series using user-defined system
parameters and NSRDB data input to a PV system model.
Users can assess 5 years of AC power output and the
characteristics of ramp rates from the proposed systems,
including stress-case and worst-case RR events. The location
and parameters of the proposed systems can be modified in real
time to minimize RRs with no additional inputs required. Such

functionality is useful when planning and designing PV
systems, as it can help address growing concerns about the
potential negative effects on grid reliability from the increasing
penetration of utility-scale PV systems.

For the evaluation, we use generation measurements from a
136.25 MWp fleet of PV systems in Arizona from 2018 through
2022. We find that the ESPRR calculated stress-case RRs have an
error of 0.05 MW/min; the error for worst-case RR events is
0.42 MW/min. We report that the frequency of exceeding the
worst-case RR is less than one event per year for 30-to-60-
minute RRs and less than five for 5-to-15-min RRs. We
developed a time-varying multiplier to modify the power output
from EPSRR on days with the greatest variability of power
generation resulting from intermittent cloud conditions. The
multiplier addresses features of the observed power time series
that cannot be represented by the input irradiance data, like sub-
grid-scale clouds or misrepresented cloud characteristics, such as
optical thickness. The multiplier increases the extreme values of the
distribution of RRs, particularly for 5-to-15-min ramp periods,
which better matches the observed distribution. Applying the
Variability Multiplier reduces the fleet-wide RR statistics error by
32% for stress-case events and 48% for worst-case RR events using
all RR periods.

We evaluate the expected power generation for a single PV
system and find ESPRR’s calculated AC power output in clear-sky
conditions has an NRMSE of less than 10% of system capacity and
an NMBE of less than 6%. In non-clear-sky conditions with the
multiplier applied, the NRMSE is 10%–15% of system capacity, and
the NMBE reduces to about zero. Applying the multiplier improves
the statistical representation of RRs at the expense of marginally
increasing the error of the AC power estimate from observations in
non-clear conditions.

FIGURE 11
Normalized mean bias errors (A) and normalized root mean square errors (B) are shown for each month using all years of data for all-sky (blue) and
clear-sky (green) conditions. Metrics for ESPRR with (solid) and without (hatched) the Variability Multiplier applied are shown and since the Variability
Multiplier only operates on non-clear conditions there is only one clear-sky value.
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The Variability Multiplier is made optional so users can decide
whether the better representation of RRs is the preferred selection at the
expense of a 1%–5% increase in error in the expected AC power output
in non-clear conditions. The expected performance error statistics
presented are likely greater than we would expect in an operational
forecast setting, as real-time generation information could be used to
inform a persistence or bias correction model that would nudge
forecasts toward recent observations and reduce error metrics. Still,
such errors from the ESPRR expected power generation time series with
themultiplier applied are sufficient for prospective PV system planning,
as they are within the range of errors we would expect from weather
forecasts used to create solar power forecasts.

Finally, we compare RR statistics from the fleet used for
evaluation to statistics from a proposed fleet of equal capacity
but with greater geographic diversity. From the fleet with greater
geographic diversity, we find up to a 20% reduction in worst-case RR
statistics for all periods, with significant differences for the 5-to-15-
min RRs. This emphasizes the importance of geographic diversity
when siting new PV systems, and showcases the possible magnitude
of RR migitation from a sufficiently distributed fleet.
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