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The transformation of energy structure has brought about new changes in the
power system, and the environmentally friendly gas switchgear with the goal of
low carbon and environmental protection has been widely spread and applied,
but due to its short application time and the accumulation of related research, it
continues to carry out life prediction to improve the related operation and
maintenance system. The article proposes the environmental protection gas
switchgear data processing technology based on data enhancement technology,
proposes the environmental protection gas switchgear life prediction technology
based on approximate dynamic planning, and verifies the algorithm through case
analysis, which proves the effectiveness and accuracy of the proposed method.
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1 Introduction

In recent decades, the global energy consumption pattern has undergone significant
changes, and the traditional energy consumption pattern can no longer meet the
requirements of the current low-carbon development. Sulfur hexafluoride, as an
insulating arc extinguishing medium, is widely used in electrical equipment. However,
its ultrahigh global warming potential makes it one of the six greenhouse gases whose
emission is restricted under the Kyoto Protocol. Traditional sulfur hexafluoride switchgear
can’t meet the demand of green development, and the environmentally friendly gas
switchgear using dry gas as the noon of the sky can effectively reduce the emission of
greenhouse gases, unlocking more environmental benefits and economic benefits. However,
due to the short application time of environmentally friendly gas switchgear, long-term use
experience has not been obtained, and it is impossible to predict its remaining electric life.
Therefore, with the advancement of active distribution network, it is necessary to predict the
life of switchgear to realize active repair.

Switchgear life prediction research is mainly divided into empirical model prediction
and gray box model prediction. Empirical models are based on accurate physical modeling,
and their parameters are determined by a large amount of operational data and historical
experience, which can realize more accurate life prediction for a single type of switchgear. At
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present, typical empirical models for life prediction include failure
physical models, data-driven models, and so on. Among them, some
scholars have used the Coffin-Manson model (Panarello et al., 2016)
to reveal the relationship between mechanical fatigue life and plastic
strain; some scholars have established a power device life model
based on the theory of device fatigue damage through the IGBT
power cycling test (Li et al., 2020); and the structure of the
simulation is based on the fast state mapping, module topology
and detailed electro-thermal modeling of devices (Ceccarelli et al.,
2019) can complete the life prediction of power modules; the finite
element method can construct the electro-thermal and life model of
impedance-sourced photovoltaic micro-converters (Shen et al.,
2018) The Coffin-Manson formula based on strain and fixed
mesh size (Fu et al., 2020) can predict the fatigue damage of
solder balls. 2020) can predict the fatigue life of solder balls. The
above life prediction methods based on failure physics models can
make more accurate predictions for a single component, but they are
not universal and cannot be applied to scenarios with complex
component structures. For data-driven modeling, some scholars
proposed a novel multi-step robust prediction machine (Me et al.,
2021) to complete the RUL online prediction; some scholars
established an exponential decay model successfully fitted with
experimental data (Dusmez et al., 2016) and processed the data
by the classical least squares method to complete the residual service
life prediction of degraded power MOSFETs; using data-driven and
modeling methods, the remaining service life of the degraded power
MOSFETs can be predicted. Prediction; Lifetime prediction of
impedance devices can be accomplished by utilizing a data-
driven and model predictive control algorithm (Celaya et al.,
2011); A deep learning algorithm based on stacked long and
short-term memories (Baharani et al., 2019) has been proposed
for performing collective lifetime prediction of converters;
Application of the cuckoo search algorithm (Anand et al., 2020)
can be implemented for maximum power point tracking under
partial coloring conditions. Data-driven models can obtain the life
prediction patterns of components from a large amount of
operational data, but it is difficult to ensure the accuracy of life
prediction under the influence of multidimensional feature quantity.

In recent years, research for gray box models has focused on deep
learning, reinforcement learning, migration learning and
approximate dynamic programming. Among them, some scholars
(Ender et al., 2021; Omid et al., 2023) have used deep deterministic
policy gradient algorithms based on re-enforcement learning and
deep reinforcement learning for controlling converter power
switching management and storage unit switching management in
switching devices; the deep learning algorithms can be used to predict
the battery operating state of lithium-ion batteries, the residual life
interval of the device and the IGBT residual life (Chen et al., 2022; Ma
et al., 2023; Gang et al., 2024); a fusion of Time Attention - Temporal
Convolutional Networks (TA- TCN) and transfer learning (Zhang
et al., 2023) for rolling bearing life prediction; In terms of system
predictive scheduling, there have also been studies by scholars (Saha
et al., 2023) who have proposed a medium-voltage grid-connected
public multiport FC/discharge (DC) station that connects all three
plug-in electric vehicle (PEV) categories simultaneously, facilitating
bidirectional power flow for vehicle-to-grid (V2G) applications.
Some scholars (Kumar et al., 2023) have developed a model
predictive control battery management system based on voltage

sensor, which can effectively predict the state of the battery
system in a certain period of time. Some scholars (Chen et al.,
2022) have proposed a fixed control system based on complex
dynamic networks, and solved the basic problems of neural
network stability, synchronization and controllability, but this
paper does not solve the problem that complex dynamic networks
are prone to overfitting. Some scholars (Yousaf et al., 2022) have
proposed an adaptive reclosing scheme based on genetic algorithm,
which can classify all fault events in the reclosing area or block
reclosing area, but the adaptive genetic algorithm is difficult to avoid
falling into the problem of local optimal solution. In order to solve the
problem of electric ship docking, some scholars (Kumar and Panda,
2023a; Kumar and Panda, 2023b) proposed a new type of power
quality improvement cold ironing (PQICI) system (charging
mechanism) and an intelligent high-power charging network and
its control mechanism for port cold ironing, respectively, and
combined with the analysis of numerical examples to verify the
effectiveness of the proposed method in the planning of electric ship
parking charging scheme.

Since the life prediction of switchgear is a multi-stage problem
and is affected by random quantities such as ambient temperature
and humidity, the approximate dynamic programming algorithm
for the multi-stage stochastic optimization problem can be more
effective in solving the life prediction problem of environmentally
friendly gas switchgear. The gray box model is suitable for life
prediction of equipment with complex component structure and
many feature quantities, which is more in line with the application
scenario of environmental protection gas switchgear, so this paper
adopts the gray box model to approximate the life function of
environmental protection gas switchgear and the use of an
approximate dynamic programming algorithm (Li et al., 2023) to
optimize a non-trivial rolling bearing life prediction with model
errors and external perturbations. Errors and external perturbations
to improve the life prediction accuracy of nonlinear systems. Some
scholars (Zhu et al., 2023) have used approximate dynamic
programming to solve the real-time risk avoidance scheduling
problem of power and natural gas integrated system. Some
scholars (Fan et al., 2023) have solved the problem of robust
optimal scheduling of permanent magnet synchronous motors by
using approximate dynamic programming. There are also scholars
(Li et al., 2022) who have mixed MPC and ADP to solve the multi-
stage real-time stochastic scheduling problem of grid-connected
multi-energy grids, and these studies have proved the superiority
of approximate dynamic programming in solving system and
equipment prediction and real-time scheduling.

In summary, this paper proposes to firstly process a large amount
of operational data obtained from sensors, and carry out correlation
and normalization calculations to determine the decision variables;
then solve the multi-stage stochastic optimization problem of life
prediction of environmentally friendly gas switchgear cabinet through
an approximate dynamic programming algorithm combined with a
neural network; and finally carry out a case study of a regional
distribution network in a certain area to simulate and verify the
accuracy and validity of the model and methodology of life prediction
of environmentally friendly gas switchgear cabinet proposed in this
paper. Finally, a case study is carried out in a regional distribution
network to simulate and verify the accuracy and effectiveness of the
life prediction model and method proposed in this paper.
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2 Residual electric life data processing
for environmentally friendly gas
switchgear

2.1 Data correlation processing

There are more feature parameters affecting the remaining life
of environmentally friendly gas switchgear, and different feature
parameters have different im-portance to the remaining life, and
deleting the feature parameters with lower im-portance is
conducive to improving the assessment accuracy. In this paper,
we pro-pose an embedded feature selection method, which
calculates the similarity based on the Mahalanobis distance,
randomly selects the nearest neighbors by learning the feature
weights and minimizing the objective function, and realizes the
feature selection by using the leave-one-out method for cross-
validation of the original dataset. The computational steps of
feature selection are as follows:

2.1.1 Set up the transformation matrix A and
calculate the marginal distance between features

For a data set with X1, X2,/, Xm{ } a total of m samples, the
Marginal distance between the sample points Xi and Xj is
denoted as:

distmah Xi, Xj( ) � �����������������������
AXi − AXj( )T AXi − AXj( )√

(1)

2.1.2 Calculate the probability of a single feature
data being correctly classified

The purpose of this method is to learn a metric to make the
classification of new samples optimal, since the true distribution of
the data itself is not known, the formula 1’s are introduced as the
metric function. While using the leave-one-out method to calculate
the error, the error function is not continuous with respect to A.
Therefore, a differentiable softmax function needs to be introduced,
i.e., Eqs 2, 3:

Pij �
exp −AXi − AXj

2( )∑
l≠i
exp −AXi − AXl

2( ), Pii � 0 (2)

Pi � ∑
j∈Wi

Pij (3)

Where: l is the set of samples excluding the sample Xi, Pij is
denoted as the probability that Xi will eventually choose Xj as a
nearest neighbor and inherit his class label in the process of
randomly selecting nearest neighbors, Pi is the accuracy of the
leave-one-out method for sample Xi, and Wi is the set of
subscripts for samples belonging to the same category as the
sample Xi.

2.1.3 Optimize the transformation matrix A, the
derivation of the objective function, the calculation
formula is expressed as Eqs 4-5:

f A( ) � ∑m
i�1
Pi � ∑m

i�1
∑
j∈Wi

Pij (4)

∂f A( )
∂A

� −2A∑m
i

∑
j∈Wi

Pij XijX
T
ij −∑

k

PikXikX
T
ik

⎛⎝ ⎞⎠ (5)

2.1.4 The original feature matrix X is filtered using
the optimized transformation matrix and the
feature subset X is denoted as Eq. 6:

~X � XA (6)

The correlation between the feature parameters of the
environmental protection gas switchgear varies, and the greater
the correlation, the more similar the feature information is, the
redundant feature information will increase the model burden, and
the elimination of some of the feature parameters with high
redundancy is conducive to the improvement of the assessment
accuracy. Spearman’s rank correlation coefficient calculates the
degree of correlation between the ranks of two variables, which is
suitable for measuring the correlation between discrete data,
categorical variables or rank variables. The Spearman’s rank
correlation coefficient between a characteristic variable Xi and Yi

the middle can be expressed as Eq. 7:

r � 1 −
6∑m
i�1
D2

i

m m2 − 1( ) � 1 −
6∑m
i�1

Ri − Si( )2

m m2 − 1( ) (7)

Where: Ri, Si is the size of the rank ofXi and Yi after sorting by size,
Di is the difference between the corresponding ranks of the two
variables, and m is the sample content. When 0.0≤ |r|< 0.1, there is
no correlation between the features; when 0.1≤ |r|< 0.5 , there is
weak correlation between the features; when 0.5≤ |r|< 0.8, there is
general correlation between the features; when 0.8≤ |r|≤ 1, there is
strong correlation between the features.

2.2 Data enhancement technology

The whole-life process of the environmental gas switchgear is a
long time sequence, and the historical information data are closely
related in the time dimension, and further enhancement of the
temporal sequence between the data can improve the accuracy of the
model assessment. Data enhancement technology can make the data
better adapt to the time series assessment model by enhancing the
time series relationship between historical data. The data
enhancement methods for time series are mainly categorized into
transformation, averaging and statistical sampling, in which the
transformation-based window slicing method can be applied not
only to the training set but also to the test set, with better label
retention and higher generalization to long time series data.

The dimensionality of the feature subset of environmentally
friendly gas switchgear is greatly increased after data enhancement,
and its dimensionality needs to be reduced to reduce the amount of
model inputs. Stacked Denoising Auto Encoder (SDAE) builds a
multilayered noise reduction autoencoding network based on DAE,
and realizes feature fusion to reduce the data dimensionality. DAE is
an improvement of neural network-based autoencoder (AE), which
helps to improve its generalization ability.
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The AE has a three-layer structure with input layer x, hidden
layer h, and output layer x. Where, the input layer x is mapped to the
hidden layer h through the encoder activation function f(x) and the
expression can be expressed as Eq. 8:

h � f W1 · x̂ + b1( ) (8)
Where W1 and b1 are the weight matrix and bias term of the input
layer mapped to the hidden layer, respectively. The hidden layer h is
then mapped to the reconstructed output layer x by the decoder
activation function g(f(x)), and the expression can be expressed as
Eq. 9:

~x � g W2 · h + b2( ) (9)
WhereW2 and b2 are the weight matrix and bias term of the hidden
layer mapped to the output layer, respectively. Generally x cannot be
mapped exactly, so in order to maximize the output data features to
characterize the original data features and thus introduce the
reconstruction error, this error is minimized in the mapping
process with Eq. 10:

min L x, ~x( ) � min L x, g f h( )( )( ) � min∑n
i�1
xi − ~xi

2 (10)

When this error is the smallest, a better weight matrix W and
bias term b are obtained. However, due to the fact that the features
learned by AE are uniquely represented with the input data features,
overfitting occurs when the parameters of the auto-coding network
are complex, resulting in the reconstructed data does not have strong
generalization ability and robustness. Therefore, a method of adding
random noise to the input data is proposed, i.e., randomly
destroying the input data with a certain probability, and
reconstructing the input data x’ with the added noise to obtain
the input layer x, whose weighting matrix is less noisy, and is thus
called a noise-reducing autoencoder (DAE). The SDAE, on the other
hand, is to stack several DAEs to form a deep architecture with the
ability of deep nonlinear mapping, and to combine the previous The
hidden layer h learned from the previous DAE is used as the input
layer x of the next DAE, and so on until the last layer is trained.

3 Switchgear life prediction algorithm
based on approximate dynamic
programming

The life prediction curve of the environmental protection gas
switchgear is a convex curve with negative and decreasing slope, and
the electric life cycle can be divided into several time periods, and
each period is approximated by a linear function, i.e., the life
prediction function of the environmental protection gas
switchgear is approximated as a segmented linear function. At
each stage, it is necessary to make the decision that the current
time period to the final time period is globally optimal, the decision
is the slope approximation, and the global optimum is the final
prediction that the life is close to the real life. This type of multistage
stochastic optimization problem can be formulated as a Markov
decision process and solved by dynamic programming. Dynamic
programming (DP) can decompose a multi-stage problem into a
single-stage problemwith a transfer function to realize the transition

between the previous and previous time periods. A Markov decision
process usually contains state variables, decision variables, and
stochastic variables, and the state variables of the before and after
periods are connected by a transfer function.

State variables St are a set of variables that reflect the current
state of the system, and can be used directly to determine the
decision of the system without considering the interference of
external random variables.

The transfer function is the relationship between the state
variables St of the system and the random variables Wt

∧
injected

into the decision xt and transferred to the next moment St+Δt, so the
transfer function in the life prediction of the environmental
protection gas switchgear is defined as Eq. 11:

St+1 � f St, xt,W t

∧( ) (11)

Considering the above MDP elements, the objective function for
switchgear life prediction can be redefined as:

min Ŵ1

x1
C1 S1( )

+ EŴ2
min
x2

C2 S2( ) + EŴ3
. . . + EŴNT

min
xNT

CNT SNT( )[ ][ ][ ] (12)

By Bellman’s optimality principle, the tail problem of Eq. 12 can
be expressed as Eq. 13 by dividing it by the time, in which,Vt denotes
the value function of the system at the time t, i.e., the optimal cost of
the system from the beginning of the state St, including the cost of the
current state and the function of the future value. The function Vt+1
refers to the life curve of the switchgear from the next moment t + 1 of
life impairment to the last period T of the system, which γ is the
discount factor for weighing the importance of the immediate and
future rewards of the system in the MDP problem, and the value is
usually set in the range of 0–1.

Vt St( ) � min xt Ŵ t Ct St, xt( )+{ γ · E Vt+1 St+1( ) | St[ ]} (13)

The classical DP problem can be solved by solving the
Bellman’s optimization equation in the reverse direction to
obtain the value function of each possible state at a single
moment, and then solving the Bellman’s equation in the
forward direction to obtain the optimal solution according to
the obtained value function. However, the scale of the problem
in real power systems is usually large, and the excessively large state
space and action space will bring about the problem of dimensional
explosion, which makes it extremely difficult to compute the future
value functions, i.e., the ‘dimensional catastrophe’ in the
traditional DP problem. Therefore, in approximate dynamic
programming (ADP), the approximation of the future value
function by a segmented function can give an approximate
optimal solution.

Due to the large computation of the expectation value in Eq. 13,
the computation of the expectation value can be circumvented by
using the post-decision state variable instead of the state variable,
which refers to the state in which the system has been put into a
decision-making process, but has not yet been injected with any
exogenous stochastic information. The relationship between pre-
decision state, post-decision state, decision and random variables is
shown in Figure 1:
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After using post-decision state variables instead of state
variables, the Bellman equation of the system can be expressed as
Eq. 14.

Vx
t−1 Sxt−1( ) � EŴt

min xt Ct St, xt( ) + γ · Vx
t Sxt( ) | Sxt−1[ ]{ } (14)

Where: Sxt is the post-decision state variable and Vx
t is the post-

decision value function.
Since the post-decision state variables and the value function are

unknown, andVx
t of each time period is independent, the state space

is too large and therefore needs to be approximated as Eq. 15:

Vx
t Sxt( ) ≈ ∑Nt

a�1
dt,art,a, a ∈ 1, 2, · · ·, Nt{ } (15)

Where: Nt is the number of segments of the linear segmentation
function, Sxt is the post-decision state variable, and a is the
horizontal coordinate. The slope decreases as the number of
segments of Sxt increases, and rt,a is the length of the horizontal
coordinate corresponding to the index of the number of segments a,
and the related constraints are shown in Eqs 16, 17.

0≤ rt,a ≤ Sxt,max − Sxt,max( )/Nt (16)

Sxt � ∑Nt

a�1
rt,a (17)

From above, the optimal value of the decision at time t can be
solved by Eq. 18:

xt � argminxt∈Xt,rt,a∈Rt Ct St, xt( ) + γ∑Nt

a�1
dt,art,a⎛⎝ ⎞⎠ (18)

ADP obtains the optimal decision for each time period by
solving the objective function of each time period in a forward
direction xt. In order to get the approximation function close to
the real value function, the ADP algorithm iterates the
approximation function for several times until the slope
converges. That is, first of all, the approximate value function
results of each moment in the current iteration and the inverse of
the approximate value function results obtained by the state
variables after the decision, in order to reduce the amount of
computation only update the slope of the segment corresponding
to the value of the state variables after the decision instead of
updating all the slopes of all the segments of the entire segmented
linear function, the calculation of slopes using the difference
method to update the slopes at the index of the number a of
segments, in order to prevent the slope suddenly change when the

fluctuations of the random amount is too large, the slopes at the
current time will be updated by the difference method to prevent
the slope from fluctuating too much. In order to prevent the
sudden change of slope caused by a large fluctuation of random
quantity, the slope of the current iteration is integrated with the
slope of the previous iteration to get the temporary slope of the
current iteration. Finally, in order to maintain the concavity of the
approximation function, the Leveling method is used to correct
the slope to obtain the final slope of the current iteration and
apply it to the next iteration. The details are as in Eqs 19–22:

When updating the slope of a segmented linear function, it is
assumed that one iteration n − 1 has been completed and the
approximation function Vx,n−1

t (Sx,n−1t ) for that iteration is known
and will be used to solve the Bellman equation in the iteration n:

xn
t � argminxnt ∈X

n
t, ,d

n
t,a∈R

n
t

Ct Snt , x
n
t( ) + γ∑Nt

a�1
dn−1
t,a r

n
t,a

⎛⎝ ⎞⎠ (19)

In the slope update of the iteration n, the sampled observations
d̂
n

t,a(SnSOC,t) of the state variables in the iteration n are first computed:

d̂
n

t,a Sx,nt( ) � ∂minxnt ∈X
n
t
Ct Snt , x

n
t( ) + Vx,n−1

t Sx,nt( )( )
∂Sx,nt

(20)

After updating the sampled observations of the state variables in
the iteration n with the slopes in the iteration n − 1.

dn
t−1,a Sx,nt−Δt( ) � αn−1d̂

n

t,a Snt( ) + 1 − αn−1( )dn−1
t−1,a Sx,nt−Δt( ) (21)

where: αn−1 is the step size and dn−1t−1,a(Sx,nt−Δt) is the slope in the
iteration n − 1. The slope update only updates the value of the slope
of the segment a, which may destroy the convexity/concavity of the
segmented linear function, and the slope needs to be corrected for
such a situation. In this paper, we adopt the Leveling method to
correct the slope in order to realize the approximate fitting of the
slope of the predicted curve of the life of the environmentally
friendly gas switchgear.

FIGURE 1
ADP decision-state transfer process.

FIGURE 2
Importance analysis of environmentally friendly gas
switchgear features.
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dn
t−Δt,u �

max dn−1
t−Δt,u, α

n−1d̂
n

t,a + 1 − αn−1( )dn−1
t−Δt,a{ }, u> a

αn−1d̂
n

t,a + 1 − αn−1( )dn−1
t−Δt,a, u � a

min dn−1
t−Δt,u, α

n−1d̂
n

t,a + 1 − αn−1( )dn−1
t−Δt,a{ }, u< a

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (22)

4 Results

After inputting a large amount of historical operation data, the
life prediction approximation curve of the environmental protection
gas switchgear can be obtained. In this paper, seven relevant features
are selected, including the number of switch actions, ambient
temperature, ambient humidity, cable head temperature,
maximum current, maximum load, and the number of local
discharges, and the optimal subset of relevant features is selected
using NCA feature importance analysis. Data enhancement
technology is used to improve the missing operational data and
correct errors to ensure data relevance. Figure 2 gives the relevant
importance of different feature parameters on the life of the
switchgear during operation. Figure 3 shows the heat map of
Spearman’s correlation coefficient.

According to the feature importance analysis of environmentally
friendly gas switchgear cabinet, the average arc-firing power has the
lowest importance to the remaining electric life and should be
eliminated. In order to retain the effective information and avoid
redundant calculations, this paper selects the number of switch
actions, ambient temperature, ambient humidity, cable head
temperature, maximum current, maximum load, and the number
of local discharges as the optimal subset of features for the input of
the model.

In order to reduce the difficulty of time prediction model
training and computation, SDAE is utilized to downscale the
high dimensional data after data enhancement. Figure 4 gives the
error between the output and input layers under different feature
fusion dimensions. When the enhanced time series data are fused to
5, 4, 3, 2 and 1 dimensions, the errors between the input and output
layers are 0.0435, 0.0487, 0.0499, 0.1145 and 0.1866, respectively,
which show that the errors are similar in 5, 4 and 3 dimensions,
while the errors in 2 and 1 dimensions are obviously increased. Since
low-dimensional data can reduce redundant information and
improve the accuracy of the prediction model, fusion to
dimension 3 is chosen when the difference between the error

FIGURE 3
Correlation coefficient heat map.

FIGURE 4
Error values for each dimension.
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values of dimension 5, dimension 4 and dimension 3 is relatively
small. The middle layer of DAE has only one layer, which has a
limited ability to learn features, and the SDAE is constructed by
stacking DAEs. In this paper, 1-layer DAE, 2-layer DAE and 3-layer
DAE are constructed respectively, and the errors of their input and

output layers are 0.0499, 0.0266 and 0.0398, respectively, and the
error is minimized when constructing two-layer DAE, so the
number of intermediate layers of the SDAE adopted in this paper
is two layers.

Combined with the actual situation, the model is sequentially
selected as 70% for the training set, 20% for the validation set and
10% for the test set. The loss function for model training is shown
in Figure 5.

When the number of iterations is before 35 times, the loss
function curves of the training set and validation set show a
decreasing trend; when the number of iterations reaches
35 times, the loss function completely converges, after which the
loss function of the validation set does not show an increasing trend,
there is no overfitting, and the model training effect reaches
the optimal.

Currently for equipment life prediction, the mainstream
prediction algorithms are RNN, LSTM and BiGRU, and this
paper compares the proposed ADP algorithm with the above
three algorithms. Figure 6 shows the error rates of the test set
prediction results of the four algorithms, where subgraph A
represents RNN, subgraph B represents LSTM, subgraph C
represents BiGRU, and subgraph D represents ADP, and it can
be seen that the error of the ADP algorithm proposed in this paper is
the smallest among the four methods after sorting according to the
error from the smallest to the largest.

FIGURE 5
Training results.

FIGURE 6
Model error comparison plot. (A) Error rate of RNN. (B) Error rate of ADP. (C) Error rate of LSTM. (D) Error rate of BiGRU.
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Figure 7 shows the comparison between the number of
remaining operating days of the equipment predicted by each
algorithm and the number of remaining operating days of the
actual equipment after selecting 1–16 partial discharges
generated, and it is easy to see that the error of BiGRU is the
smallest among the three mainstream methods, but the error of the
ADP algorithm proposed in this paper is smaller than that of the
BiGRU algorithm, which proves the superiority of the ADP
algorithm proposed in this paper in the prediction of the life of
the switchgear cabinet. This can prove the superiority of the ADP
algorithm proposed in this paper in the life prediction of switchgear.

The prediction accuracy and evaluation indexes of RNN,
BiGRU and ADP before and after feature selection are given
in Table 1. In this paper, using NCA and Spearman’s rank
correlation coefficient, the seven feature parameters extracted
from the experimental data are excluded from the two feature
parameters, and the optimal feature subset composed of five
feature parameters is obtained. It can be found that using the
optimal feature subset selected after the analysis in this paper as

the input to the prediction model has a higher accuracy.
Meanwhile, the accuracy of LSTM and ADP is similar and
better than RNN, but the computation time of BiGRU under
the same platform is 81.44 s, and the computation time of ADP is
73.44 s, which can be seen that the computation time of ADP is
less due to the fact that the ADP prediction model is more
simplified compared with BiGRU. Therefore, in this paper, all
the subsequent model comparisons are improved on the
basis of ADP.

5 Discussion

In this paper, using the data-driven idea with the Spearman
rank correlation coefficient, the seven feature coefficients
extracted from the experimental data are eliminated from the
two feature coefficients, and the optimal feature subset consisting
of five feature coefficients is obtained. It can be found that using
the optimal feature subset selected after the analysis in this paper
as the input of the prediction model has a higher accuracy. At the
same time, the computation time for the life prediction of
environmentally friendly gas switchgear based on the
approximate dynamic programming algorithm is 73.44 s,
which is less compared with the traditional time
computation time.

In this paper, the prediction results of the test set are randomly
selected partly for comparison, and the comparison results are
shown in Figure 5. It can be clearly compared that the results
predicted in this paper are closest to the actual values, with obvious
advantages. In the next study, the residual electric life prediction
model of the environmentally friendly gas switchgear can be further
improved by combining artificial intelligence technology and using
deep reinforcement learning algorithms to improve its accuracy and
robustness.

The ADP algorithm proposed in this paper converts a long time
large-scale computation into a small-scale computation that can be
iterated many times, thus reducing the amount of computation and
accelerating the speed of computation. Therefore, in practical
applications, the ADP algorithm proposed in this paper has

FIGURE 7
Predictive sampling comparison chart.

TABLE 1 Comparison table of RNN、LSTM and ADP prediction results before and after feature selection.

Parametric dimension Predictive model RNN BiGRU ADP

7 Characteristic Covariates RMSE 3,510.08 2,935.07 2,834.26

MAE 1,093.13 455.61 352.75

R2 0.53 0.79 0.82

Maximum Error 5,991.21 4,837.08 4,458.51

Effective Accuracy 84.82% 88.75% 88.95%

5 Characteristic Covariates RMSE 3,254.86 3,107.03 2,856.14

MAE 973.62 617.71 423.39

R2 0.64 0.75 0.83

Maximum Error 5,591.95 3,649.69 3,495.65

Effective Accuracy 85.83% 90.75% 91.17%
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superior scalability and practical application value due to its fast
calculation speed and high prediction accuracy.

6 Conclusion

In this paper, a method for electrical life prediction of
environmentally friendly gas switchgear based on approximate
dynamic programming is proposed. The most featured subset for
life prediction of environmentally friendly gas switchgear is selected
by using data enhancement technique and SDAE method, the
optimal featured subset is strengthened by data enhancement,
and the switchgear electrical life prediction is carried out by
using an approximate dynamic programming algorithm and is
compared with RNN, LSTM and BiGRU, and in the case
analysis, the results of the case analysis prove that the method
proposed in this paper has superior accuracy and computational
speed in the life prediction of environmentally friendly gas
switchgear, which is scalable and practicable.
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