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Performance assessment of
subsea safety systems subject to
heterogeneous failure modes
and repair delays

Emefon Dan* and Yiliu Liu*

Department of Mechanical and Industrial Engineering, Norwegian University of Science and
Technology, Trondheim, Norway

Subsea production systems operate in harsh and hostile environments, making
them subject to degradation that leads to failure. This is also the case for
the final elements of safety-instrumented systems (SISs) that are installed to
protect subsea production systems. As a result, the classic SIS performance
assessment methods that assume constant failure rates may not be realistic
for subsea elements, which may experience both random failures and natural
degradation. The location of subsea production also provides challenges for
accessing the system to perform repair, and this often results in delays before
repair following revealed failures. In this paper, we explore all these issues by
developing formulations that incorporate degradation and random failures as
well as repair delays to assess the performance of the system. The degradation
of the system is modeled with the Weibull distribution, while an exponential
distribution is used to model the random failures. The impacts of different
maintenance strategies on safety are also explored with case studies.
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1 Introduction

Technical safety barriers have been widely used in different industries, such as oil and gas,
nuclear, and chemical engineering sectors, to ensure safe operation,maximize production, and
limit downtime. Popular among these are the safety-instrumented systems (SIS). An SIS is an
independent protection layer installed to mitigate the risk associated with a specified hazard
(Rausand, 2004). An SIS typically consists of one or more sensor(s), a logic solver, and one or
more final element(s) (IEC 61511:2016). SISs are designed to detect the onset of hazardous
situations and to act to prevent their occurrence or mitigate their consequences. The sensors
monitor a process variable (e.g., flow pressure or temperature) and relay the measurement to
a logic solver, which compares the measurement against a preset value. In a situation where
there is a deviation, the logic solver will send a signal to activate the final element, such as
cutting off flow in the case of a shutdown valve in a pipeline.

The use of SISs is heavily regulated due to its criticality to safety. Standards
such as IEC61508 (IEC 61508:2010) and IEC61511 (IEC 61511:2016) govern
the design, installation, and operation of such systems. To comply with the
requirements of the standards, it is important to demonstrate by quantitative
analysis that the performance of the system meets the minimum required
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level in terms of acceptable risk. The performance measure
recommended by the International Electrotechnical Commission
(IEC) standards is the average probability of failure on demand
(PFDavg) (IEC 61508:2010; IEC 61511:2016). The PFDavg gives the
average probability that the system will be unable to perform its
required function when the need arises due to failures within
the system.

Several studies have assessed the PFDavg of SIS (IEC 61508:2010;
Rausand, 2004; Torres-Echeverría et al., 2009; Liu and Rausand,
2011; Chebila and Innal, 2015). A common assumption is that
the failure rates are constant for all subsystems of the SIS.
This assumption is not very realistic, considering that certain
subsystems, such as the final element, which often consists of
mechanical parts working in a subsea environment, will experience
deterioration and degradation due to the force and motion
exerted when demand occurs (Rogova et al. (2017); Rausand, 2014;
Rogova et al. (2017); Wu et al., 2018).

The multi-state Markov process has been used to address
degradationwithin the SIS. Oliveira et al. (2016) andOliveira (2018)
developed models to evaluate the PFD considering degradation
brought about by the test. This is a binary state model with
a constant failure rate as degradation due to aging is not
considered. Srivastav et al. (2020) considered degradation due to
aging as well as the impact of testing. In the model, the failure rate
is multiplied by a factor depending on the degraded state of the
system following a test. Although this framework extends the binary
state model by considering intermediate degraded states, it requires
expert judgment to select initial parameters for changing the failure
rate as well as to select the number of degraded states. There is
also an exponential increase in the number of possibilities for the
combination of system states and transition rates as the number
of tests increases, making the assessment computationally intensive
and time consuming.

The gamma process, a well-known process for
modeling degradation, has also been applied to model the
degradation of SIS. Zhang et al. (2019) analyzed the performance
of redundant safety-instrumented systems subject to degradation
and external demands using the gamma process. The natural
aging of the component follows the gamma process. The external
demand arrives following a homogeneous Poisson process, and
its impact is assumed to be non-negative and gamma-distributed.
The system fails if the combined accumulated damage exceeds
a given threshold. Although this approach provides a more
realistic assessment of the degradation of the system, a monitoring
variable is required. In practice, the monitored parameter does
not always follow the gamma process, and some computations and
transformations must be done on the variable to suit the analysis.
For example, considering the closing time of a shutdown valve
as a monitored variable, this value fluctuates between tests and,
therefore, cannot be used directly as the monitored value in the
gamma process.

The Weibull distribution is another approach used to address
the non-constant failure rate/degradation of SIS. The Weibull
distribution offers flexibility, as the distribution parameters can
be adapted to model the internal degradation and time to failure
of the system. Jigar (2013) applied the Weibull distribution to
develop analytical formulas based on the ratio between cumulative
distribution functions for assessing the reliability of the SIS.

Rogova et al. (2017) extended the model to incorporate common
cause failures (CCFs) and diagnostic coverage (DC) for more
complex systems with more than one component. Wu et al. (2018)
developed approximation formulas based on the average failure rate
in an interval to assess the performance of SIS while also considering
the effect of partial tests (PT) on the reliability performance.

The above-mentioned works are based on the assumption that
the system is repaired and put back into service immediately or
almost immediately following the test, thereby ignoring the duration
of the repair in their assessment. However, some other issues remain
to be considered in the subsea context. These systems are not easily
accessible, and thus, there is a delay following the test before the
repair is carried out. This repair delay is non-negligible and should
be considered in the assessment. Wu et al. (2019) addressed the
problem of delayed restoration in their paper considering partial
test and full test. However, they assumed that the system was as
good as new following repair after a full test. This is often not
the case with most mechanical systems unless there is a complete
overhaul. Another issue to consider is that different failure modes
may occur on the same system, and these can bring more challenges
to the decision making with respect to testing and maintenance. The
systems are often subject to random external shocks that may cause
sudden failure to the system.

To address this issue, we analyze the performance of the SIS
final element subject to failure due to different (heterogenous)
failure modes in this paper. Subsea systems operate in a very hostile
environment with harsh conditions. Aside from failures due to
aging and degradation, the systems are also exposed to random
shocks. We also consider the impact of delayed restoration on the
unavailability/PFDavg of the system considering different testing
strategies.

The main objective of this paper is to provide formulations for
analyzing the unavailability of subsea SIS final elements subject
to different (heterogenous) failure modes as well as the impact of
delayed restoration. The main contribution/novelty in this paper is
that we consider the impact of different failure modes with different
failure distributions for the SIS final element in conjunction with
delayed repair and formulate simple approximation formulas for
assessing the system unavailability.

The rest of the paper is organized as follows: Section 2
presents a brief description of key concepts associated with SISs
and performance analysis of SISs, as well as assumptions used
in the analyses. Section 2 presents the analytical formulation of
unavailability and average unavailability for different test intervals
as well as the entire mission time of the system. Section 4 gives case
studies and some numerical examples of applying the formulations
to determine the unavailability as well as the effects of different
parameters on the average unavailability. Section 6 provides a
summary and conclusion of the paper. Suggestions for further work
are also given in this section.

2 Definitions and assumptions

This section presents some definitions and assumptions for SIS
performance assessment and lays the groundwork for the analytical
formulation that follows.
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2.1 Safety-instrumented system

A safety-instrumented system (SIS) is an independent
protection layer installed to mitigate the risk associated with the
operation of a specified hazardous system (Rausand, 2004). It
consists of at least three subsystems: sensors, logic solvers, and the
final element. The sensors monitor a pre-defined process variable
(such as temperature or pressure). The measurement is transmitted
to the logic solver, which compares it with a set value. In the event
of a hazardous situation (temperature or pressure too high or too
low, depending on the system and operation), the logic solver sends
a signal to activate the final element. In this paper, we focus on the
final element, specifically the shutdown valve. In the oil and gas
industry, the shutdown valve is a very common final element used
to cut off flow in pipelines or other processes. They are often set up
in a 1oo1 or 1oo2 configuration. The 1oo2 is thought to have higher
reliability because both valves need to fail for the system to fail, but
where the risk to safety is not high, the 1oo1 set-up can be useful
and more economical in terms of capital investment. Demand for
these valves is low, and accordingly, they are classified by the IEC
standards as a SIS with a low-demand mode of operation. Typical
demand is less than once per year on average (IEC 61508:2010; IEC
61511:2016). Because these valves are inactive for a long period
of time, any failure is not known until they are activated either
through demand or a test. Such failures are referred to as dangerous
undetected (DU) failures.

2.2 Safety unavailability

The safety unavailability of a safety system is the probability
that the system is not able to perform its required function
on demand (Rausand, 2004). The main contributions to safety
unavailability include (Hauge et al., 2013):

• Noncritical safety unavailability (NSU) of the item mainly
caused by functional testing.
• Probability of failure of demand (PFD). The unknown safety

unavailability is due to DU failures during the test interval
when it is not known that the function is unavailable.
• Safety unavailability of the item due to restoration actions after

failure has been revealed.
• The probability that a systematic failure will prevent the item

from performing its intended function.

In this paper, we focus on safety unavailability due toDU failures
and safety unavailability due to restoration actions. In offshore and
subsea installations, there is often a delay after failure is detected
in the valve until the valve is restored. This kind of delay poses
a different kind of risk to the operation. Quantifying these risks
enables appropriate risk reduction actions to be put in place.

PFDavg is the recommended measure of safety unavailability
caused by DU failures in the test interval (IEC 61508:2010; IEC
61511:2016).

Safety integrity is a fundamental concept in the IEC standards.
According to the international electrotechnical vocabulary (IEV
821-12-54), safety integrity is the ability of a safety-related system
to achieve its required safety functions under all the stated

TABLE 1 Safety integrity levels.

Safety integrity level (SIL) PFDavg range

4 ≥10−5 to < 10−4

3 ≥10−4 to < 10−3

2 ≥10−3 to < 10−2

1 ≥10−2 to < 10−1

conditions within a stated operational environment and within
a stated duration (IEC, 2017). The safety integrity is classified
into four discrete levels called safety integrity levels (SILs), which
is, in turn, defined by the PFDavg. Table 1 shows the range of
values of PFDavg corresponding to each SIL, with SIL4 having the
highest safety integrity and lowest range of values of PFDavg and
SIL1 having the lowest safety integrity and the highest range of
values of PFDavg.

SIL targets are typically assigned to safety functions during the
planning and design stage. Components and subsystems are then
selected along with configurations to meet the required SIL targets
in operation.

2.3 Assumptions for analysis

The following assumptions are made to further facilitate the
formulations in this paper:

1. The system is subjected to two kinds of failure modes: 1.
Failures due to degradation (failure mode 1, or FM1) and 2.
Failures due to random external shocks to the system (failure
mode 2, or FM2).

2. The degradation of the system follows the Weibull distribution
with probability density function (PDF):

f (t) = αλα1t
α−1e−(λ1t)

α
, (1)

where α is the shape parameter, and λ1 is the rate parameter of
the Weibull distribution. The cumulative density function (CDF) is
given as:

F (t) = Pr (T ≤ t) = 1− e−(λ1t)α . (2)

3. External shocks causing sudden failures to the system are
assumed to arrive following a homogeneous Poisson process
with a pdf given by

f (t) = λ2e
−(λ2t), (3)

where λ2 is the rate parameter of the exponential distribution. The
cumulative density function is given as

F (t) = Pr (T ≤ t) = 1− e−(λ2t). (4)
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4. The components and failure modes are assumed to be
stochastically independent. However, the probability of having
more than one failure mode present in the same component at
any given point in time is considered low and negligible.

5. The system is regularly proof-tested. Tests are non-destructive
and have no negative impact on the system. The tests
are performed simultaneously for the final elements,
and the testing duration is considered negligible. See,
for example, Torres-Echeverría et al. (2009), Hauge et al.
(2013), or Rausand (2014) for how to quantify the average
unavailability of non-negligible test times.

6. Following proof tests, revealed failures are repaired. However,
there will be a delay before the repair is carried out.The delay is
the same regardless of number of items to repair. With respect
to FM 1, repairs are assumed to be minimal, thereby making
the entire system not as good as new following repairs.

7. Common cause failures (CCF) for a 1oo2 configuration, as
well as the effects of dangerous detected (DD) failures for
both configurations, are excluded. This is to keep the focus on
quantifying the impact of the different failure modes, as well as
the impact of delayed restoration on safety unavailability, while
keeping the analysis relatively simple.

3 Safety unavailability analysis

This section presents the formulations for assessing the
unavailability and PFDavg for the final element of a SIS with delayed
restoration. Consider the final element of a SIS with two failure
modes. The system can either be configured as a 1oo1 system or
as a 1oo2 system. A simple reliability block diagram representation
of the 1oo1 system shows the system as two components in series,
with each component representing a failure mode, and a diagram
for the 1oo2 system shows it as two subsystems in parallel, with
each subsystem consisting of two series components (Figure 1).This
means that for the 1oo1 system, the presence of one failure mode
in the system is sufficient to cause a system failure. For the 1oo2
system, both components must fail for the system to fail. At least one
failure mode must be present in each component to cause system
failure. This is further illustrated in the fault tree representation of
the failure modes in Figure 2.

3.1 Unavailability formulation

The unavailability of the system is defined for the system as the
instantaneous inability to fulfil its intended function due to failure.
The unavailability of the system can be analytically evaluated in
different testing intervals.

3.1.1 Failure and conditional failure probability
A 1oo1 system will fail if either of the two failure modes is

present in the system. Let T1 be the time to occurrence of failure
mode 1 (FM1) and T2 be the time to occurrence of failure mode 2
(FM2), the time to failure of the system is given as:

Ts =min {T1,T2} . (5)

FIGURE 1
Reliability block diagram (RBD) representation of the (A) 1oo1 and (B)
1oo2 systems.

FIGURE 2
Fault tree representation of failure modes of the (A) 1oo1 and (B)
1oo2 systems.
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The CDF of the system, which is the probability that the system
is in a failed state at a given point in time, is given as:

Fs,1oo1 (t) = Pr(Ts ≤ t) = 1−Pr(Ts > t)

= 1− [Pr (T1 > t) ⋅Pr (T2 > t)]

= 1− (e−λ2t ⋅ e−λ
α
1t

α
) = 1− e−(λ2t+λ

α
1t

α)

≈ λ2t+ λ
α
1t

α.

(6)

Note this approximation takes low values (i.e., λα1t
α and λ2t < 0.01).

For a 1oo2 system, failure will occur only when both
components are in a failed state. Let TA and TB represent the time
to failure of components A and B, respectively; the time to failure of
the system assuming no repair is

Ts =max {TA,TB}

=max [min {TA1,TA2} ,min {TB1,TB2}] .
(7)

The probability that the system is in a failed state at time, t,
is given as

Fs,1oo2 (t) = Pr(Ts ≤ t) = Pr (TA ≤ t∩TB ≤ t)

= Pr (TA ≤ t) ⋅Pr (TB ≤ t)

= FA (t) ⋅ FB (t) .

(8)

Assuming both components are identical

Pr(Ts ≤ t) = Fs,1oo2 (t) = FA (t) ⋅ FB (t)

≈ (λ2t+ λ
α
1t

α)2

= (λ2t)2 + (2λ2tλ
α
1t

α) + (λα1t
α)2

(9)

for low values of λ1 and λ2 (i.e., λα1t
α and λ2t < 0.01).

Given that the system is functioning at time, x, the probability that
the system fails before time t for a 1oo1 system is (Rausand, 2021)

Pr(Ts ≤ t|Ts > x) =
Pr(Ts ≤ t) −Pr(Ts ≤ x)

Pr(Ts > x)

=
(1− (Pr (T1 > t) ⋅ Pr (T2 > t))) − (1− (Pr (T1 > x) ⋅ Pr (T2 > x)))

Pr (T1 > x) ⋅ Pr (T2 > x)

=
(1− (e−λ1te−λ

α
2t

α
)) − (1− (e−λ2xe−λ

α
1x

α
))

(e−λ2xe−λ
α
1x

α
)

=
(e−λ2xe−λ

α
1x

α
) − (e−λ2te−λ

α
1t

α
)

(e−λ2xe−λ
α
1x

α
)

= 1−
(e−λ2te−λ

α
1t

α
)

(e−λ2xe−λ
α
1x

α
)

= 1− e−(λ2(t−x)+λ
α
1(t

α−xα))

≈ λ2 (t− x) + λ
α
1 (t

α − xα)
(10)

and for a 1oo2 system

Pr(Ts ≤ t|Ts > x) =
Pr(Ts ≤ t) −Pr(Ts ≤ x)

Pr(Ts > x)

≈
(λ2t+ λ

α
1t

α)2 − (λ2x+ λ
α
1x

α)2

1− (λ2x+ λ
α
1x

α)2
.

(11)

Equations 1–11 provides formulas for the failure probability,
conditional failure probability and lays the foundation for the
unavailability formulation in the next section.

3.1.2 Analytical formulation of unavailability
Given n testing intervals denoted as [T0 = 0,T1],
[T1,T2],…,[Tn−1,Tn], if t is within the first interval [T0 = 0,T1],
the unavailability for a 1oo1 system can be found as

UA11oo1
(t) = Pr(Ts ≤ t)

≈ λ2t+ λ
α
1t

α
(12)

and for a 1oo2 system as

UA11oo2
(t) = Pr(Ts ≤ t)

≈ (λ2t+ λ
α
1t

α)2.
(13)

If t is in the second interval [T1,T2], we need to consider the
possibility of a repair in this interval. A repair will be carried out if
failures are revealed during the test at timeT1, subject to delay before
repair. Let Tr denote the duration of the delay. The second interval
consists of two distinct intervals [T1,T1 +Tr] and [T1 +Tr,T2].

In the interval [T1,T1 +Tr], the unavailability consists of two
parts. The first part is the unavailability due to repairs that were
subject to failure revealed during the test. The second part is
unavailability due to the unreliability of the system subject to no
failure revealed at the test

UA2,11oo1
(t) = Pr(Ts ≤ T1) + Pr(Ts ≤ t) ⋅Pr(Ts > T1)

=
{
{
{

≈ λα1 (T
α
1 + t

α) + λ2 (T1 + t) ,  for  Tr > 0

0,  for  Tr = 0
(14)

and for a 1oo2 system

UA2,11oo2
(t) = Pr(Ts ≤ T1) +Pr(Ts > T1) ⋅Pr(Ts ≤ t)

= { (λ
α
1T

α
1 + λ2T1)

2 + [(1− (λα1T
α
1 + λ2T1)

2) ⋅ (λα1t
α + λ2t)

2] , for Tr > 0
0, for Tr = 0

= {≈λ
2α
1 (T

2α
1 + t

2α) + λ2
2 (T

2
1 + t

2) + 2λα1λ2 (T
α+1
1 + t

α+1) , for Tr > 0
0,  for  Tr = 0.

(15)

For the interval [T1 +Tr,T2], the unavailability is due to the
unreliability of the system, given we know the system is functioning
at the beginning of the interval, at t = T1 +Tr following the elapsed
repair time

UA2,21oo1
(t) = Pr(Ts ≤ t|Ts > T1 +Tr)

≈
{{
{{
{

λα1 (t
α − (T1 +Tr)

α) + λ2 (t−T1 −Tr) ,  for  Tr > 0

λα1 (t
α −T α

1 ) + λ2 (t−T1) ,  for  Tr = 0,
(16)

and for a 1oo2 system

UA2,21oo2 (t) = Pr(Ts ≤ t|Ts > T1 +Tr)

≈

{{{{{{{
{{{{{{{
{

(λα1t
α + λ2t)

2 − [λα1(T1 +Tr)α + λ2 (T1 +Tr)]
2

1− [λα1(T1 +Tr)α + λ2 (T1 +Tr)]
2 ,  for  Tr > 0

(λα1t
α + λ2t)

2 − [λα1T
α
1 + λ2T1]

2

1− [λα1T
α
1 + λ2T1]

2 ,  for  Tr = 0.

(17)
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For subsequent intervals [Tn−1,Tn], we also need to consider the
possibility of repairs as with the second interval. However, before
the test at time Tn−1 and possible delay before repair following
the test, we know the last time the system was known to be in a
functioning state was at time Tn−2 +Tr. The unavailability in the
interval [Tn−1,Tn−1 +Tr] is therefore conditioned on this last known
functioning time of the system

UAn,11oo1
(t) = Pr(Ts ≤ Tn−1|Ts > Tn−2 +Tr)

+Pr(Ts > Tn−1|Ts > Tn−2 +Tr) ⋅Pr(Ts ≤ t|Ts > Tn−2 +Tr)

≈
{{
{{
{

λ2 (t+Tn−1 − 2(Tn−2 +Tr)) + λ
α
1 (t

α +T α
n−1 − 2(Tn−2 +Tr)

α) ,
for Tr > 0,n ≥ 3

0,  for  Tr = 0,
(18)

and for a 1oo2 system

UAn,11oo2
(t)

= Pr(Ts ≤ Tn−1|Ts > Tn−2 +Tr) +Pr(Ts > Tn−1|Ts > Tn−2 +Tr) ⋅Pr(Ts ≤ t|Ts > Tn−2 +Tr)

≈
{{{{
{{{{
{

λ2
2 (t

2 +T2
n−1 − 2(Tn−2 +Tr)

2) + λ2α
1 (t

2α +T2α
n−1 − 2(Tn−2 +Tr)

2α) + 2λα1λ2 (tα+1 +T
α+1
n−1 − 2(Tn−2 +Tr)

α+1)

1− 2λ2α
1 (Tn−2 +Tr)

2α − 2λ2
2(Tn−2 +Tr)

2 − 4λα1λ2(Tn−2 +Tr)
α+1

for Tr > 0,n ≥ 3
0,  for  Tr = 0

≈
{{
{{
{

λ2
2 (t

2 +T2
n−1 − 2(Tn−2 +Tr)

2) + λ2α
1 (t

2α +T2α
n−1 − 2(Tn−2 +Tr)

2α)
+ 2λα1λ2 (t

α+1 +T α+1
n−1 − 2(Tn−2 +Tr)

α+1) ,      for  Tr > 0,n ≥ 3
0,  for  Tr = 0.

(19)

In the interval [Tn−1 +Tr,Tn], the unavailability is similar to that
of the corresponding second interval because the last known time of
the system being in a functioning state now becomes t = (Tn−1 +Tr):

UAn,21oo1 (t) = Pr(Ts ≤ t|Ts > (Tn−1 +Tr))

≈
{{
{{
{

λα1 (t
α − (Tn−1 +Tr)

α) + λ2 (t−Tn−1 −Tr) , for Tr > 0,n ≥ 3

λα1 (t
α −T α

n−1) + λ2 (t−Tn−1) ,  for  Tr = 0,n ≥ 3
(20)

UAn,21oo2
(t) = Pr(Ts ≤ t|Ts > Tn−1 +Tr)

≈

{{{{{{
{{{{{{
{

(λα1t
α + λ2t)

2 − [λα1(Tn−1 +Tr)
α + λ2 (Tn−1 +Tr)]

2

1− [λα1(Tn−1 +Tr)
α + λ2 (Tn−1 +Tr)]

2 ,  for  Tr > 0

(λα1t
α + λ2t)

2 − [λα1T
α
n−1 + λ2Tn−1]

2

1− [λα1T
α
n−1 + λ2Tn−1]

2 ,  for  Tr = 0.

(21)

Equations 12–21 provide formulas for calculating the
unavailability in different test intervals for a 1oo1 and a 1oo2
system. The intervals may be constant or non-constant, depending
on the operational requirements of the system. It is important to
note that the first two intervals are unique in their formulations,
particularly when we consider delays before repair. If we assume
no delays before repair, then only the first interval has a unique
formulation. The repair delay is deterministic and can include the
actual repair duration.

3.1.3 Average unavailability formulation
The average unavailability gives the average proportion of time

the system is unable to fulfill its intended function in a given time
interval. In the previous section, we established the instantaneous

unavailability for the system in the different testing intervals.
Likewise, we can find the average unavailability for the system in the
different testing intervals. The average unavailability for a system in
a given interval can generally be expressed as

UAavg =
1

t2 − t1
∫
t2

t1
UA (t) dt

≈ 1
t2 − t1

t2
∑
t=t1

UA (t) .
(22)

The approximation applies if we consider a time unit increment
of t by 1 (i.e., Δt = 1).

So, considering the first test interval, t ∈ [T0 = 0,T1], the average
unavailability for a 1oo1 system will be

UAavg,11oo1
= 1
T1
∫
T1

0
UA11oo1
(t) dt = 1

T1
∫
T1

0
(λ2t+ λ

α
1t

α) dt

≈ 1
T1

T1

∑
t=0
(λ2t+ λ

α
1t

α,)

(23)

and for a 1oo2 system

UAavg,11oo2
= 1
T1
∫
T1

0
UA11oo2
(t) dt = 1

T1
∫
T1

0
(λ2t+ λ

α
1t

α) dt

≈ 1
T1

T1

∑
t=0
(λ2t+ λ

α
1t

α)2.

(24)

For the second interval, t ∈ [T1,T2]:

UAavg,21oo1
=

{{{{{
{{{{{
{

1
T2 −T1
(∫

T1+Tr

T1

UA2,11oo1
(t) dt+∫

T2

T1+Tr

UA2,21oo1
(t) dt),

for  Tr > 0
1

T2 −T1
∫
T2

T1

UA2,21oo1
(t) dt,  for  Tr = 0

≈

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

1
T2 −T1
(

T1+Tr

∑
t=T1

(λα1 (T
α
1 + t

α) + λ2 (T1 + t))

+
T2

∑
t=T1+Tr

(λα1 (t
α − (T1 +Tr)α) + λ2 (t−T1 −Tr))),

for  Tr > 0
1

T2 −T1

T2

∑
t=T1

(λα1 (t
α −Tα

1) + λ2 (t−T1)) , for Tr = 0,

(25)

and for a 1oo2 system

UAavg,21oo2
=

{{{{{
{{{{{
{

1
T2 −T1
(∫

T1+Tr

T1

UA2,11oo2
(t) dt+∫

T2

T1+Tr

UA2,21oo2
(t) dt),  

for  Tr > 0
1

T2 −T1
∫
T2

T1

UA2,21oo2
(t) dt,  for  Tr = 0

≈

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

1
T2 −T1
(

T1+Tr

∑
t=T1

(λ2α
1 (T

2α
1 + t

2α) + λ2
2 (T

2
1 + t

2) + 2λα1λ2 (T
α+1
1 + t

α+1))

+
T2

∑
t=T1+Tr

(
(λα1t

α + λ2t)
2 − [λα1(T1 +Tr)

α + λ2 (T1 +Tr)]
2

1− [λα1(T1 +Tr)
α + λ2 (T1 +Tr)]

2 )),

for  Tr > 0

1
T2 −T1

T2

∑
t=T1

(
(λα1t

α + λ2t)
2 − [λα1T

α
1 + λ2T1]

2

1− [λα1T
α
1 + λ2T1]

2 ),  for  Tr = 0.

(26)
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With respect to subsequent intervals, [Tn−1,Tn], the average
unavailability is given as:

UAavg,n1oo1
=

{{{{{{{
{{{{{{{
{

1
Tn −Tn−1

(∫
Tn−1+Tr

Tn−1

UAn,11oo1
(t) dt+∫

Tn

Tn−1+Tr

UAn,21oo1
(t) dt),

for  Tr > 0

1
Tn −Tn−1

∫
Tn

Tn−1

UAn,21oo1
(t) dt,  for  Tr = 0

≈

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

1
Tn −Tn−1

(
Tn−1+Tr

∑
t=Tn−1

(λα1 (t
α − (Tn−1 +Tr)

α) + λ2 (t−Tn−1 −Tr))

+
Tn

∑
t=Tn−1+Tr

(λα1 (t
α − (Tn−1 +Tr)

α) + λ2 (t−Tn−1 −Tr))),

for  Tr > 0

1
T2 −T1

Tn

∑
t=Tn−1

(λα1 (t
α −Tα

n−1) + λ2 (t−Tn−1)) ,  for  Tr = 0,

(27)

and for a 1oo2 system

UAavg,n1oo2
=

{{{{{
{{{{{
{

1
Tn −Tn−1

(∫
Tn−1+Tr

Tn−1

UAn,11oo2
(t) dt+∫

Tn

Tn−1+Tr

UAn,21oo2
(t) dt),

for  Tr > 0
1

Tn −Tn−1
∫
Tn

Tn−1

UAn,21oo2
(t) dt,  for  Tr = 0.

(28)

The above formulations (Equations 23–28) give the average
unavailability for the system in different test intervals. However, we
may be interested in finding the total average unavailability for a
given mission time (0,T). This is particularly the case with subsea
systems that require a complete overhaul after a certain number of
years in operation. To find the total average unavailability for a given
mission timeUATavg

, we add the individual unavailability in each test
interval and divide by the mission time:

UATavg =
1
T
∫
T

0
UA (t) dt

=

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

1
T
[∫

T1

0
UA1 (t) dt+∫

T2

T1
UA2 (t) dt+⋯+∫

Tn

Tn−1
UAn (t) dt],

for  Tr = 0

1
T
[∫

T1

0
UA1 (t) dt+∫

T1+Tr

T1
UA2,1 (t) dt+∫

T2

T1+Tr
UA2,2 (t) dt+⋯

+ ∫
Tn−1+Tr

Tn−1
UAn,1 (t) dt+∫

Tn

Tn−1+Tr
UAn,2(t) dt],  for  Tr > 0

≈
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1
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∑
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UA1 (t) dt+

T2
∑
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UA2 (t) dt+⋯+
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∑
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UAn (t) dt],

for  Tr = 0

1
T
[
T1
∑
0
UA1 (t) dt+

T1+Tr
∑
T1

UA2,1 (t) dt+
T2
∑

T1+Tr

UA2,2 (t) dt+⋯

+ ∫
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Tn−1
UAn,1 (t) dt+

Tn
∑

Tn−1+Tr

UAn,2(t) dt],  for  Tr > 0.

(29)

4 Case studies and performance
analysis

The shut-in pressure in new oil and gas fields exceeds the
design pressure capacity for flowlines and risers. Without a pressure

protection system, the flowline and risers would be overpressured
and could rupture upon topside shutdown or other flow blockage.
The subsea high-integrity pressure protection system (HIPPS) is an
important part of the overall pressure protection system in subsea
production. The system is typically designed to withstand adverse
operating conditions, namely, high pressure and temperature, as well
as harsh environmental conditions that may promote erosion and
corrosion of the system parts. A HIPPS is subjected to different test
and maintenance strategies in accordance with relevant standards to
promote improved dynamic performance. It is typically configured
in a basic 1oo1 or 1oo2 set-up. Due to its operating conditions,
the mechanical components are subject to gradual degradation
leading up to failures but alsomay experience random instantaneous
failures. Access to any failures revealed during a test is difficult
due to their location and requires planning before repair is carried
out, resulting in a delay before repair. The reservoir pressure decays
rapidly when the field is producing. After 4–5 years, the shut-
in pressure is expected to be below the capacity of the flowlines
and risers, and the HIPPS valves can be locked open Bak and
Roald Sirevaag (2007). Based on this consideration, the HIPPS will
serve as an application case for the proposed approach.

The HIPPS system is designed to comply with the
IEC61508/IEC61511 standards to fulfill the safety integrity level
requirements for a system in low-demand mode at SIL3 (NOG
GL-070:2018).

To apply the proposed approach, the relevant parameters for
the HIPPS are chosen as: α = 3, λ1 = 4e− 06, λ2 = 1e− 6. The
value for α is chosen for a situation where two or three failure
mechanisms can lead to failure (Vatn, 2007). In the case of
HIPPS, this may include insufficient actuator force, excessive
erosion, corrosion due to an unclean medium, etc. The value of
λ1 is then estimated using the formula for mean time to failure

(MTTF) of the Weibull distribution (λ1 =
Γ( 1

α
+1)

MTTF
) with data from a

reliability data handbook (Hauge et al., 2013). The value of λ2 is also
selected based on data from a reliability data handbook for similar
installations (Hauge et al., 2013). Typical repair delays can range
between 1 week and 2 months. For the purpose of this analysis, Tr
is assumed to be 1 month (730 h). The mission time is set as 5 years,
T, as discussed above. We also consider a periodic and non-periodic
testing strategy for a period of 5 years:

• Periodic testing is carried out with constant intervals
between the tests.
• Non-periodic testing is carried out with non-constant intervals

between the tests.

To keep the assessment of unavailability consistent, we consider
the time of the first test to be the same for both periodic and
non-periodic testing. This is to ensure consistency from the second
interval because the unavailability due to repairs of revealed failures
in the first interval is carried over and considered a part of the second
interval (Equation 14; Equation 15). The first test is assumed to be
after 6 months (4,380 h).

For periodic testing with intervals of 1 year (8,760 h), the
following are the test times: T1 = 4,380 h, T2 = 13,140 h, T3 =
21,900 h, T4 = 30,660 h, T5 = 39,420 h, and T6 = 43,800 h. For non-
periodic testing, we consider decreasing test intervals of 17,520 h,
13,140 h, and 8,760 h after the first test as follows: T1 = 4,380 h, T2
= 21,900 h, T3 = 35,040 h, and T4 = 43,800 h.
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4.1 Instantaneous unavailability analysis

We analyze the unavailability of the system for both 1oo1
and 1oo2 systems using Equations 12–21. We consider different
cases as follows:

• Case 1. 1oo1 configuration tested with periodic and non-
periodic test strategies without repair delays
• Case 2. 1oo2 configuration tested with periodic and non-

periodic test strategies without repair delays
• Case 3. 1oo1 configuration tested with periodic and non-

periodic test strategies with repair delays
• Case 4. 1oo2 configuration tested with periodic and non-

periodic test strategies with repair delays

From Figure 3, we observe the general trend for the
unavailability as a linear increase for a 1oo1 system and a non-linear
increase for a 1oo2 system.

For the 1oo1 configuration, the instantaneous unavailability
increases with subsequent test intervals, with the highest point
reached just before the fifth test at 39,420 h with periodic testing.
On the other hand, the non-periodic testing has a decreasing
instantaneous unavailability in subsequent intervals after the second
interval in keeping with the decreasing test intervals, with the
highest point reached just before the second test (Figures 3A, C).

For a 1oo2 system, the trend is similar for both periodic andnon-
periodic test intervals. The instantaneous unavailability increases
with subsequent test intervals, with the peak coming just before the
fifth test for the periodic test and at the end of the mission time for
non-periodic testing with no repair delays (Figure 3B). However, in
the case with repair delays, both periodic and non-periodic reach
their peak unavailability just before the repair is completed following
the last test within the mission time (Figure 3D).

In terms of reliability, the 1oo1 configuration with no repair
delays achieves SIL 2 for all the intervals except the fifth test interval
with periodic testing. With non-periodic testing, SIL 2 is achieved
onlywithin the first interval, with the rest of the interval reaching SIL
1. On the other hand, considering repair delays, both test strategies
achieve SIL 1 for all intervals except the first (both strategies) and
the last (periodic testing only) intervals.

For a 1oo2 system, SIL 3 is achieved for all intervals for both
periodic and non-periodic test intervals without repair delays. With
repair delay, SIL 2 is reached from the third and fourth test intervals
for non-periodic and periodic test strategies, respectively, and it
returns to within SIL 3 for the remainder of the mission time
following the penultimate test.

4.2 Average unavailability analysis

Although the instantaneous unavailability shows the trend for
unavailability, the average unavailability gives a measure of the
expected proportion of time the system is unavailable within a given
period. We consider two analyses of the average unavailability:

1. Test intervals. As we saw in Section 4.1, the rate of increase
of the instantaneous unavailability is different for different test
intervals influenced by the test strategy. Therefore, we analyze
the average unavailability for the different intervals.

FIGURE 3
Comparison of instantaneous unavailability for periodic and
non-periodic test intervals for (A) Case 1, (B) Case 2, (C) Case 3, and
(D) Case 4.

2. Mission time. It could also be interesting to consider the
entire mission time for the system. This is particularly
useful for selecting a strategy that gives an overall lower
unavailability.
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4.2.1 Test intervals
We analyze the average unavailability for both 1oo1 and 1oo2

configurations for different test intervals using Equations 23–28 and
for the same cases as in Section 4.1.

The results show that generally, the periodic test strategy
gives lower average unavailability than the non-periodic
testing strategy (Figure 4); however, both strategies achieve a
minimum SIL2 for a 1oo1 system and a minimum SIL3 for a 1oo2
system for all intervals.

The decreasing test intervals of the non-periodic strategy are
reflected in the decreasing average unavailability from the second
interval for subsequent intervals for a 1oo1 set-up, as illustrated in
Figures 4A, C. However, this is not the case with the 1oo2 set-up, as
the average unavailability increases for subsequent intervals, albeit
the difference gradually reduces with the decreasing non-periodic
test intervals (Figures 4B, D).

Given a SIL target of SIL2 for a 1oo1 and SIL3 for a 1oo2 set-
up, the non-periodic testing strategy gives a better option from an
economic perspective, as the number of tests is reduced. On the
other hand, a target PFDavg may be given, and more frequent testing
may therefore become necessary to meet the target. In this case, the
periodic testing strategy becomes desirable.

4.2.2 Mission time
In this section, we consider the entire mission time for the

system. We analyze the average unavailability for the entire mission
time, considering different testing strategies using Equation 29.
We also compare for repair delays and with no repair delays. The
following testing strategies are used:

• Strategy 1. Periodic test intervals (1 year): T1 = 4,380 h, T2 =
13,140 h, T3 = 21,900 h, T4 = 30,660 h, T5 = 39,420 h, and
T6 = 43,800 h
• Strategy 2. Periodic test intervals (1.5 years): T1 = 4,380, T2 =

17,520, T3 = 30,660, and T4 = 43,800
• Strategy 3. Periodic test intervals (2 years): T1 = 4,380 h, T2 =

21,900, T3 = 39,420, and T4 = 43,800
• Strategy 4. Non-periodic test intervals (decreasing). T1 =

4,380 h, T2 = 21,900 h, T3 = 35,040 h, and T4 = 43,800 h.
• Strategy 5. Non-periodic test intervals (increasing). T1 =

4,380 h, T2 = 13,140, T3 = 26,280, and T4 = 43,800
• Strategy 6. Non-periodic test intervals (mixed). T1 = 4,380, T2

= 21,900, T3 = 30,660, and T4 = 43,800

Strategies 1–3 are variants of periodic testing with intervals of
1 year, 1.5 years, and 2 years, respectively. Strategies 4–6 are variants
of non-periodic testing with decreasing test intervals (i.e., intervals
between subsequent tests decrease, Tn −Tn−1 < Tn−1 −Tn−2 for n ≥
3), increasing test intervals (i.e., intervals between subsequent
tests increase, Tn −Tn−1 > Tn−1 −Tn−2 for n ≥ 3) and mixed test
intervals (i.e., the interval between subsequent tests increases,
then the following interval decreases, T1 −T0 < T2 −T1 > T3 −T2),
respectively.

Figure 5 shows the results for the different strategies. Generally,
with periodic testing, the unavailability increases with the length of
the interval between the tests for both 1oo1 and 1oo2 configurations
and for both delays before repair and without delays. For non-
periodic testing, the three strategies (4–6) have similar performance
trends for the 1oo2 set-up and for the 1oo1 set-up without repair

FIGURE 4
Comparison of average unavailability for periodic and non-periodic
test intervals for (A) Case 1, (B) Case 2, (C) Case 3, and (D) Case 4.

delays. For this group, the decreasing test interval (Strategy 4)
gives the lowest unavailability, while the increasing test (Strategy
5) interval gives the highest unavailability. For a 1oo1 set-up
with a repair delay, the decreasing interval (Strategy 4) gives the
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FIGURE 5
Average unavailability for the entire mission time for (A) 1oo1 and (B)
1oo2 systems.

highest unavailability, while themixed test interval (Strategy 6) gives
the lowest.

4.3 Effect of parameters on unavailability

In this section, we examine the effect of different parameters
on the average unavailability of the system for both 1oo1 and 1oo2
configurations with periodic and non-periodic testing strategies.
Based on their performance, Strategy 1 is selected for periodic
testing, and Strategy 4 is selected f or non-periodic testing. The
strategies are described in Section 4.2.2.

4.3.1 Combined effect of λ1 and repair delay (Tr)
We examine the combined effect of λ1 and repair delay Tr on

the average unavailability of the system. The value of λ1 ranges from
10−7 to 10−5, while the value of Tr ranges from 0 h to 1,460 h. Other
parameters are given in Section 4.

Figure 6 shows the result of the analysis. On the y-axis, we have
λ1, and on the x-axis, we have Tr. The color bar indicates the range
of the average unavailability (log scaled).

For periodic testing strategies (Figures 6A, B), a change in SIL
occurs at high values of λ1 for the given range of Tr. For instance,
for the 1oo1 set-up, the unavailability changes from SIL 2 to SIL1
at λ1 > 9.7 ⋅ 10

−6 when Tr = 0 and at λ1 > 8.3 ⋅ 10
−6 when Tr = 1,460.

For a 1oo2 set-up, the change from SIL 3 to SIL 2 occurs at λ1 >
9.6 ⋅ 10−6 when Tr = 0, similar to the 1oo1 set-up, and it changes at
λ1 > 8.9 ⋅ 10−6 when Tr = 1,460. Based on these values, repair delays

FIGURE 6
Effect of λ1 and repair delay (Tr) on average unavailability for (A) a 1oo1
set-up with periodic testing, (B) a 1oo2 set-up with periodic testing,
(C) a 1oo1 set-up with non-periodic testing, and (D) a 1oo2 set-up
with non-periodic testing.

of up to 2 months (1,460 h) can be tolerated when employing the
periodic test strategies as long as λ1 < 8.3 ⋅ 10−6 for a 1oo1 set-up and
λ1 < 8.9 ⋅ 10−6 for a 1oo2 set-up, given that all other parameters are
maintained.
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For non-periodic test strategies (Figures 6C, D), the threshold
for λ1 is lower for changes in SIL. For a 1oo1 set-up, the threshold
is at 7.1 ⋅ 10−6 for Tr = 0 and 6.1 ⋅ 10−6 for Tr = 1,460. For a 1oo2
set-up, Tr appears to have little effect on average unavailability with
the threshold at 8.7 ⋅ 10−6 for Tr = 0 and at 8.4 ⋅ 10−6 for Tr = 1,460.
Based on these values, repair delays up to 2 months (1,460 h) are
tolerable with non-periodic test strategies as long as λ1 < 6.1 ⋅ 10−6

for a 1oo1 set-up and λ1 < 8.4 ⋅ 10−6 for a 1oo2 set-up, given that all
other parameters are maintained.

In summary, for the 1oo1 set-up, while the non-periodic strategy
reduces the number of tests, which in turn reduces the number of
stoppages, saves costs, and reduces production losses, the threshold
for λ1 is much lower than it is for periodic testing. In deciding the
strategy for this set-up, the operator must make a trade-off from an
economic perspective. If λ1 exceeds the given threshold for the non-
periodic strategy, some risk-reducing measure can be put in place
to compensate for the increase in λ1. First, the length of the repair
delay can be reduced; however, this can be expensive as the length
of delays is often tied to the availability of maintenance resources.
For instance, having a repair vessel on standby, whether needed or
not, can reduce repair delays but comes at an extra cost compared
to booking one when needed, which will be subject to availability
and thus can lengthen repair delays. Another measure can be a
partial upgrade of parts of the system to reduce the failure rate. The
cost of implementing these measures is then compared to the cost
of switching to the periodic test strategy, which will involve more
testing, resulting in more test costs, stoppages, and production loss.
For a 1oo2 set-up, non-periodic testing seems more desirable from
an economic perspective as the number of tests is reduced while also
maintaining a high threshold for λ1.

4.3.2 Combined effect of λ2 and repair delay (Tr)
Here, we look at the effect of λ2 and Tr on average unavailability

while keeping λ1 constant. As with the previous section, λ2 ranges
from 10−7 to 10−5 while Tr ranges from 0 to 1,460.

From Figure 7, we see that average unavailability is more
sensitive to changes in λ2 than λ1 in the previous section, with values
ranging from SIL 1 to SIL 3 for a 1oo1 set-up with periodic testing,
SIL 1 to SIL 2 for a 1oo1 set-up with non-periodic testing, and SIL
1 to less than SIL 4 for a 1oo2 set-up with both testing strategies.
Assuming a minimum requirement of SIL2 for a 1oo1 set-up and a
minimum requirement of SIL3 for a 1oo2 set-up, adopting periodic
testing requires a maximum threshold for λ2 between 2.5 ⋅ 10−6 to
1.9 ⋅ 10−6 as Tr increases from 0 h to 1,460 h for a 1oo1 set-up and
between 2.3 ⋅ 10−6 to 2.0 ⋅ 10−6 for a 1oo2 set-up.

The threshold is lower for the non-periodic test strategy and
requires λ2 to be less than values between 1.5 ⋅ 10−6 to 1.3 ⋅ 10−6 as Tr
increases from 0 h to 1,460 h for a 1oo1 set-up and between 2.0 ⋅ 10−6

and 1.9 ⋅ 10−6 for a 1oo2 set-up.
A lower threshold for λ2 means lower tolerance for failure

occurrence. For selection of test strategy, the non-periodic test
strategy can tolerate repair delays of up to 2 months as long as λ2
can be kept below 1.3 ⋅ 10−6 and 1.9 ⋅ 10−6 for a 1oo1 and a 1oo2 set-
up, respectively. The periodic test strategy, on the other hand, has a
threshold of 1.9 ⋅ 10−6 and 2.0 ⋅ 10−6 for a 1oo1 and a 1oo2 set-up,
respectively, for the same conditions. Therefore, the non-periodic
test strategy is desirable for a 1oo2 set-up because the threshold is

FIGURE 7
Effect of λ2 and repair delay (Tr) on average unavailability for (A) a 1oo1
set-up with periodic testing, (B) a 1oo2 set-up with periodic testing,
(C) a 1oo1 set-up with non-periodic testing, and (D) a 1oo2 set-up
with non-periodic testing.

similar to that of the periodic strategy. For a 1oo1 set-up, a trade-
off must be made between implementing measures to reduce λ2
(occurrence of fFM2) or switching to periodic testing. It must be
noted, however, that switching to periodic testing does not offer
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a significant improvement in terms of increased threshold for λ2,
and it is only desirable to switch if improving the reliability of the
component with respect to FM2 is more expensive than running
more tests.

4.3.3 Combined effect of λ1 and λ2
In this section, we analyze the effect of λ1 and λ2 on average

unavailability while keeping Tr constant. Both λ1 and λ2 range from
10−7 to 10−5. The range of values for these parameters is chosen
arbitrarily to encompass the relevant parameters of the study case.
These values serve to illustrate how changes in the said values will
affect the resulting average unavailability.

The result in Figure 8 shows average unavailability ranging from
SIL 1 to SIL 3 for a 1oo1 set-up and from SIL 1 to below SIL 4 for a
1oo2 set-up.

To determine the threshold for minimum SIL requirement, we
first look at the maximum tolerable value for λ2 at the lowest value
of λ1 in our range. This value is 2.1 ⋅ 10−6 for a 1oo1 and 2.3 ⋅ 10−6 for
a 1oo2 set-up, respectively. Next, we look at the maximum tolerable
value for λ1 at these values of λ2. We have 3.8 ⋅ 10−6 and 2 ⋅ 10−6 for
a 1oo1 and a 1oo2 set-up, respectively. This means given Tr = 730,
we will always meet the minimum SIL requirement with periodic
testing as long as λ1 ≤ 3.8 ⋅ 10−6 and λ2 ≤ 2.1 ⋅ 10−6 for a 1oo1 set-up
and λ1 ≤ 2 ⋅ 10−6 and λ2 ≤ 2.3 ⋅ 10−6 for a 1oo2 set-up. It is important
to note that the minimum SIL requirement can still be met at higher
values of λ1 but will require significantly lower values of λ2. On the
other hand, exceeding the given threshold of λ2 will result in failure
to meet the required target.

For a non-periodic test strategy, the threshold is at λ1 ≤ 2.1 ⋅ 10−6,
λ2 ≤ 1.4 ⋅ 10−6 for a 1oo1 set-up and λ1 ≤ 3.3 ⋅ 10−6, λ2 ≤ 1.9 ⋅ 10−6 for
a 1oo2 set-up.

This result shows that FM2 has a significantly higher impact on
average unavailability than FM1. In terms of reliability performance
improvement, efforts should be made to reduce the occurrence of
FM2; otherwise, more frequent testing should be adopted. On the
other hand, if λ2 can be kept low, a non-periodic test strategy will be
suitable to meet the required target while reducing costs.

5 Monte Carlo simulation for
verification

A Monte Carlo simulation (MCS) is applied to verify the
proposed analytical formulations. The simulation is performed
with codes written using the Python programming language. The
simulation procedures for a 1oo1 and a 1oo2 system are briefly
described below.

5.1 Monte Carlo simulation model for a
1oo1 system

We define the following variables for the simulation: t (global
simulation time), TFM1 and TFM2 (time of occurrence of FM1
and FM2, respectively), Ttest (time of test), TI (test intervals),
Tr (calendar time of repair), TFail (calendar time of system failure),
sysFailed (logical state of the system; 0 if the system is working and

FIGURE 8
Effect of λ1 and λ2 on average unavailability of (A) a 1oo1 set-up with
periodic testing, (B) a 1oo2 set-up with periodic testing, (C) a 1oo1
set-up with non-periodic testing, and (D) a 1oo2 set-up with
non-periodic testing.

1 if the system failed), CumFail (cumulative time system spends in a
failed state).

1. Initialize the system and system characteristics and relevant
variables: sysFailed = 0, t = 0, Ttest = TI, and Tr = inf (infinity).
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TABLE 2 Average unavailability (UA) for different test intervals.

Proof test interval (h) UA

1oo1 set-up 1oo2 set-up

Analytical formulation MCS model Analytical formulation MCS model

8,760 5.04E−03 5.03E−03 2.27E−04 3.31E−05

13,140 7.18E−03 7.26E−03 3.27E−04 6.81E−05

17,520 8.85E−03 9.79E−03 3.76E−04 1.13E−04

2. Draw time until occurrence of each failure mode: TFM1 = T
∼Weib(α,λ1) and TFM2 = T ∼ Expon(λ2).

3. Select the next transition time: t =min{TFM1, TFM2, Ttest, Tr}
4. Update the variables and system statistics as

relevant depending on the selected event as
follows:
i. if t = TFM1 or t = TFM2, the system will fail if it is not

already in a failed state.Thus, if sysFailed = 0, then sysFailed
= 1, TFail = t, and TFM1 or TFM2 = inf.

ii. if t = Ttest: we check if the system is in a failed state
and activate repair. Thus, if sysFailed = 1, then Tr = t +
repairDelay.The next test time then becomes Ttest = t + TI.

iii. if t = Tr, the repair is completed, and sysFailed = 0. Next, the
repair time is set to infinity (Tr = inf). We update the time
the system spent in a failed state: CumFail = CumFail + (t −
TFail). Finally, we draw next time until failure occurrence
of each failure mode: TFM1 = t + T ∼Weib(α,λ1), TFM2 =
t + T ∼ Expon(λ2).

5. We repeat steps 3 and 4 until the simulation time, t, is greater
than the time horizon (mission time) under consideration.

6. Then, we repeat all the steps for a sufficient number of
simulations, N.

7. The average unavailability is then calculated as the total time
the system spends in the failed state divided by the product
of the mission time and number of simulations (N), UAMCS =

CumFail
missionTime⋅N

5.2 Monte Carlo simulation model for a
1oo2 system

The model for the 1oo2 system is similar to that of 1oo1
except with added variables to reflect the added component in the
system. In addition to the variables defined above, we introduce
the following variables: C1Failed and C2Failed to represent the
logical state of the components similar to the variable sysFailed. In
addition, we have TC1FM1 and TC1FM2 (for time to occurrence
of FM1 and FM2, respectively) for component 1 and TC2FM1 and
TC2FM2 (for time to occurrence of FM1 and FM2, respectively) for
component 2.

The steps are as follows:

1. Initialize the systemand system characteristics and the relevant
variables: C1Failed = 0, C2Failed = 0, sysFailed = 0, Ttest = TI,
and Tr = inf.

2. Draw time until occurrence of the failure modes for each
component: TC1FM1 ∼Weib(α,λ1), TC1FM2 ∼ Expon(λ2),
TC2FM1 ∼Weib(α,λ1), and TC2FM2 ∼ Expon(λ2).

3. Select the next transition time: t = min{TC1FM1, TC1FM2,
TC2FM1, TC2FM2, Ttest, Tr}.

4. Update the variables and system statistics as relevant
depending on the selected event as follows:
i. if t = TC1FM1 or t = TC1FM2, then if C1 = 0, C1 then

becomes 1, and TC1FM1 or TC1FM2 is set to infinity
as relevant.

ii. if t = TC2FM1 or t = TC2FM2, then if C2 = 0, C2 then
becomes 1, and TC2FM1 or TC2FM2 is set to infinity
as relevant.

iii. if t = Ttest: we check for component failure and activate
repair if any component is in a failed state.Thus, if C1Failed
= 1 or C2Failed = 1, then Tr = t + repairDelay. The next test
time then becomes Ttest = t + TI.

iv. if t = Tr, the repair is completed. The time of the next repair
is set to infinity (Tr = inf) and:
• if sysFailed = 1, then sysFailed = 0, and CumFail =

CumFail + (t − Tfail)
• if C1Failed = 1, then C1Failed = 0, and we draw

time until the occurrence of the next failure of
component 1.
• if C2Failed = 1, then C2Failed = 0, and we draw time

until the occurrence of the next failure of component 2.

v. we check for system failure: if C1Failed = 1 and C2Failed =
1 and sysFailed = 0, then sysFailed = 1, and Tfail = t.

vi. we repeat steps 3 to 5 until simulation time, t, is
greater than the time horizon (mission time) under
consideration.

vii. then we repeat all steps for a sufficient number of
simulations, N.

viii. we calculate the average unavailability as described in the
previous section.

The results of the simulation are shown in Table 2. The
number of simulations for a 1oo1 and a 1oo2 set-up is kept
fixed at N = 1x107. The results from the simulations are closed
to that of the numerical results from the analytical formulas
for a 1oo1 set-up. For the 1oo2 set-up, the analytical formulas
are slightly higher but provide a conservative result. Compared
to MCS, the analytical formulas provide faster computation
time.
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6 Conclusion and further works

In this paper, we have explored the analysis of unavailability
for the final element of an SIS operating in a subsea environment
and subject to heterogeneous failuremodes. Analytical formulations
have been developed to incorporate degradation and random
failures in the assessment. Furthermore, delays following tests have
been incorporated in these formulations to examine the impact of
delayed repair on system unavailability. The Weibull distribution
has been adopted to model the degradation of the component,
while the exponential distribution has been adopted to model
random failures.

We focus on the HIPPS valves in the case study. Analyses
are done for the time-dependent unavailability and average
unavailability for different testing strategies. The results show that
the periodic testing strategy generally gives lower unavailability,
although it requires more testing to be carried out than a non-
periodic testing strategy.However, both strategies are likely tomeet a
given SIL target, making the non-periodic strategy a more desirable
option from an economic perspective. The effects of the parameters
were also studied for both strategies. The selection of a strategy
should be made based on the reliability of the valves in terms of
failure occurrence, paying particular attention to random failures
(FM2). Another issue to consider is the availability of maintenance
resources, which will impact the length of the repair delay.

The work done in this paper is limited to full-proof tests only.
Partial tests have been shown to improve the reliability performance
of an SIS. An extension of this work will be to incorporate partial
tests into the formulation. Another issue that can be considered is
the incorporation of common cause failures, as the components in
this work are assumed to be independent.
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