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Controlling variable wind speed turbine (VWT) system based on a doubly-fed
induction generator (DFIG) is a challenging task. It requires a control law that is
both adaptable and robust enough to handle the complex dynamics of the closed
control loop system. Sliding mode control (SMC) is a robust control technology
that has shown good performance when employed as a passive fault-tolerant
control for wind energy systems. To improve the closed control loop of VWT
based on DFIG with the aim of improving energy efficiency, even in presence of
nonlinearities and a certain range of bounded parametric uncertainties, whether
electrically or mechanically, an adaptive passive fault tolerant control (AP-FTC)
based on a self-tuning fractional integral sliding mode control law (ST-FISMC)
developed from a novel hyperbolic fractional surface is proposed in this paper.
ST-FISMC introduces a nonlinear hyperbolic function into the slidingmanifold for
self-tuning adaptation of control law, while fractional integral of the control law
smooths discontinuous sign function to reduce chattering. Additionally, this work
introduces an adaptive observer, developed and proved based on a chosen
Lyapunov function. This observer is designed to estimate variations in
electrical parameters and stator flux, ensuring sensorless decoupling in
indirect field- oriented control (SI-FOC) of DFIG. Lyapunov theory is also used
to prove stability of states vectors in closed control loop with presence of
bounded parameters uncertainties or external disturbances. Simulation results
show that the proposed approach offers better performance in capturing optimal
wind energy, as well as the ability to regulate active/reactive power and high
resilience in presence of occurring parameter uncertainties or external
disturbances.
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1 Introduction

The demand for electrical energy is increasing worldwide due to
its essential role in modern-day living. It is necessary for economic,
social, and industrial development in all countries globally, serving
as a key indicator used to measure development gaps between
regions. As a result, global electricity consumption reached
25,530 TWh by 2022 (Ammar et al., 2019). This increasing
demand presents a significant challenge for sustainable
development while raising concerns about the depletion and
ecological impact of traditional fossil fuels like petroleum, natural
gas, and coal, which have been the primary sources for electricity
production.

To address these concerns, many countries are exploring clean
and renewable energy sources to meet their energy needs (Meghni
et al., 2017; Kamal and Ibrahim, 2018). Among these options, wind
energy has emerged as a particularly promising choice (Durgam
et al., 2022; Dhanraj et al., 2022a; Dhanraj et al., 2022b; Abdelrahim
and Almakhles, 2023; Jaikrishna et al., 2023; Sethi et al., 2023;
Kesavan et al., 2024). As a result, the installation of wind energy
systems has experienced significant growth, especially over the last
decade (Saha et al., 2022). The total installed wind energy capacity in
the world increased from 31 GW in 2002 to 283 GW in 2012,
reaching a final statistic of 906 GW by the end of 2022 (Global
Electricity Consumption, 2022; Global Wind Energy Council, 2022).

Wind power conversion system is based on converting a portion
of kinetic energy extracted from wind into electrical energy using a
generator. There are two main types of wind turbines based on their
mode of operation: fixed-speed wind turbines and variable-speed
wind turbines. Currently, variable-speed wind turbines are the most
commonly used type due to their numerous advantages over fixed-
speed wind turbines. These advantages include a reduction in stress
on mechanical structure, reduced acoustic noise, and provide ability
to directly control active and reactive power (Mazare, 2024).

Variable wind speed turbines (VWT) require a generator that
operates at variable speed, such as doubly fed induction generator
(DFIG). This technology has gained popularity due to its cost-
effectiveness, simple structure, robustness, and high energy
efficiency (Benbouhenni et al., 2024). It enables variable-speed
operation within a range of approximately ±30% around the
synchronous speed, leading to lower converter costs, reduced
power losses, and complete control over active and reactive
power (Eskandari et al., 2023).

Despite advantages of VWT the fluctuating nature of wind
introduces external disturbances that can cause deviation
overactive operating point of DFIG (Gao et al., 2024).
Consequently, this has the potential to result in electrical or
mechanical failures in wind power conversion system (Jiang
et al., 2024), affecting its overall performance and reliability
(Mechter et al., 2016). It’s worth noting that approximately 18%
of wind turbine failures are attributed to generator issues
(Kamarzarrin et al., 2022). Therefore, numerous studies have
been conducted to enhance the closed control loop of wind
power conversion systems and improve their power production
performance (Majout et al., 2024). Proportional-integral (PI) control
law has been extensively integrated into the rotor side converter
control (RSC) in various studies (Azar and Serrano, 2015; AL-
Wesabi et al., 2024; Kalel and Raja Singh, 2024). However, in spite of

their relative ease of implementation, these methods are not highly
effective in efficiently controlling faulty wind power conversion
systems. As a result, researchers have developed various control
methods based on more efficient and robust modern control
techniques, implementing them using different strategies to
enhance the performance of wind power conversion systems.
These include intelligent control methods such as fuzzy logic
control (Dida et al., 2020; Chakraborty and Maity, 2023),
neuronal control (Mahmoud et al., 2016; Ponce et al., 2018;
Naresh et al., 2020; Benbouhenni et al., 2024), predictive control
(Messadi et al., 2015; Messadi and Mellit, 2017; Takhi et al., 2022),
and adaptive control (Bhattarai et al., 2016; Lin et al., 2018; Yuan
et al., 2018).

Fault tolerant control (FTC) is a commonly employed strategy
for controlling faulty systems, aiming to ensure system availability
and reliability while maintaining stability and precision. There are
two main types of FTC: active and passive.

Active FTC involves designating a dynamic block for fault
detection and isolation (FDI), followed by reconfiguring the
control law to correct the system in response to detected faults.
Various control schemes have been proposed, such as an augmented
observer-based approach (Wang and Shen, 2019) and a linear
parameter variant (LPV) approach (Shi and Patton, 2015) for
fault detection in offshore wind turbine models. Additionally, a
nonlinear observer has been developed for sensor fault detection and
diagnosis (Xiahou et al., 2019). Intelligent fault-tolerant control
methods have been also employed, such as extreme learning
machines for online monitoring (Abdelmalek et al., 2018), and
development of fuzzy Takagi-Sugeno observers. A comprehensive
review of fault detection and isolation schemes in wind turbines can
be found in Saha and Singh (2019).

On the other hand, passive fault-tolerant control does not
require fault detection or reconfiguration of the control law. It
involves applying a single control law, typically based on robust
control methods to both healthy and faulty systems (Djeghali et al.,
2013). For instance, Mechter et al. (2016) proposed backstepping
control for wind turbine with an uncertain DFIG. Bossoufi et al.
(2014) developed a robust adaptive backstepping control approach,
Reddak et al. (2016) introduced a new integral backstepping control,
and robust H∞ method was used in Bakou et al. (2019) for fault-
tolerant control of wind turbines.

In addition to the above-mentioned methods, sliding mode
control (SMC) is a well-known passive FTC method, it has been
widely used for its simplicity of implementation and robustness
against parameter variations, external disturbances, as well as high
coupling and nonlinear dynamic controlled system. Despite its
simplicity, SMC can effectively handle sophisticated higher-order
nonlinear dynamics by controlling a first-order system rather than
an nth order system (Singh et al., 2017).

The concept of SMC was initially proposed by Russian
mathematician Vladimir V. Emelyanov in the 1960s as part of
the theory of variable structure systems (Emelyanov, 1967).
Subsequently, Russian mathematician, Vadim Utkin, developed a
modern formulation of SMC in the late 1970s and early 1980s
(Poznyak and Orlov, 2023). Since then, SMC has been extensively
studied and developed by researchers and has found applications in
various engineering domains such as aerospace (Hace, 2019),
automotive, including electric vehicles, hybrid vehicles, and
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autonomous vehicles (Saadaoui and Ouassaid, 2024). It has also
been used in stabilization and synchronization of chaotic systems
(Zhang et al., 2022), chemical processes (Vásquez et al., 2023), and
biomedical engineering (Ahmad et al., 2017). SMC has proven to be
efficient when applied in the field of renewable energy, particularly
in controlling bothmechanical and electrical components of variable
wind power conversion systems (Zholtayev et al., 2022).

In SMC, the key concepts of attractivity, equivalent control,
and dynamics are employed to achieve the main objective of
attracting the controlled system’s state variables toward a specific
sliding manifold from any initial conditions. Once reaching
motion is achieved, the system smoothly transitions into a
sliding mode, where it dynamically slides along the sliding
surface towards the desired equilibrium point. SMC technique
ensures stability of system even in presence of disturbances.
However, it’s important to note that sliding motion is
achieved by using a discontinuous function, such as sign
function in switching control law, which can lead to an
undesirable phenomenon called chattering, especially at high
frequencies.

To mitigate chattering, various solutions have been proposed in
the literature, such as replacing sign function by saturation function
or a tangent hyperbolic function to smooth the switching surface.
Other approaches propose the use of adaptation gain in
discontinuous control law, as well as the combination of
intelligent control techniques, such as fuzzy logic control with
sliding mode control (Eskandari et al., 2023). Sepestanaki et al.
(2024) developed a new strategy that uses an adaptive continuous
barrier function to remove chattering and steady-state error, and it
has been successfully applied in the synchronization and
stabilization of chaotic systems. In context of advanced control
strategies, fractional calculus emerges as a prevalent strategy in
control law synthesis for integer-order systems. It has gained
wide adoption across various fields due to its ability to enhance
stability and improve performance (Rabah and Ladaci, 2017).

This paper proposes an adaptive passive fault-tolerant control
(AP-FTC) based on a new self-tuning fractional integral sliding
mode control (ST-FISMC). The proposed approach has the
following key contributions:

(a) Improve the closed control loop of the DFIG-based VWT to
enhance energy efficiency, even with non-linearities and
limited parameter uncertainties (electrical or mechanical).

(b) Automatically adapt the control law by adjusting the power
rate and gain of a hyperbolic function. This enables the system
to maintain stability when disturbances occur, using a non-
linear terminal hyperbolic cosine function of the tracking
error in the sliding surface.

(c) To further enhance stability and minimize undesired
chattering, fractional derivatives and integrals are
integrated into the control law synthesis, instead of relying
solely on integer-order derivatives and integrals.

(d) An adaptive observer in the d-q (direct-quadrature) reference
frame is used to estimate the stator flux, enabling sensorless
decoupling in the sensorless indirect field-oriented control
(I-FOC) to avoid using a flux sensor in the closed-
loop feedback.

It is worth noting that the hyperbolic cosine function has already
demonstrated its effectiveness in achieving self-tuning adaptation of
gains in classical PID control (Mohan et al., 2018).

The paper is organized as follows: Section 2 presents proof of the
proposed control law using Lyapunov theory for a general nonlinear
uncertain system. Sections 3, 4 discuss mathematical modeling of
both healthy and faulty VWT and DFIG. Based on the proposed
approach, the control laws for mechanical rotational speed and
stator active and reactive power of DFIG in d-q frame are developed
in Section 5. Section 6 provides a proof of an adaptive observer and
the estimation of electrical parameters using a chosen Lyapunov
function. Simulation results and discussion are presented in Section
7. Finally, Section 8 concludes the paper.

2 Design of the proposed control law

2.1 Design of classical sliding mode control

Consider a nonlinear uncertain system described as follows:

_x t( ) � F x( ) + Bu t( ) + ψ t( ) (1)
where: x(t) � [x1, x2, . . . . . . xn (t)]T is the state vector, and u(t) is a
control input vector. F(x) is the smooth vector field, and B is the
input matrix of the system described respectively as: F(x) � f(x) +
Δf(x) and B � b + Δb. Considering f(x) and b as nominal parts
representing healthy system, while Δf(x) and Δb account for
unmodeled dynamics and bounded parameter uncertainties that
can deviate system from its nominal values, potentially leading to
faulty behavior. Additionally, the system may also experience
unknown bounded external disturbances denoted by ψ(t).

The goal is to design a robust control law that allows state vector
to converge asymptotically to an equilibrium point from any initial
condition within a finite time and sustain this convergence even in
presence of bounded parameters uncertainties or disturbances. To
achieve this, the paper chooses to use SMC due to its robustness and
ease of implementation, where the conception of classical SMC law
is mainly based on two steps.

Initially, the design of a sliding surface is required. According to
a general law proposed by Slotine and Li (1991), the general form of
sliding surface is described as follows in Equation 2:

S t( ) � d

dt
+ λ( )n−1

e t( ) (2)

where: λ is a positive constant, e(t) � x(t) − xd(t) is the tracking
error between state vector x(t) and the desired state xd(t).

The second step consists of differentiating the chosen sliding
surface and extracting SMC law expressed as follows in Equation 3:

u t( ) � uequi t( ) + udisc t( ) (3)

where: uequi(t) represents the equivalent control law part that ensure
asymptotic conversion of states vector to the desired states in a finite
time. While discontinuous part udisc(t) allows states vector to
oscillate around the desired state by using a switching term
described usually as follows in Equation 4:

udisc t( ) � −k p sign S t( )( ) (4)
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k is a positive constant called switching gain.
Even if this command has proven its effectiveness in terms of

robustness, it must be noted that it has a major inconvenience
called chattering. This issue is mainly attributed to the use of sign
function, especially when increasing switching gain k to enhance
stability in presence of bounded uncertainties or external
disturbances. In response to this challenge, this paper
proposes a robust self-tuning fractional integral sliding mode
control (ST-FISMC). The aim is to mitigate chattering
phenomenon and adeptly manage the impact of occurring
bounded uncertainties.

2.2 Design of self-tuning fractional integral
sliding mode control

2.2.1 Preliminaries on fractional calculus
There are several definitions in the literature on fractional

calculus for the fundamental fractional operator D∝ , however
the most used are:

2.2.1.1 Riemann–Liouville (R-L)
R-L derivative and integration of order α is given as (Ko et al.,

2008) in Equations 5, 6:

D∝
t f t( ) � d∝

dtα
f t( ) � 1dm

Γ m − ∝( )dtm ∫
t

t0

f τ( )
t − τ( )∝−m+1 dt (5)

With: m − 1< α≤m, m ∈ N

D−∝
t f t( ) � Iαt f t( ) � 1

Γ ∝( )∫
t

t0

f τ( )
t − τ( )1−∝ dt (6)

Where: α ∈ R+, t0 is the initial time and Γ(.) Is the Gamma

function which is defined by: Γ(z) = ∫∝
t0

tz−1e−tdt

2.2.1.2 Caputo definition
Caputo’s fractional-order differentiation is defined by (Hu et al.,

2008) in Equation 7:

D∝
t f t( ) � 1

Γ 1 − α( )∫
t

0

f m+1( ) τ( )
1 − τ( )α dτ (7)

Where: α � m + γ, m is an un integer, and 0< γ≤ 1.
Similarly, by Caputo’s definition, the integral is described as in

Equation 8:

D−γ
t f t( ) � 1

Γ γ( )∫
t

0

f τ( )
1 − τ( )1−γ dτ, γ> 0. (8)

2.2.1.3 Oustaloup approximation
In order to use fundamental fractional operator several

approximations to integer order transfer function were
proposed, however in what follows we use Oustaloup filter
approximation to approximate fractional-order differentiator
integration (Monje et al., 2010). A generalized Oustaloup filter
can be designed as in Equation 9:

Gf s( ) � K∏N

k�1
s + ωk′
s + ωk

(9)

where the detailed function MATLAB of Oustasloup filter can be
found in (Monje et al., 2010).

Some proprieties of fractional order:
In order to prove the stability of the proposed fractional control

law, we utilize the following proprieties (Monje et al., 2010):

- The operator of order α = 0, is the identity operator.
- The operator of order must be linear:

Dα a pf z( ) + b p h z( )[ ] � a pDαf z( ) + b pDαh z( ) (10)

- For fractional-order integrals of arbitrary order, R(α)> 0,
R(β)> 0, it holds the additive law of exponents:

Dα Dβ f z( ) � Dα+β f z( ) (11)

2.2.2 Design of the proposed control law
Let us choose self-tuning terminal fractional sliding surface

as follows:

Si t( ) � Dαei t( ) + λ1 ∫ ei t( ) p
q cosh ei t( )( ) + λ2ei t( ) (12)

where: λ1, λ2, p and q are a positive constant. pq is a positive fractional
power rate of the tracking error defined as: 0 < p

q < 1.
Fractional calculus has been chosen to improve the stability of

closed control loop system, and to smoothly discontinues control
law by using fractional integral of control law instead of integer
integral of control. The goal is to vary the integration order of
control law and consequently acting on discontinues control law by
smoothing switching term such us sigmoid function, saturation
function or others functions that can be used. Self-tuning adaptation
of control law is ensured by using a hyperbolic cosine function in the
equivalent control law. Its specific purpose is to reduce time reaching
to the desired equilibrium point, even in the presence of bounded
uncertainties or external disturbances.

Consider the following adaptive passive fractional integral
sliding mode control law Based on sliding surface Equation 12:

Dαui t( ) � 1
b

−Dαf xi( ) +Dα _xdi t( ) − λ1ei t( ) p/

q[
cosh ( ei t( )( ) − λ2f xi( ) − λ2bui t( ) + _xdi t( ) + _Si t( )]

⎧⎪⎪⎨⎪⎪⎩ (13)

Adaptive switching surface is chosen as follows:

_Si t( ) � −kisign Si t( )( ) − β̂iSi t( ) (14)

where: ki is a positive constant gain and β̂i is a positive adaptive gain.
However, it must be noted that the proposed control law is

robust against occurred faults when the following assumption are
satisfied in Equations 15–19.

Assumption 1. Parameter uncertainties of uncertain nonlinear
system and term of occurs external disturbances are supposed to be
bounded, and the following inequalities must be satisfied:

Δf xi( )| |≤ δi, Δbi| |≤ ϵi and ψi t( )∣∣∣∣ ∣∣∣∣≤ εi (15)

where: δi, ϵi and , εi are positives constants.
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Note that the upper bounded of fractional derivatives
of Δf(xi), Δbi and ψi(t) successively are supposed to be
as follows:

DαΔf xi( )| |≤ δpi , DαΔbi| |≤ ϵpi and Dαψi t( )∣∣∣∣ ∣∣∣∣≤ εpi (16)

Assumption 2. By defining the expression of the applied control
law must be bounded, and the following inequalities must
be hold:

ui t( )| |≤ �ui �> Δbiui t( )| |≤ εi�ui (17)

It follows that fractional derivative of the control law will
be bounded:

DαΔbiui t( )| |≤ ϵpi �up
i (18)

Assumption 3. Taking into account inequalities of Assumption 1
and Assumption 2, it follows that:

λ Δf xi( )| | + DαΔf x( )| |≤ λδi + δ*i
λ Δbi| | + DαΔbui t( )| |≤ λϵi + ϵ*i �u*

i λ ψi t( )∣∣∣∣ ∣∣∣∣ + Dαψ t( )∣∣∣∣ ∣∣∣∣≤ λ εi + ε*i
{

(19)
Theorem: consider uncertain nonlinear system Equation 1,

given sliding surface Equation 12 and the fractional control law
Equation 13, then the state vector x(t) will converge
asymptotically to zero.

2.2.2.1 Stability proof
To prove stability of uncertain system Equation 1 using the

proposed control law Equation 13, and to determine adaptive gain of
discontinuous control law, let us consider the following positive
candidate Lyapunov function in Equation 20:

V t( ) � 1
2
S2 + 1

2γ β̂ − β( )2 (20)

Uncertain system Equation 1 will be stable if the following
stability condition is satisfied in Equation 21:

V t( ) p _V t( )≤ 0 (21)
Since V(t) is positive than _V(t) must be proven negative.
Taking the first derivative of candidate Lyapunov function than

Equation 20 becomes in Equation 22:

_V t( ) � S _S + 1
γ
_̂β β̂ − β( ) (22)

By applying properties of fractional calculus, the first derivative
of sliding surface Equation 12 can be obtained as follows:

_e t( ) � _x t( ) − _xd t( ) (23)
_S t( ) � Dα+1e t( ) + λ1e t( ) p /

q cosh e t( )[ ] + λ2 _e t( ) (24)
_S t( ) � Dα _e t( ) + λ1e t( ) p /

q cosh e t( )( ) + λ2 _e t( ) (25)
_S t( ) � Dα f x( ) + Bu t( ) + ψ t( ) − _xd t( )[ ] + λ1 e t( ) p /q

cosh e t( )[ ] + λ2 f x( ) + Bu t( ) + ψ t( ) − _xd t( )[ ]
⎧⎪⎨⎪⎩ (26)

_S t( ) � Dα f x( ) + Δf x( ) + b + Δb( )u t( ) + ψ t( ) − _xd t( )[ ]
+λ1e t( ) p/q cosh e t( )( ) + λ2 f x( ) + Δf x( )[
+ b + Δb( )u t( ) + ψ t( ) − _xd t( )]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(27)

Using proprieties given in Equations 10, 11 we get:

_S t( ) � Dαf x( ) + DαΔf x( ) + bDαu t( ) + DαΔbu t( )
+Dαψ t( ) − Dα _xd t( ) + λ1e t( ) p /q cosh e t( )( ) + λ2f x( )

+ λ2Δf x( ) + λ2bu t( ) + λ2Δbu t( ) + λ2ψ t( ) − λ2 _xd t( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(28)

_S t( ) � Dαf x( ) + bDαu t( ) −Dα _xd t( ) + λ1e t( )p

/

q

cosh e t( )( ) + λ2f x( ) + λ2bu t( ) − λ2 _x
d t( ) + ξ t( )

⎧⎨⎩ (29)

With: ξ(t) is an unknown bounded uncertainty and disturbance
term defined as:

ξ t( ) � DαΔf x( ) + λ2Δf x( ) + DαΔbu t( ) + λ2Δbu t( )
+Dαψ t( ) + λ2ψ t( ){ (30)

By substituting Equation 29 in Equation 22 we obtain:

_V t( ) � S Dαf x( ) + bDαu t( ) − Dα _xd t( ) + λ1e t( ) p /q[
cosh e t( )( ) + λ2f x( ) + λ2bu t( ) − λ2 _xd t( )+ξ t( )]

+1γ
_̂β β̂ − β( )

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(31)

_V t( ) � S −ksign S t( )( ) − β̂S t( ) + ξ t( )[ ] + 1
γ
_̂β β̂ − β( ) (32)

_V t( ) � −k S| | − β̂S2 + Sξ t( ) + 1
γ
_̂β β̂ − β( ) (33)

_V � −k S| | − βS2 + Sξ t( ) − β̂ − β( )S2 + 1
γ
_̂β β̂ − β( ) (34)

To satisfy stability condition Equation 21 the following
conditions must be hold:

_V t( )≤ − k S| | − β S2
∣∣∣∣ ∣∣∣∣ + S| | ξ t( )| |

− β̂ − β( )S2 + 1
γ
_̂β β̂ − β( ) � 0

⎧⎪⎪⎨⎪⎪⎩ (35)

_V t( )≤ − k S| | − β S2
∣∣∣∣ ∣∣∣∣ + S| |(λ2 δi + ϵi + εi( ) + δpi + ϵpi �up

i + εpi )
_̂β � γS2

⎧⎪⎨⎪⎩ (36)

FIGURE 1
Schematic of DFIG based wind turbine system (Mechter
et al., 2015).
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From Equations 23–35 and if we choose the parameters of
switching surface k and β must be chosen sufficiently higher to
satisfy Equation 36, consequently _v(t)≤ 0 can be guarantee all of
the times even in presence of external disturbances. This leads
the states vectors to converge asymptotically to an equilibrium
point in a finite time and stay there. Thus, the robustness of
adaptive fractional sliding mode control law of uncertain system
was completely proved.

3 Modeling of wind power
conversion system

Wind power conversion system captures wind’s kinetic
energy through blades, transforming it into mechanical energy
via the drivetrain to achieve angular speed. The captured
mechanical energy is then converted into electrical energy via
a generator, such as DFIG used for the remainder of this study, as

FIGURE 2
SI-FOC strategy of DFIG.

FIGURE 3
Profile of low wind speed in m/s.
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shown in Figure 1 (Mechter et al., 2015). However, both
mechanical and electrical systems are subjected to
nonlinearities due to the fluctuating nature of wind, which can

lead to parameter variations in either mechanical or electrical
components.

This section presents mathematical modeling of wind
turbine and DFIG in both healthy and faulty
conditions. First, mathematical modeling of the studied
system within balanced operational conditions will be
discussed, assuming nominal parameters. Nonetheless,
actual parameter variations during operation can
trigger significant faults, efficiency fluctuations, and even
system shutdown. To ensure system stability and
performance, it’s imperative to incorporate these parameter
variations when crafting control laws. As a result, a
comprehensive mathematical model of the studied system,
specifically addressing faulty conditions while considering
variations in parameters and occurred sensor faults, will be
illustrate.

TABLE 1 System parameters.

DFIG Parameter value Wind turbine parameter value

Lr = 0.0213H Blade radius (R) = 21.165 m

Ls = 0.07H Aire density = 1.225 kg/m3

Lm = 0.034H Gear ratio = 39

Rr = 0.19 Ω Inertia = 28

Rs = 0.4550 Ω f = 0.01 N m/rad.sec

P (pole paires) = 2

FIGURE 4
(A) Time response of reactive power without perturbation. (B) Time response of active power without perturbation.
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3.1 Modeling of wind turbine

3.1.1 Health condition
Upon the direct application of wind speed, denoted as v in m/s,

to the blades of a wind turbine, they begin to rotate, generating wind
power that can be expressed by the formula in Equation 37:

Pv � 1
2
ρSv3 (37)

Where: ρ is the air density in Kg/m3, and S � πR2 is the area covered
by the blades in m2, with a radius R in m of wind turbine.

However, wind turbine cannot recover all the energy provided
by wind. The aerodynamic power that can be generated from wind
power, taking into account a power factor coefficient named
Cp(λ, β) is described as follows in Equation 38:

Paer � Cp λ, β( )Pv (38)

Where power coefficient Cp represents aerodynamic efficiency
of wind turbine, it is influenced by the turbine’s characteristics. This
theoretical limit of Cp known as Betz limit is equal to 0.5926, it is
never attained in practice. Several definitions of Cp(λ, β) can be
found in the litearture. In this paper, the following expression is
adopted (Mechter et al., 2015) in Equation 39:

Cp λ, β( ) � c1
c2
λi
− c3β − c4( )e c5

λi + c6λ (39)

with: c1 � 0.5109, c2 � 116, c3 � 0.4, c4 � 5, c5 � 21, c6 � 0.0068,
and 1

λi
� 1

λ+0.08β − 0.035
β3+1.

β represents pitch angle. On the other hand, λ is the tip speed
ratio it quantifies the relationship between linear speed at the blade
tips and wind speed. It is defined as in Equation 40:

λ � RΩt

v
(40)

FIGURE 5
Time response of Ωmec without perturbation.

FIGURE 6
Time response of real rotor current Idr and its on-line estimation Îdr of without perturbationand.
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Ωt represents the turbine shaft speed.
Given Paer andΩt, the aerodynamic torque of the turbine can be

expressed as in Equation 41:

Ta � Paer

Ωt
� 1
2λ

ρπR3v2Cp λ, β( ) (41)

Mechanical torque and rotational mechanical speed denoted by
Tmec and Ωmec are reliated to Ta and Ωt with a gear box of a ratio G
expressed a s follows in Equation 42:

Tmec � 1
G
Ta

Ωmec � GΩt

⎧⎪⎨⎪⎩ (42)

By applying the fundamental equation of dynamic than rotational
mechanical speed can be described as follows in Equation 43:

dΩmec

dt
� −f

J
Ωmec + 1

J
Tmec − 1

J
Tem (43)

where: J denotes the total moment of inertia of the rotating parts in
[Kg.m2], f the coefficient of the viscous damping, and Tem is
electromagnetic torque of the generator [N.m].

3.1.2 Faulty condition
During the operation of wind power conversion system, several

faults can occur at the mechanical level, such as breakage of gears
surface, increase in gearbox oil temperature, bearing fault, offset in
generator torque, sensor faults including generator speed, rotor
speed and pitch angle sensor faults. Without forgetting actuator
faults like pitch angle actuator faults, and variations in parameters
such as the variation in the gap of power coefficient and tip speed
ratio. These issues can impact the quality of mechanical power
extracted from wind.

FIGURE 7
Time response of real rotor current Iqr and its on-line estimation Îqr of without perturbation.

FIGURE 8
Real value of Rr with 10% of random variation and on-line estimation Rrestim.
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FIGURE 9
Real value of Ls with 5% of random variation and on-line estimation Lsestim.

FIGURE 10
Real value of Lr with 5% of random variation and on-line estimation Lrestim.

FIGURE 11
Time response of reactive power in presence of variation parameter.
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Assumption 4. When considering low wind speeds and Zone II
operating conditions, the equation Equation 43 representing the
dynamic of rotational mechanical speed for maximum power point
tracking (MPPT) can be rewritten as follows (Mechter et al., 2015):

dΩmec

dt
� −f

J
Ωmec + 1

2

ρπR5Cp
max

JG3λ3opt
Ω2

mec −
1
J
Tem (44)

This section will be concerned about sensor faults in mechanical
rotor speed and parameter variation of optimal speed ratio and
maximum power rate coefficient, it follows that Equation 44 becomes:

dΩmec

dt
� −f

J
Ωmec + 1

2

ρπR5 C( p
max + ΔCp

max)
JG3 λopt + Δλopt( )3 Ω2

mec −
1
J
Tem

y � Ωmec + ψ t( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (45)

Where y is the output measurement of rotational mechanical
speed and ψ(t) is an external disturbance that can cause
sensor faults.

After simplification Equations 45, 47, 48 becomes:

dΩmec

dt
� −f

J
Ωmec + 1

2
ρπR5Cp

max

JG3λ3opt
Ω2

mec −
1
J
Tem + Δfmec

y � Ωmec + ψ t( )

⎧⎪⎪⎨⎪⎪⎩ (46)

Δfmec � 1
2

ρπR5

JG3λ3opt
ΔCp

maxΩ2
mec −

1
2

ρπR5Cp
max

JG3λ3opt
Ω2

mec

+ 3
Δλopt
λopt

+[ 3
Δλopt
λopt

( )2

+ Δλopt
λopt

( )3]

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(47)

FIGURE 12
Time response of active power in presence of variation parameter.

FIGURE 13
Time response of Ωmec with sensor fault.
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4 Modeling of DFIG in stator field
orientation

4.1 Healthy condition

Mathematical representation of T-equivalent circuits of DFIG in
synchronous reference frame (d-q) is given by the following set of
equation (Mechter et al., 2015) in Equation 48:

Vds � RsIds + dφds

dt
− ωsφqs a( )

Vqs � RsIqs +
dφqs

dt
+ ωsφds b( )

Vdr � RrIdr + dφdr

dt
− ωslφqr c( )

Vqr � RrIqr +
dφqr

dt
+ ωslφdr d( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(48)

where: Vds and Vqs represent the d-axes and q-axes stator voltage,
whereas Vdr and Vqr signify the d-axes and q-axes rotor voltage.
Similarly, Ids and Iqs pertain to the d-axes and q-axes stator current,
while Idr and Iqr relate to the d-axes and q-axes rotor current. Rs and
Rr denote the stator and rotor resistance, respectively. ωsl represents
the electrical pulsation between the stator and rotor windings and is
defined as: ωsl � ωs − ωr. Where: ωs is the pulsation of the stator
currents, and ωr is the rotor angular electrical velocity described by:
ωr � pΩmec.

Stator’s linkage fluxes in (d-q) axes are defined as in Equation 49:

φds � LsIds + LmIdr
φqs � LsIqs + LmIqr
{ (49)

Rotor’s linkage fluxes in (d-q) axes are defined as:

φdr � LrIdr + LmIds
φqr � LrIqr + LmIqs
{ (50)

In addition to (d-q) representation, further simplification is
employed, such as utilizing field-oriented control (FOC), to
enhance control by aligning fluxes along the d or q axes. In the
remainder of this work, stator flux is assumed to align with the d-axis
maintained at a constant level φds � φs, while its q-axis equivalent is
considered negligible φqs � 0. Assuming that stator resistance Rs is
neglected than the expression of stator voltage become: Vds � 0, and
Vqs � ωsφds.

Considering simplifications mentioned above, stator currents in
(d-q) reference frame, and stator fluxes will be expressed as follows
in Equations 51, 52:

Ids � φds

Ls
− Lm

Ls
Idr

Iqs � −Lm
Ls
Iqr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (51)

dφds

dt
� −Rs

Ls
φds +

RsLm
Ls

Idr (52)

When the system reaches stability, the stator flux is expected to
be constant. Consequently, its first derivative will be equal to zero.
This leads to the first derivative of the (d-q) stator currents being as
follows (Li et al., 2010) in Equation 53:

dIds
dt

� −Lm
Ls

dIdr
dt

dIqs
dt

� −Lm
Ls

dIqr
dt

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (53)

By replacing Equation 51 in Equation 50 than rotor’s fluxes in
(d-q) frame become:

φdr � LrIdr + Lm
φds

Ls
− L2m

Ls
Idr

φqr � LrIqr − L2m
Ls
Iqr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (54)

The first derivative of Equation 54 yields:

FIGURE 14
Time response of real rotor current Idr and its on-line estimation Îdr in presence of parameter variations.
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dφdr

dt
� Lr

dIdr
dt

− L2m
Ls

dIdr
dt

� δLr
dIdr
dt

dφqr

dt
� Lr

dIqr
dt

− L2m
Ls

dIqr
dt

� δLr
dIqr
dt

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (55)

Where: δ � 1 − L2m
LrLs

.

The substitution of Equations 54–57 into Equation 48c,d yields the
following expression for the rotor voltage in (d-q) frame:

Vdr � RrIdr + δLr
dIdr
dt

− ωsl LrIqr − L2m
Ls
Iqr[ ] (56)

Vqr � RrIqr + δLr
dIqr
dt

+ ωsl LrIdr + Lm
φds

Ls
− L2m

Ls
Idr[ ] (57)

It follows, the steady-state representation of rotor currents in
(d-q) frame:

dIdr
dt

� − Rr

δLr
Idr + 1

δLr
Vdr + ωslIqr (58)

dIqr
dt

� − Rr

δLr
Îqr + 1

δLr
Vqr − ωslIdr − Lm

δLrLs
ωslφds (59)

The states equations representing DFIG are given in Equation 60:

dIdr
dt

� − Rr

δLr
Idr + 1

δLr
Vdr + ωslIqr

dIqr
dt

� − Rr

δLr
Iqr + 1

δLr
Vqr − ωslIdr − Lm

δLrLs
ωslφds

dIds
dt

� LmRr

δLrLs
Idr − Lm

δLrLs
Vdr − Lm

Ls
ωslIqr

dIqs
dt

� LmRr

δLrLs
Iqr − Lm

δLrLs
Vqr + Lm

Ls
ωslIdr + L2m

δLrL2s
ωslφds

dφds

dt
� −Rs

Ls
φds +

RsLm
Ls

Idr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(60)

Active and reactive powers at the stator side of DFIG are defined
by in Equations 61, 62:

Ps � VdsIds + VqsIqs( ) (61)
Qs � VqsIds − VdsIqs( ) (62)

By replacing stator currents given in Equation 51, and taking
into account simplification about stator voltages, then active and
reactive powers at stator side of DFIG will be defined by in
Equations 63, 64:

Ps � −Lmωs

Ls
φsIqr (63)

Qs � ωs

Ls
φ2
s −

Lmωs

Ls
φsIdr (64)

Note that due to constant stator voltage, stator active
and reactive powers are controlled by means of Idr and Iqr
respectively.

4.2 Faulty condition

During operation of wind power conversion system, 18% of
failures are attributed to electrical components, which can cause
considerable damage and increase shutdown time. DFIG faults
considered in this paper include rotor resistance variation due to
mechanical, environmental, and thermal factors such as rotor
heating or broken rotor bars. Additionally, stator and rotor
inductance variations are considered, primarily caused by
electrical stresses such as stator and rotor winding insulation
failures and inter-turn short circuits in stator windings.

Let us consider additional bounded unknown variations ΔRr,
ΔLr, and ΔLs to their nominal values, successively described as:

R′
r � Rr + ΔRr

L′r � Lr + ΔLr
L′s � Ls + ΔLs

⎧⎪⎨⎪⎩ (65)

By substituting Equation 65 in Equations 58, 59 the (d-q) torque
currents equations becomes:

dIdr
dt

� − Rr + ΔRr

1 − L2m
Lr + ΔLr( ) Ls + ΔLs( )( ) Lr + ΔLr( )

Idr

+ 1

1 − L2m
Lr + ΔLr( ) Ls + ΔLs( )( ) Lr + ΔLr( )

Vdr + ωslIqr

dIqr
dt

� − Rr + ΔRr

1 − L2m
Lr + ΔLr( ) Ls + ΔLs( )( ) Lr + ΔLr( )

Iqr

+ 1

1 − L2m
Lr + ΔLr( ) Ls + ΔLs( )( ) Lr + ΔLr( )

Vqr − ωslIdr

− Lm

1 − L2m
Lr + ΔLr( ) Ls + ΔLs( )( ) Lr + ΔLr( ) Ls + ΔLs( )

ωslφds

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(66)

On the other hand (d-q) stator currents and d-stator flux are
also affected by Equation 65 and their expression become:
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dIds
dt

� Rr + ΔRr( )Lm
1 − L2m

Lr + ΔLr( ) Ls + ΔLs( )( ) Lr + ΔLr( ) Ls + ΔLs( )
Idr

− Lm

1 − L2m
Lr + ΔLr( ) Ls + ΔLs( )( ) Lr + ΔLr( ) Ls + ΔLs( )

Vdr − ωslIqr

dIqs
dt

� Rr + ΔRr( )Lm
1 − L2m

Lr + ΔLr( ) Ls + ΔLs( )( ) Lr + ΔLr( ) Ls + ΔLs( )
Iqr

− 1

1 − L2m
Lr + ΔLr( ) Ls + ΔLs( )( ) Lr + ΔLr( ) Ls + ΔLs( )

Vqr + ωslIdr

+ L2m

1 − L2m
Lr + ΔLr( ) Ls + ΔLs( )( ) Lr + ΔLr( ) Ls + ΔLs( )2

ωslφds

dφds

dt
� − Rs

Ls + ΔLs( )φds +
RsLm

Ls + ΔLs( )Idr

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(67)

After simplification and rearranging Equations 66, 67,
the state space representation of DFIG can be written as
follows in Equation 68:

_xi t( ) � f i xi( ) + biui + Δf i xi( ) + Δbiui (68)
Where state vector, and control input vector of DFIG are

described as in Equation 69:

xi � Idr Iqr Ids Iqs φds[ ]T
ui � Vdr Vqr[ ]T{ (69)

The nominal parts of smooth fields f i(xi), and input bi matrices
are given by in Equations 70, 71:

f i xi( ) �

− Rr

δLr
Idr + ωslIqr

− Rr

δLr
− ωslIdr − Lm

δLrLs
ωslφds

LmRr

δLrLs
Idr−LmLs ωslIqr

LmRr

δLrLs
Iqr + Lm

Ls
ωslIdr + L2m

δLrL2s
ωslφds

−Rs

Ls
φds +

RsLm
Ls

Idr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(70)

bi �

1
δLr

0

0
1
δLr

− Lm
δLrLs

0

0 − Lm
δLrLs

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(71)

Additionally faulty terms due to parameters variations Δf i(xi),
and Δbi are described in what follows in Equations 72, 73:

Δf i xi( ) �

Rr

δLr
Δ3 1 + Δ1( )
1 + Δ3

( ) − Δ1[ ] Idr
Rr

δLr

Δ3 1 + Δ1( )
1 + Δ3

( ) − Δ1[ ]Iqr + Δ3Lmωslφds

1 + Δ3( )δLrLs

LmRr

δLrLs
Δ1 −

Δ4 1 + ΔRr

Rr
( )
1 + Δ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Idr + Lmωsl

Ls

Δ4

Δ2
−Δ3( )Iqr

LmRr

δLrLs
Δ1 −

Δ4 1 + ΔRr

Rr
( )
1 + Δ3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦Iqr + Lmωsl

Ls
Δ3 − Δ4

Δ2
( )Idr − Δ4L2

mωslφds

1 + Δ3( )Δ2δLrL2s

RsΔLs

L2
sΔ2

φds −
RsLmΔLs

L2sΔ2
Idr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(72)

Δbi �

1
δLr

ΔLs
Ls

− Δ3Δ2

1 + Δ3
( ) 0

0
ΔLs
Ls

− Δ3Δ2

1 + Δ3
( )

Lm
δLrLs

Δ4Δ2

1 + Δ3
− ΔLs

Ls
( ) 0

0
Lm

δLrLs
Δ4Δ2

1 + Δ3
− ΔLs

Ls
( )

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(73)

Uncertainty terms Δi are given by the following equations in
Equation 74:

Δ1 � ΔRr

Rr
+ ΔLs

Ls
+ ΔRrΔLs

RrLs

Δ2 � 1 + ΔLs
Ls

Δ3 � ΔLr
δLr

+ ΔLs
δLs

+ ΔLrΔLs
δLrLs

Δ4 � Δ3 + ΔLs
Ls

+ Δ3
ΔLs
Ls

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(74)

In order to handle the above uncertainties terms, we use the
proposed control law of this paper Equations 13, 14.

5 Rotor side converter control
strategies

5.1 Rotational mechanical speed controller

Controlling rotational mechanical speed in variable wind
turbine system is ensured via controlling electromagnetic torque
Tem. The aim of the closed speed control loop is to miminimize the
tracking error between the mesured rotationnal mechanical speed
Ωmec, and the desired rotational mechanical speed Ωmec−ref issue
from maximum power point tracking MPPT.

Let us consider the following switching surface in Equation 75:

S t( ) � Dαe t( ) + λ1 ∫ e t( ) p
q cosh e t( )( ) + λ2e t( ) (75)
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The tracking error of rotational mechanical speed and its first
derivative are given by in Equation 76:

e t( ) � Ωmec − Ωmec−ref
_e t( ) � Ωmec − Ωmec−ref

{ (76)

By rewriting Equation 44 as follows Equations 77, 78:

_Ωmec � a1Ωmec + a2Ω2
mec + b1Tem (77)

where: a1 � −f
J , a2 � 0.5ρπR5Cp

max

JG3λ3opt
, b1 � −1

J

_S t( ) � D∝ a1Ωmec + a2Ω2
mec + b1Tem − _Ωmec−ref[ ] + λ1e t( )p

/

q

cosh e t( )( ) + λ2 a1Ωmec + a2Ω2
mec + b1Tem − _Ωmec−ref[ ]

⎧⎪⎨⎪⎩
_S t( ) � a1D

∝Ωmec + a2D
∝Ω2

mec + b1D∝Tem −D∝ _Ωmec−ref + λ1

e t( ) p/

q cosh e t( )( ) + λ2 a1Ωmec + a2Ω2
mec + b1Tem − _Ωmec−ref[ ]

⎧⎪⎨⎪⎩
D∝Tem � −a1

b1
D∝Ωmec − a2

b1
D∝Ω2

mec +
1
b1
D∝ _Ωmec−ref] − λ1

b1

e t( ) p/

q cosh e t( )[ ] − λ2
b1

a1Ωmec + a2Ω2
mec + b1Tem[ − _Ωmec−ref] + 1

b1
_S t( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(78)

According to Equation 14 discontinuous control law is ensured
and switching surface is given by in Equation 79:

_S t( ) � −K1 tanh S t( )( ) − β̂S t( )
_̂β � γ1S2

⎧⎨⎩ (79)

5.2 Indirect control of DFIG

Controlling active and reactive power of DFIG is effectuated via
Vdr and Vqr by the means of Idr and Iqr. However, we find in the
literature several strategies for controlling DFIG, hence we choose to
apply our proposed control law using indirect control
strategy of DFIG.

Let us consider currents errors to be as:

e1 t( ) � Idr − Idr−ref
e2 t( ) � Iqr − Iqr−ref

{ (80)

Taking the first derivative of Equation 80 it follows in Equation 81:

_e1 t( ) � dIdr
dt

− dIdr−ref
dt

_e2 t( ) � dIqr
dt

− dIqr−ref
dt

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (81)

The sliding surfaces according to Equation 12 are given by:

S1 t( ) � Dαe1 t( ) + λ3 ∫ e1 t( ) p
q cosh e1 t( )( ) + λ4e1 t( )

S2 t( ) � Dαe2 t( ) + λ5 ∫ e2 t( ) p
q cosh e2 t( )( ) + λ6e2 t( )

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (82)

In order to ensure indirect control of DFIG decoupling is
achieved by eliminating electromagnetic force EMF and coupled
currents terms, which are considered as perturbation as shown in
bloc diagram Figure 2.

The (d-q) rotor steady states currents used for the conception of
control laws Vdr and Vqr becomes in Equation 83:

dIdr
dt

� − Rr

δLr
Idr + 1

δLr
Vdr

dIqr
dt

� − Rr

δLr
Iqr + 1

δLr
Vqr

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (83)

Taking the first derivative of Equation 82 we get Equation 84:

_S1 t( ) � Dα _e1 t( ) + λ3e1 t( ) p
q cosh e1 t( )( ) + λ4 _e1 t( )

_S2 t( ) � Dα _e2 t( ) + λ5e2 t( ) p
q cosh e2 t( )( ) + λ6 _e2 t( )

⎧⎪⎨⎪⎩ (84)

_S1 t( ) � Dα − Rr

δLr
Idr + 1

δLr
Vdr − _Idr−ref[ ] + λ3e1 t( ) p

q

cosh e1 t( )( ) + λ4 − Rr

δLr
Idr + 1

δLr
Vdr − _Idr−ref[ ]

_S2 t( ) � Dα − Rr

δLr
Iqr + 1

δLr
Vqr − _Iqr−ref[ ] + λ5e2 t( ) p

q

cosh e2 t( )( ) + λ6 − Rr

δLr
Iqr + 1

δLr
Vqr − _Iqr−ref[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(85)

After simplification of Equation 85 fractional integral control
laws of are given by the following Equation 86:

DαVdr � RrD
αIdr + b2D

α _Idr−ref − λ3b2e1 t( ) p
q

cosh e1 t( )( ) − λ4 −RrIdr + Vdr − b2 _Idr−ref[ ] + b2 _S1 t( )
DαVqr � RrD

αIqr + b3D
α _Iqr−ref + λ5b3e2 t( ) p

q

cosh e2 t( )( ) + λ6 RrIqr + Vqr − b3 _Iqr−ref[ ] + b3 _S2 t( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(86)

with: b2 � b3 � δLr
According to Equation 14 discontinuous control law is ensured

and switching surfaces are given by Equation 87:

_S1 t( ) � −k2 tanh S1 t( )( ) − β̂1S1 t( )
_S2 t( ) � −k3 tanh S2 t( )( ) − β̂2S2 t( ){ and

_̂β1 � γ2S21
_̂β2 � γ3S22

⎧⎪⎨⎪⎩ ( 87)

Control laws are not applied directly to DFIG, instead FEM and
coupled terms must be added to vector controller with opposite
signs to their original terms in DFIG, thus ensuring decoupling and
achieving an indirect control strategy.

6 Design of adaptive sliding
mode observer

Applying passive fault-tolerant control law in closed control
loop system doesn’t necessitate fault detection and isolation
(FDI) block. However, estimating parameter variations or
external perturbations that can impact on a system is
essential to enhance its maintainability. Additionally,
sensorless indirect control of DFIG is achieved through the
estimation of stator flux. This section will provide proof of an
adaptive sliding mode observer using Lyapunov candidate
function. In order to avoid nonlinearities of rotational (d-q)
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reference frame of DFIG mainly caused by rotational speed in ωsl,
the stationnary (∝ -β) reference frame of DFIG is used to
estimate parameter variation.

Adaptive sliding mode observer using (∝ -β) represebtation of
DFIG is described as follows in Equations 88, 89:

d̂I∝ r

dt
� −âI∝ r + bV∝ r + ωsl̂Iβr − Δâ̂I∝ r + Δb̂V∝ r − τ1sign eαr( )

d̂Iβr
dt

� −âIβr + bVβr − ωsl Îαr − B̂Êωslφ̂αs − Δâ̂I∝ r + Δb̂V∝ r − τ2sign eβr( )
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(88)
d̂I∝ s

dt
� ĉI∝ r − dV∝ r − eωsl̂Iβr + Δĉ̂I∝ r − Δd̂V∝ r

−Δêωsl̂Iβr − τ3sign e∝ s( )
dÎβs
dt

� ĉIβr − dVβr + eωslI∝ r + B̂Êωslφ̂αs + Δĉ̂Iβr

−ΔdVβr + Δêωsl̂Iβr − τ4sign eβs( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(89)

Where estimated parameters of DFIG are defined as follows:

Â � a + Δâ, B̂ � b + Δb̂, Ĉ � c + Δĉ, D̂ � d + Δd̂, and

Ê � e + Δê

With: a � Rr
δLr
, b � 1

δLr
, c � RrLm

δLrLs
, d � Lm

δLrLs
, e � Lm

Ls
are nominal

values. Δâ, Δb̂, Δĉ, Δd̂, and Δê describe the estimated parameter
uncertainties.

To prove the stability of currents observers, and to find
parameter uncertainties estimation we use tow adaptive
Lyapunov candidate function in what follows.

Let us consider positives Lyapunov candidates’ functions:

V1 � 1
2
e2∝ r +

1
2
e2βr +

1
2μ1

Δâ − Δa( )2 + 1
2μ2

Δb̂ − Δb( )2
V2 � 1

2
e2αs +

1
2
e2βs +

1
2μ3

Δĉ − Δc( )2 + 1
2μ4

Δd̂ − Δd( )2
+ 1
2μ5

Δê − Δe( )2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(90)

With: e∝ r � Î∝ r − I∝ r, eβr � Îβr − Iβr, e∝ s � Î∝ s − I∝ s, and

eβs � Îβs − Iβs

The first derivative of errors mentioned above we get:

de∝ r

dt
� −ÂÎ∝ r + B̂Vαr + ωsl̂Iβr − τ1sign eαr( )
− −AI∝ r + BVαr + ωslIβr[ ]

deβr
dt

� [ − ÂÎβr + B̂Vβr − ωsl̂Iαr − BEωslφ̂αs − τ2

sign eβr( ) ] − [ − AIβr + BVβr − ωslIαr − BEωslφαs]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(91)

de∝ s

dt
� ĈÎ∝ r − D̂Vαr − Êωsl̂Iβr − τ3sign eαs( )[ ]
− CI∝ r − DVαr − EωslIβr[ ]

deβs
dt

� [ĈÎβr − D̂Vβr + Êωsl̂Iαr + DEωslφ̂αs − τ4

sign eβs( ) ] − [CIβr − DVβr + EωslIαr + DEωslφαs]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(92)

After simplification Equations 91, 92 become:

de∝ r

dt
� −ae∝ r + bVαr + ωsleβr − τ1sign eαr( )[ ]
+ − Δâ − Δa( )̂I∝ r + Δb̂ − Δb( )Δb̂Vαr[ ]

deβr
dt

� −aeβr + bVβr − ωsleαr − BEωsl(φ̂αs − φαs) − τ2sign eβr( )[ ]
+ − Δâ − Δa( )̂Iβr + Δb̂ − Δb( )Vβr[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(93)

de∝ s

dt
� ce∝ r − dVαr − eωsleβr − τ3sign eαs( )[ ]
+ Δĉ − Δc( )̂I∝ r − Δd̂ − Δd( )Vαr − Δê − Δe( )ωsl̂Iβr[ ]

deβs
dt

� [ceβr − dVβr + eωsleαr + dEωsl(φ̂αs − φαs)

−τ4sign eβs( )] + Δĉ − Δc( )̂Iβr − Δd̂ − Δd( )Vβr[
+ Δê − Δe( )ωsl̂Iαr]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(94)

From Lyapunov stability theorem (Slotine and Li, 1991), the
sliding-mode condition can be derived to satisfy stability condition
Equation 21.

Taking the time derivative of Equation 90, we find:

dV1

dt
� e∝ r

de∝ r

dt
( ) + eβr

deβr
dt

( ) + 1
μ1

dΔâ
dt

Δâ − Δa( )

+ 1
μ2

dΔb̂
dt

Δb̂ − Δb( )
dV2

dt
� e∝ s

de∝ s

dt
( ) + eβs

deβs
dt

( ) + 1
μ3

dΔĉ
dt

Δĉ − Δc( )

+ 1
μ4

dΔd̂
dt

Δd̂ − Δd( ) + 1
μ5

dΔê
dt

Δê − Δe( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(95)

Taking into account Equations 93, 94 than Equation 95 can be
simplified to:

dV1

dt
� −ae2∝ r + ωsleαreβr − τ1 eαr| |[ ] + [ − ae2βr − ωsleβreαr

− BEωsleβreφ∝ s
− τ2 eβr
∣∣∣∣ ∣∣∣∣] − Δâ − Δa( )[eαr Î∝ r + eβr Îβr] + 1

μ1

dΔâ
dt

Δâ − Δa( ) + Δb̂ − Δb( ) eαrVαr + eβrVβr[ ] + 1
μ2

dΔb̂
dt

Δb̂ − Δb( )
dV2

dt
� ceαse∝ r − eωsleαseβr − τ3 eαs| |[ ] + [ceβseβr + eωsleβseαr

+dEωsleβseφ∝ s
− τ4 eβs
∣∣∣∣ ∣∣∣∣] + Δĉ − Δc( )[eαs Î∝ r + eβs Îβr] + 1

μ3

dΔĉ
dt

Δĉ − Δc( ) − Δd̂ − Δd( ) eαsVαr + eβsVβr[ ] + 1
μ4

dΔd̂
dt

Δd̂ − Δd( )
+ Δê − Δe( ) ωsleβs Îαr − ωsleαs Îβr[ ] + 1

μ5

dΔê
dt

Δê − Δe( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(96)

To satisfy Lyapunov condition dV1
dt < 0 and dV2

dt < 0 must be
guarantee all of the times. First constants observers gain τ1, τ2,
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τ3, and τ4 must be chosen large enough to hold the following
inequalities in Equation 97:

τ1 ≥ ωsleαreβr
∣∣∣∣ ∣∣∣∣≥ ωsl| | eαr| | eβr

∣∣∣∣ ∣∣∣∣
τ2 ≥ −ωsleβreαr − BEωsl eβreφ∝ s

∣∣∣∣ ∣∣∣∣≥ ωsl| | eβr
∣∣∣∣ ∣∣∣∣ eαr| | + BE eφ∝ s

∣∣∣∣ ∣∣∣∣[ ]
τ3 ≥ ceαse∝ r − eωsleαseβr
∣∣∣∣ ∣∣∣∣≥ eαs| | c eαr| | + e ωsl| | eβr

∣∣∣∣ ∣∣∣∣[ ]
τ4 ≥ ceβseβr + eωsleβseαr + dEωsleβseφ∝ s

∣∣∣∣ ∣∣∣∣≥ c eβs∣∣∣∣ ∣∣∣∣ eβr∣∣∣∣ ∣∣∣∣ + ωsl| |
eβs
∣∣∣∣ ∣∣∣∣ e eαr| | + dE eφ∝ s

∣∣∣∣ ∣∣∣∣[ ]

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(97)

The second step for satisfying Equation 21 is to set remainders
terms of Equation 96 to zero as follows:

1
μ1

dΔâ
dt

Δâ − Δa( ) − Δâ − Δa( ) eαrÎ∝ r + eβrÎβr[ ] � 0

1
μ2

dΔb̂
dt

Δb̂ − Δb( ) + Δb̂ − Δb( ) eαrVαr + eβrVβr[ ] � 0

1
μ3

dΔĉ
dt

Δĉ − Δc( ) + Δĉ − Δc( ) eαs Î∝ r + eβs Îβr[ ] � 0

1
μ4

dΔd̂
dt

Δd̂ − Δd( ) − Δd̂ − Δd( ) eαsVαr + eβsVβr[ ] � 0

1
μ5

dΔê
dt

Δê − Δe( ) + Δê − Δe( ) ωsleβsÎαr − ωsleαs Îβr[ ] � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(98)

After simplification of Equation 98 estimated parameter
uncertainties can be described by the following Equation 99:

dΔâ
dt

� μ1 eαrÎ∝ r + eβrÎβr[ ]
dΔb̂
dt

� −μ2 eαrVαr + eβrVβr[ ]
dΔĉ
dt

� −μ3 eαsÎ∝ r + eβsÎβr[ ]
dΔd̂
dt

� μ4 eαsVαr + eβsVβr[ ]
dΔê
dt

� −μ5 ωsleβs Îαr − ωsleαsÎβr[ ]

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(99)

The faulty model of DFIG proposed in Section 4 was based on
changes of nominal values Rr, Lr, and Ls caused by unkown bounded
parameter variation ΔRr, ΔLr, and ΔLs. Hence on-line estimation of
variations leads to an on-line estimation of actual values denoted as
R̂r, L̂r, and L̂s.

Â � R̂r

δ̂L̂r

B̂ � 1

δ̂L̂r

Ĉ � LmR̂r

δ̂L̂rL̂s

D̂ � Lm

δ̂L̂rL̂s

Ê � Lm
L̂s

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� >

R̂r � Â

B̂

L̂s � Lm
Ê

L̂r � 1

B̂
+ LmÊ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(100)

sigmoid function is replaced by tangent hyperbolic function
denoted: tanh, to reduce chattering phenomenon.

Taking into account faulty Equation 65 and estimated parameters
Equation 100 adaptive stator flux observer is given by Equation 101:

dφ̂∝s

dt
� −Rs

L̂s
φ̂∝ s +

L̂mRs

L̂s
Î∝ r − τ5 tanh e∝ r( ) (101)

Remark: note that adaptive observer was developed in the stationary
reference frame (∝ − β) to make able the estimation of parameter
variation and avoid nonlinearities caused by mechanical rotationnal
speed. However, the same observer can be developed in the rotational
(d-q) reference frame to estimate direct and quadratic rotore currents
and stator fluxe to ensure senssoreless indirect control of DFIG.

7 Simulation results

To validate the efficiency and robustness of the proposed control law
and adaptive observer simulation results issue from MATLAB/
SIMULINK environment of variable wind speed turbine based
doubly feed induction generator will be illustrated in this section. In
order to simulate fractional systems in MATLAB SIMULINK, various
toolboxes have been designed. In this paper, the “Ninteger” MATLAB
toolbox (Valerio, 2005) has been used to simulate fractional order
controllers.

The profile of variable wind speed used for the simulation is shown
in Figure 3. It represents low speed and varies around 12 m/s. The
parameters of the wind turbine and DFIG used for the simulation are
given in Table 1. The parameters of the control laws and the adaptive
observer were chosen according to the stability conditions proved in
Sections 2, 6 using Lyapunov theory. This section illustrates the
simulation results of the proposed control law on the studied system
in both healthy and faulty conditions. To demonstrate the efficiency of
our approach, it is compared with The fractional sliding mode control
(FSMC) proposed by (Penghan et al., 2020).

7.1 Case 1 healthy condition

This part shows the responses of states vector to a desired states
using the proposed adaptive fractional sliding mode control law of
this paper. In this case wind turbine and DFIG are supposed to be
operating in healthy condition. The parameter of control law and
observer are chosen as follows:

k1 � k2 � k3 � 3, γ1 � γ2 � γ3 � 100, λ1 � λ3 � λ5 � 100

λ2 � λ4 � λ6 � 2, τ1 � τ2 � 3
σLr

, τ3 � τ4 � 3
Ls
,
p
q
� 0.1

The fractional operator α is set to 0.4 in all simulation results.

7.2 Case 2 faulty condition

In this part we suppose that the parameter of DFIG are subjected
to variations, and the mechanical rotational speed sensor is deflected
due to unknown external disturbances.
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Scenario1: ΔRr � 10%, ΔLr � 5%, ΔLs � 5%, ΔCmax
p � 5%.

y � Ωmec + ψ(t) where: ψ(t) is a random signal caused by the
flucating nature of wind, according to assumption 1 it is supposed to
be bounded. The parameter of control law and observer are chosen
as follows:

k1 � k2 � k3 � 3, γ1 � 500, γ2 � γ3 � 3 p 103, λ1 � 2 p 103, λ3 � λ5

� 104, λ2 � λ4 � λ6 � 2, τ1 � τ2 � 120
σLr

,

τ3 � τ4 � 60
Ls
,
p
q
� 0.1

7.3 Discussion of simulation results

Simulation results were dedicated to showcasing the
performance of our proposed control method on the studied
system in both healthy and faulty scenarios. A brief discussion of
the two cases will follow.

7.3.1 Case 1
In the first case, our focus was on Variable Wind Turbine

(VWT)-based Doubly Fed Induction Generator (DFIG) operating
under healthy conditions. Figures 4, 5 illustrate the fast response of
active and reactive power of DFIG to the desired values. The tracking
error, depicted in Figure 6, was approximately 10−5, thereby
reducing chattering phenomenon. Mechanical rotational speed
reached its desired value determined by Maximum Power Point
Tracking (MPPT) within a finite time and with a small response time
of less than 0.02 s, as demonstrated in Figure 7. The adaptive
observer demonstrated its efficiency in estimating state values
under healthy conditions, as shown in Figures 8, 9, where rotor
currents in the d-q frame were accurately estimated.

7.3.2 Case 2
In order to prove the robustness of the proposed control law and

the adaptive observer, the studied system was subjected to randomly
bounded parameter uncertainties in the Doubly Fed Induction
Generator (DFIG) and unknown external disturbances affecting
mechanical rotational speed sensor. Simulation was conducted in
two scenarios as follows.

7.3.2.1 Scenario 1
This section presents the simulation results of a faulty

Doubly Fed Induction Generator (DFIG), where its
parameters were assumed to be affected by nonlinearities in
the wind. However, rotor resistance (Rr), stator inductance (Ls),
and rotor inductance (Lr) deviated from their nominal values
with small range bounded uncertainties. The maximum
bounded uncertainty for Rr was about 10% of its nominal
value, while Ls and Lr varied within a maximum range of 5%
of their nominal values. Figures 8–10 demonstrate the
effectiveness of the proposed adaptive observer in the online
estimation of DFIG parameters. As illustrated in Figures 11, 12,
the proposed Sliding-Mode Terminal Fuzzy Adaptive Sliding
Mode Control (ST-FASMC) law has shown its efficiencies in
terms of robustness against parameter uncertainties, where

active and reactive power remained close to their nominal
values in a finite and small response time of less than 2*10−4

sec. The mechanical rotational speed sensor was also subjected
to nonlinearities in the wind, as shown in Figure 13; however,
our proposed control law maintained the response around the
desired value, thereby keeping the system stable. The time
response of real rotor current is shown in the Figure 14.

8 Conclusion

In this paper, we presented a new adaptive passive fault-
tolerant control (AP-FTC) based on a fractional integral sliding-
mode controller with auto-tuning (ST- FISMC) for a variable-
speed wind turbine using a doubly-fed induction generator
(DFIG). The objective is to improve energy efficiency while
considering nonlinearities and a certain range of parametric
uncertainties, whether at the electrical or mechanical level. The
proposed approach stands out by using a nonlinear terminal
hyperbolic cosine function to evaluate the tracking error in the
sliding surface. This function allows for automatic adaptation of
the equivalent control law by adjusting the power rate and the
gain of the hyperbolic function, thus ensuring system stability in
a finite time in case of failure. Additionally, fractional derivatives
and integrals is used as a second measure to enhance stability
and reduce undesired chattering. Furthermore, online
estimation of electrical parameters is ensured using an
adaptive sliding mode observer. Simulations are carried out in
Matlab/Simulink considering two different operational
conditions: first, the Doubly Fed Induction Generator (DFIG)
based on the Variable Wind Turbine (VWT) operates under
normal conditions, then the DFIG parameters undergo
variations, and the mechanical rotation speed sensor is
disturbed by unknown external factors. Simulation results
show that the proposed approach offers better performance in
capturing optimal wind energy, as well as the ability to regulate
active/reactive power and high resilience to external
disturbances.
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