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The virtual synchronous generator (VSG) has been widely used to improve the
system inertia and damping in the renewable energy generation system.
However, the in-depth understanding of VSG’s stability under disturbances on
different control parameters is lacked. In order to solve the problem, the small-
signal model of single-VSG is established at first. The influences of key control
parameters on the stability of system are analyzed by using the eigenvalue
analysis method in detail. On this basis, a novel optimization strategy for
control parameters is proposed based on the Particle Swarm Optimization
(PSO) algorithm. The control parameters are optimized to realize excellent
damping and stability of VSG system. Finally, the simulation and experimental
results verify the effectiveness of stability analysis and parameter optimization
strategy.
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1 Introduction

With the development of new energy sources, many new energy units are connected to
the grid by traditional inverters (Du et al., 2020; Zhang et al., 2021). However, traditional
grid-connected inverters cannot participate in grid regulation. This will result in a decrease
in the overall inertia and damping of the power system, which brings serious challenges to
the stable operation of system (Pattabiraman et al., 2018). In order to ensure the stable
operation of the power system under the high penetration rate of new energy, related
literature have proposed the concept of Virtual Synchronous Generator (VSG) by referring
to the operating characteristics and principles of the traditional synchronous generator, and
carried out extensive researches on the control strategy, stability analysis, and parallel
connection of multiple machines (Xiong et al., 2016; Choopani et al., 2020).

In the study of grid-connected stability of VSG, a VSG and an SG were connected in
(Baruwa and Fazeli, 2021) for analyzing the low-frequency oscillation phenomenon after
the VSG replaces the SG, as well as the characteristics and main modes of low-frequency
oscillations. Literature (Lu et al., 2022) analyzes the impacts of VSG parameter changes by
eigenvalue analysis method. But it does not give any advice on how the parameters should
be designed.
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The parameters design of the VSG has been discussed (Du et al.,
2013), Due to the equivalence of the VSG and droop control, the
parameters design methods of droop control also provide the design
guidance for the VSG(Coelho et al., 1999; Guerrero et al., 2007;
Guerrero et al., 2004). The root-locus design method was used in
literature (Du et al., 2013), but it is just the design of a separate power
loop, thus the designed parameters may not be good enough and
they are needed to be further adjusted to obtain the optimized
results. Literature (D’Arco and Suul, 2014) derives the closed-loop
characteristic equations of the power loop with droop control.
However, due to the coupling effect between the active and
reactive power loops the parameter design of the two loops is
very difficult and the control parameters are partially tuned by

trial and error. Similarly, Literature (Wu et al., 2016) has developed a
small-signal model of the VSG power loop and proposed a step-by-
step parameter design methodology that takes into account the
stability and dynamic performance of the VSG. However, there is no
detailed study of VSG parameter variations on its stability. Literature
(Wu et al., 2019; Xu et al., 2021) provide impedance modeling and
stability analysis for virtual synchronous control of permanent
magnet wind turbines. However, the impedance characteristic
curve can only reflect the external characteristics of the system,
and the relationship with each internal controller or parameter is not
clear. Literature (D’Arco et al., 2015; D’Arco et al., 2013) indicate
that there are interactions between the cascade control loops
contained in the VSG system, and the VSG system dynamics

FIGURE 1
Topology diagram of VSG.
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equations are relatively complex. For these reasons, it can be seen
that the current literature on the parameter design method for VSGs
is only designed independently for each control loop and does not
consider the coupling effect of the overall parameters. Classical
tuning methods to this scheme are difficult to use.

Therefore, small-signal modeling of a stand-alone grid-
connected system is carried out in this paper. Meanwhile, the
effect of each control loop on the small-signal stability of the
system is comprehensively considered in this paper. A detailed
analysis of the active power loop control parameters, virtual
impedance, and voltage loop of a single-unit grid-connected
system is presented in this paper. Based on the above analysis,
this paper proposes a PSO-based global control parameter
optimization algorithm for multiple operating points. The
optimized control parameters are used to provide better dynamic
performance and stability at different grid strengths.

The rest of this paper is organized as follows: Section 2 provides
a brief description of VSG control strategy and small-signal model of
single-VSG grid-connected System. In Section 3, Eigenvalue analysis
based on the small signal model of the system reveals that power
loops, virtual impedances, and voltage loops have a large impact on
system stability. Therefore, the influences of control parameters of
active power loop, virtual impedance and voltage loop on the
stability of the system are analyzed in detail. Section 4 presents a
coordinated optimization strategy of control parameters based on
PSO. In Section 5, the above analysis is verified by PSCAD
simulation, and then Section 6 presents the experimental results
obtained with coordinated optimization method and stability
analysis. Finally, conclusions are presented in Section 7.

2 Small-signal model of Single-VSG
grid-connected system

2.1 Control strategy

The control block diagram of VSG is shown in Figure 1. The
control strategy of VSG can be divided into four parts. The first part
is the power loop controller, which is composed of active-power-
frequency control and reactive-power-voltage control. Active-

power-frequency control can simulate the inertia and damping of
synchronous generators. Reactive-power-voltage control can
simulate the primary regulation of synchronous generators. The
second part is the virtual impedance control, which is used to
reshape the output impedance of VSG. The third part is the
voltage-current double closed-loop controller, which consists of
outer voltage and inner current closed-loop modules. The fourth
part contains the dq/abc transformation as well as sinusoidal pulse
width modulation.

In Figure 1, udc is the ideal DC voltage on the DC side, Rf is filter
resistance, Lf is filter inductance, and Cf is filter capacitance. Rg and
Lg are the resistance and inductance of the connecting line. viabc are
the output voltage of the inverter. voabc are the voltage across filter
capacitance. iiabc are the output currents of the inverter. igabc are the
currents of the line inductance. ugabc are the AC power grid voltages.
Pref is the active power reference, and Qref is the reactive power
reference. ωvsg is the virtual angular frequency. ω0 is the rated
angular frequency of VSG. Kd is the active frequency regulation
coefficient of the governor. Pe is the measured electrical power. J is
the virtual inertia of VSG, Dp is the virtual damping coefficient, and
θvsg is the phase angle that is the integral of the virtual angular
frequency. Kq is the regulation coefficient of reactive-power-voltage.
voref is voltage amplitude reference. vo is the amplitude of capacitor
voltage. The variables with subscripts d or q indicate variables in dq
coordinates.

2.2 Modelling

The detailed modeling process of VSG has been described in
Literature (Pogaku et al., 2007; Li et al., 2023). Therefore, this paper
will not repeat the details. A non-linear model of the single-VSG
grid-connected system can be established by Eq. (1).

Jω0
dωvsg

dt
� Pref − Pe − Dpω0 +Kp( ) ωvsg − ω0( )

Kiq
dEd

dt
� Qset +Kq von − vo( ) − Qe

vodref + jvoqref � Ed − igdRv + igqwvsgLv + j −igqRv − igdwvsgLv( )
iidref + iiqref � Kpv vodref − vod( ) +Kivxud − voqwvsgCf

+j Kpv voqref − voq( ) +Kivxuq + vodwvsgCf( )
dxud

dt
+ j

dxuq

dt
� vodref − vod + j voqref − voq( )

uidref + juiqref � vod +Kpc iidref − iid( ) +Kicxid − iiqwvsgLf

+j voq +Kpc iiqref − iiq( ) +Kicxiq + iidwvsgLf( )
dxid

dt
+ j

dxiq

dt
� iidref − iid + j iiqref − iiq( )

diid
dt

+ j
diiq
dt

� −Rf

Lf
iid + wvsgiiq + 1

Lf
vid − 1

Lf
vod + j −Rf

Lf
iiq − wvsgiiq + 1

Lf
viq − 1

Lf
voq( )

dvod
dt

+ j
dvoq
dt

� wvsgvoq + 1
Cf

iid − 1
Cf

igd + j −wvsgvod + 1
Cf

iid − 1
Cf

igd( )
digd
dt

+ j
digq
dt

� −Rg

Lg
igd + wvsgigq + 1

Lg
vod − 1

Lg
vbd + j −Rg

Lg
igq − wvsgigd + 1

Lg
voq − 1

Lg
vbq( )

vbd + jvbq � Egd cos δ( ) + jEgd sin δ( )
dδ

dt
� wg − wvsg

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(1)

The above nonlinear equations can be simplified and linearized
at the steady state point. Consequently, the small-signal model of
single-VSG grid-connected system can be obtained as Eq. (2)

TABLE 1 Parameters of single-VSG system.

Parameter Value Parameter Value

Lf/H 0.0008 Kp 1,592

Rf/Ω 0.03 Kq 34

Cf/F 0.0001 J 1

Rg/Ω 0.03 DP 30

Lg/H 0.0006 Kiq 195

Egd/V 311.127 Kpc 4

ωg/(rad/s) 314.159 Kic 1,500

Lr/H 0.0006 Kpv 2

ω0/(rad/s) 314.159 Kiv 133

Rv 0 Lv 0
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TABLE 2 Eigenvalues of single-VSG system.

Eigenvalue Real part Imaginary
Part

Oscillation
Frequency/Hz

Dominant
Related state
Variables

1,2 −2156.5 ±10,276.1 1,636 iid、iiq、vod、voq

3,4 −2081.4 ±9942.4 1,583 iid、iiq、vod、voq

5,6 −420.6 ±297.3 47 igd、igq

7,8 −382.5 ±34.5 5.41 xid、xiq

9,10 −33.3 ±13.3 2.01 xud、xuq、ωvsg、σ

11 −6.5 0 —- Ed

12,13 −2.5 ±36.3 5.82 xud、xuq、ωvsg、σ

FIGURE 2
The eigenvalue trajectories under different control parameters of active-power-frequency loop. (A) Eigenvalue trajectories of the system under
different inertias. (B) Eigenvalue trajectories of the system under different damping coefficients.

FIGURE 3
The eigenvalue trajectories under different virtual impedance parameters. (A) Eigenvalue trajectories of the system under different virtual inductor.
(B) Eigenvalue trajectories of the system under different virtual resistor.
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dΔxsys

dt
� AΔxsys + BΔu (2)

In Eq. (2), Δxsys is the state variable vector of the system, Δu is
the input variable vector of the system, and the elements of matrices
A and B are related to the steady state point. Matrices A and B are
given in Supplementary Materia S1–S3.

3 Stability analysis of Single-VSG grid-
connected system

3.1 Oscillation mode analysis of Single-
VSG system

According to the small-signal model described by Eq. (2), all
eigenvalues of the system matrix A are obtained based on the system
parameters in Table 1. The oscillation modes of system and the effect
of parameter variations on the stability can be obtained by analyzing
the eigenvalue distribution.

The system eigenvalues are shown in Table 2. It can be
concluded that the system has thirteen eigenvalues,
corresponding to seven oscillation modes. There are 6 pairs
of conjugate complex eigenvalues and 1 real eigenvalue. They
correspond to 7 oscillation modes. The system is stable on
condition that the eigenvalues of the system are in the left
half plane of the complex plane. By using the participation
factor analysis, it can be obtained that λ1~4 are mainly associated
with the state variables iid, iiq, vod, and voq generated by the LC
filters. However, the distances between the eigenvalues λ1~4 and
the imaginary axis are much greater than the distances between
other eigenvalues and the imaginary axis. As a result, λ1~4 have
little influence on the system stability and can be ignored. λ5~6
are mainly associated with the state variables igd and igq. λ7~8 are
mainly associated with the state variables xid and xiq generated
by the current loop control. λ9~10 and λ12~13 are mainly
associated with the state variables xud and xuq generated by

the voltage loop control as well as the state variables ωvsg and δ

generated by the active-power-frequency control. The
influences of various controller parameters on system
stability are presented in the following parts of this section.

3.2 Controller parameters of active-power-
frequency loop

The control parameters of active-power-frequency loop include
the virtual inertia J and the virtual damping coefficient Dp. The
eigenvalue trajectories with the changes of parameter are shown
in Figure 2.

When the virtual inertia J changes from 4 to 40 and other
parameters remain unchanged, the eigenvalue trajectories
are shown in Figure 2A. With the increase in virtual inertia,
the eigenvalues λ1–10 have slight changes. However, the

FIGURE 4
The eigenvalue trajectories under different voltage loop controller parameters. (A) Eigenvalue trajectories of the system under different
proportionality coefficient. (B) Eigenvalue trajectories of the system under different integrity coefficient.

FIGURE 5
The eigenvalue trajectories under different short circuit ratio.
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eigenvalues λ12–13 move towards the imaginary axis rapidly. It
is evident that the damping ratio of the corresponding
oscillation mode decreases rapidly while the oscillation
frequency decreases slightly. As a result, the system stability
is deteriorated.

When the virtual damping coefficient Dp changes from 30 to
60 and other parameters remain unchanged, the eigenvalue
trajectories are shown in Figure 2B. With the increase in
virtual damping coefficient, the eigenvalues λ1–8 and λ10 have
slight changes. The eigenvalues λ12–13 move to the left of the

FIGURE 6
Flowchart of PSO algorithm.
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complex plane and the movement speed away from the imaginary
axis is much higher than that away from the real axis. It can be
concluded that the damping ratio of the corresponding
oscillation mode increases, the overshoot gradually decreases,
the oscillation frequency increases slightly, and the system
stability is improved. However, the eigenvalues λ9–10 firstly
move away from the right half plane and towards the real
axis; then moves to the right half plane along the real axis.
Therefore, the virtual damping coefficient Dp should not be
too large, otherwise the system stability will be deteriorated.

3.3 Virtual impedance parameters

The virtual impedance parameters include the virtual resistor Rv

and the virtual inductor Lv. The eigenvalue trajectories with the
parameter changes are shown in Figure 3.

When the virtual inductor Lv changes from 0 to 0.0005, other
parameters remain unchanged, and the eigenvalue trajectories is
shown in Figure 3A. With the increase in virtual inductor Lv, the
eigenvalues λ1–10 has little changed. However, the eigenvalues
λ12–13 move rapidly away from the imaginary axis, the damping
ratios of the corresponding oscillation attenuation mode increase
rapidly, the oscillation frequency decreases slightly, and the
system stability improved. Meanwhile, the eigenvalues λ11
gradually approaches the imaginary axis, and the system will
be slightly worse for stability.

When the virtual resistor Rv changes from 0 to 0.3, other
parameters remain unchanged, and the eigenvalue trajectories is
shown in Figure 3B. With the increase in virtual resistor Rv, the
eigenvalues λ1–10 has little changed. However, the eigenvalues λ12–13
move rapidly away from the imaginary axis, the damping ratios of
the corresponding oscillation attenuation mode increase rapidly, the
oscillation frequency decreases slightly, and the system stability
improved. Unlike the trajectory of the eigenvalues when the
virtual inductor changes, the eigenvalues λ11 also moves away
from the imaginary axis, and the stability of the system will be
further improved.

3.4 Control parameters of voltage loop

The voltage loop controller parameters include
proportionality coefficient Kpv and the integrity coefficient Kiv.
The eigenvalue trajectories with the parameter changes are
shown in Figure 4.

When the proportionality coefficient Kpv changes from 2 to
20, other parameters remain unchanged, and the eigenvalue
trajectories is shown in Figure 4A. With the increase in
proportionality coefficient Kpv, the eigenvalues λ12–13 move
rapidly away from the imaginary axis, the damping ratios of
the corresponding oscillation attenuation mode increase rapidly,
the oscillation frequency decreases slightly, and the system
stability improved. However, the eigenvalues λ9-10 gradually
approaches the right half plane after changing to the real axis
from a pair of conjugate complex roots, and the system will be
slightly worse for stability. Therefore, the proportionality
coefficient should not be too large.

When the integrity coefficient Kiv changes from 100 to 400,
other parameters remain unchanged, and the eigenvalue trajectories
is shown in Figure 4B. With the increase in integrity coefficient Kiv,
the eigenvalues λ12–13 also move rapidly away from the imaginary
axis, the damping ratios of the corresponding oscillation attenuation
mode increase rapidly, the oscillation frequency decreases slightly,
and the system stability improved. However, the eigenvalues λ9-10
first moves away from the imaginary axis and then gradually moves
closer to the imaginary axis. Therefore, the integrity coefficient also
should not be too large.

3.5 Different short circuit ratios

The eigenvalue trajectories with different short circuit ratios are
shown in Figure 5.

When the short circuit ratio changes from 1 to 8 and other
parameters remain unchanged, the eigenvalue trajectories are
shown in Figure 5. With the increase in short circuit ratio, the
eigenvalues λ12–13 move towards the right-half plane rapidly. It
is evident that the damping ratio of the corresponding
oscillation mode decreases rapidly while the oscillation
frequency increase slightly. Although the eigenvalue λ11 is
moving to the left half plane, the eigenvalue λ12–13 is closer to
the right half plane. As the short-circuit ratio is increasing, the
system becomes less stable.

4 Optimization strategy for control
parameters based on PSO

4.1 PSO algorithm

The basic idea of the PSO algorithm is to assume that there are
N1 particles in the D-dimensional space, and the particles update
their velocities and positions according to Eq. (3).

vk+1ij � wvkij + r1a1 pij − xk
ij( ) + r2a2 pkj − xk

ij( )
xk+1
ij � xk

ij + vkij

⎧⎨⎩ (3)

In Eq. (3), w is the inertia weight; r1 and r2 are uniform
random numbers in the range of [0, 1]; a1 and a2 are the learning
factors; vkij and x

k
ij are the velocity and position of particle i in the

kth iteration, respectively, and both of them are restricted to be
movable; pij is the optimal position experienced by the ith
particle; and pgj is the optimal position experienced by all
particles of the particle swarm.

4.2 The objective function

It can be known from the above: the stability performance of the
system depends on the distribution of the eigenvalues, which
depends on the design of the controller parameters. Therefore,
the optimization objectives designed in this paper are as follows:

(1) All eigenvalues as far away from the right half plane
as possible.
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(2) The damping ratio of each oscillation mode should be as large
as possible to minimize the number of oscillation cycles
during the transient process.

According to the optimization objective, the objective
function of the system under a single operating point is
defined as Eq. (4).

minEj � ∑N
i�1
wif λi( ) +∑N

i�1
kih λi( )

f λi( ) �

0 Re λi( )≤ σ

Re λi( ) − σ Re λi( )> σ

inf Re λi( )≥ 0

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

h λi( ) �

0
Re λi( )| |
λi| | ≥ ξ,Re λi( )< 0

ξ − Re λi( )| |
λi| |

Re λi( )| |
λi| | < ξ,Re λi( )< 0

inf Re λi( )≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(4)

In Eq. (4), N is the number of eigenvalues. Re (λi) is the real part
of the eigenvalue λi. | λi | is the value of the modulus of the eigenvalue
λi. ξ is the desired damping ratio. σ is the desired real part value. wi is
the weight of f (λi). ki is the weight of h (λi). In this paper, we take
σ = −15, ξ = 0.707 and wi and ki are taken as shown in Eq. (5).

wi �
0.01 Re λi( )< δ
0.1 δ <Re λi( )< 0.5δ
0.8 0.5δ <Re λi( )< 0
1 Re λi( )> 0

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , ki �

0.01
Re λi( )| |
λi| | > ξ

10 0.5ξ < Re λi( )| |
λi| | < ξ

30
Re λi( )| |
λi| | < 0.5ξ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(5)

Considering different grid strengths as well as different output
powers in practice, the VSG can be linearized at different steady state
operating points, and then the eigenvalues corresponding to each

operating point can be solved separately. Therefore, in order to
consider the effectiveness of the control parameters under multiple
operating points, the objective function is changed to Eq. (6) based
on a single operating point.

minE � ∑M
j�1
pjEj (6)

where pj is the probability of the jth operating point, Ej is the
optimization objective function at the jth operating point. In this
way, the control parameters can be globally optimized for multiple
operating conditions.

4.3 Optimization process

In the PSO algorithm, the objective function represents the
fitness value of the particle, the controller parameter represents
the position, the change value of the controller parameter
represents the speed, the individual extreme value represents
the optimal fitness value of each particle, the global extreme value
represents the optimal fitness value searched by all the particles,
and the position corresponding to the particle with the global
extreme value is the optimal control parameter value. The
algorithm flow is shown in Figure 6. Firstly, the particle
velocity and particle position are initialized. The particle
position is the main control parameter of the VSG and is
represented by the vector [J Dp Lv Rv Kpv Kiv Kpc Kic].
Secondly, the above control parameters are brought into the
system eigenmatrix to obtain the system eigenvalues. The system
eigenvalues are brought into the objective function to get the
individual objective value for each particle. Updating the group
historical optimum with the individual optimum based on the
current individual objective function values. Update the particle
positions by learning factor and inertia factor for several
iterations. Finally, the particle positions corresponding to the
population historical optimal values are the optimal control
parameters of the VSG.

4.4 Example analysis

The control parameters of the system are optimized by using
a PSO-based multiple operating point optimization algorithm.
And the control parameters of the system before and after

TABLE 3 Comparison of control parameters before and after optimization.

Parameter Before optimization After optimization

J 1 0.83

Dp 30 35.1

Kiq 195 207.64

Lv 0 0.00014

Rv 0 0.011

Kpc 4 2.64

Kic 1,000 2148.4

Kpv 2 16.94

Kiv 133 260.24

TABLE 4 Voltage source type D-PMSG with different operating conditions.

Work point serial number Output power (kW) SCR

1 10 2

2 20 2

3 30 2

4 10 4

5 20 4

6 30 4
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optimization are shown in Table 3. The different work points
are shown in Table 4 The population historical optimal
fitness and the number of iterations is shown in Figure 7.
As the number of iterations increases, the population
historical optimal fitness rapidly converges. The distribution
of eigenvalues before and after optimization is shown in
Figure 8. The PSO algorithm was run several times. the
population historical optimal fitness all converge to the
optimal value relatively quickly, and the average number of

convergence is about 65 times, which indicates that the
optimization strategy of the PSO algorithm has a good
convergence property, and the optimization results can be
obtained within a limited number of iterations. The
distribution of eigenvalues after optimization is further
away from the imaginary axis than before optimization.
However, the complex eigenvalue closest to the
imaginary axis after optimization is close to the optimal
damping ratio.

FIGURE 7
Population optimal fitness convergence curve.

FIGURE 8
The distribution of eigenvalues before and after optimization.
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5 Simulation verification

5.1 Small-signal model verification

To verify the correctness of the small-signal model derived
above, the actual model was built in PSCAD according to the
parameters in Table 1.

The change curves of each variable in the two models are shown
in Figure 9 by comparing the change curves of each variable in the
twomodels at 5 s for the active power reference value Pref from a step
of 5kW–10 kW. It can be observed that the dynamic process of the
small-signal model basically overlaps with the PSCAD simulation
model, which verifies the accuracy of the small-signal model
established in this paper.

5.2 Stability analysis verification

To verify the correctness of the analysis of the above variable
parameters on the change law of eigenvalue trajectories, a time
domain simulation model of a VSG grid-connected system was built
in PSCAD. With the same other parameters (as shown in Table 1),
when the power is stepped, the response simulation waveforms
under different virtual moments of inertia, virtual damping

coefficients, virtual inductor, virtual resistor, voltage
proportionality coefficients and voltage integration coefficients
are shown in Figure 10A–E respectively.

As can be seen from Figures 10A,B, increasing the virtual inertia
J or decreasing the virtual damping coefficient Dp will make the
system unstable under a power stepping. Increasing the virtual
inertia J influences the number of oscillations of active power
and frequency under power stepping, increasing the regulation
time of the system. Increasing the virtual damping coefficient Dp

reduces the amplitude of oscillations of active power and frequency
and shortens the time for the system to reach stability.

As can be seen from Figures 10C,D, decreasing the virtual
inductor Lv or decreasing the virtual resistor Rv will make the
system unstable under a power stepping. Decreasing the virtual
inductor Lv influences the number of oscillations of active power and
frequency under power stepping, increasing the regulation time of
the system. Increasing the virtual resistors Rv reduces the amplitude
of oscillations of active power and frequency and shortens the time
for the system to reach stability.

As can be seen from Figures 10E,F, decreasing the voltage
proportionality coefficients Kpv or decreasing the voltage integrity
coefficients Kiv will make the system unstable under a power
stepping. Decreasing the voltage proportionality coefficients Kpv

influences the number of oscillations of active power and

FIGURE 9
Comparison of simulation results between small signal model and PSCAD model: (A) Pe; (B) wvsg; (C) Qe; (D) igq; (E) igd; (F) voq; (G) vod; (H) iid;
(I) iiq.
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FIGURE 10
Simulation waveforms with parameters: (A) different virtual inertias; (B) different damping coefficients; (C) different virtual inductor; (D) different
virtual resistors; (E) different proportionality coefficients; (F) different integrity coefficients; (G) different short circuit ratio.

FIGURE 11
Simulation waveforms of active power before and after optimization for different short circuit ratios (SCR): (A) SCR = 2; (B) SCR = 8.
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frequency under power stepping, increasing the regulation time of
the system. Increasing the voltage integrity coefficients Kiv reduces
the amplitude of oscillations of active power and frequency and
shortens the time for the system to reach stability.

As can be seen from Figure 10G, increasing short circuit ratio
will make the system unstable under a power stepping. Increasing
short circuit ratio influences the number of oscillations of active
power and frequency under power stepping. And it will increase the
regulation time of the system.

5.3 Parameter optimization

To verify the validity of optimization strategy derived above, the
actual model was built in PSCAD according to the parameters in
Table 3. In order to simulate the large perturbation, the active power
reference value Pref changes rapidly from 10Kw to 20Kw at t = 4 s,

20Kw to 30Kw at t = 6 s, 30Kw to 0Kw at t = 8 s, 0 to 30Kw at t = 12 s.
The active power response curves at different short circuit ratios are
shown in Figure 11A, B. It can be found that the stability of the
system is improved even under large disturbances after using the
optimization of multiple operating points. And the optimized
system performs well at different short circuit ratios.

As can be seen from Figure 11A ~ Figure 11B, Parameter
optimization not only improves response speed, but also reduces
oscillation amplitude. As a result, the system with optimized
parameters has better response characteristics under different
grid strengths and disturbances.

6 Experimental verification

To further verify the reliability and accuracy of the above
theoretical analysis, a virtual synchronous machine model is built
based on RT-LAB semi-physical simulation platform. And for the
observation and verification, the parameters of the critically
stabilized system are selected as shown in Table 5.

RT-LAB real-time simulation platform consists of an upper
computer, a lower computer and a controller. The upper computer is
an PC, the lower computer consists of OP5600 module produced by
Opal-RT Canada, and the controller used TMS320F28379d DSP
control chip. The detailed experimental platform is shown in
Figure 12A. The experimental schema is shown in Figure 12B.
The simulation model built in MATLAB/Simlink is put into the
OP5600 real-time simulator for real-time operation, and the DSP
controller receives the analog signals output from the
OP5600 through the ADC module and executes the algorithmic
procedures in the DSP to generate the corresponding PWM signals
to be sent back to the main circuit through the digital port of the
OP5600. The model realizes the complete control.

Figure 13A illustrates the variation of the eigenvalues nearest to
the imaginary axis when the virtual inertia coefficient J is changed.

TABLE 5 VSG critically stabilized system parameters.

Parameter Value Parameter Value

Lf/H 0.0008 Kp 1,592

Rf/Ω 0.03 Kq 321

Cf/F 0.0001 J 1

Rg/Ω 0.03 DP 30

Lg/H 0.0006 Kiq 100

Egd/V 311.127 Kpc 4

ωg/(rad/s) 314.159 Kic 1,500

Lr/H 0.001 Kpv 1.2

ω0/(rad/s) 314.159 Kiv 70

Rv 0 Lv 0

FIGURE 12
Experimental device and principle: (A) Experimental device; (B) The experimental schema.
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From the figure, it can be found that when J = 0.5, the eigenvalues
are located in the left half plane and the system is in a stable state,
corresponding to an oscillation frequency of 5.6 Hz for the
eigenmode, and when J = 1, the eigenvalues are located in the
right half plane and the system is in an unstable state,
corresponding to an oscillation frequency of 5.1 Hz for the
eigenmode. The experimental results in Figure 13B demonstrate
this process; when J = 0.5, an active power step is applied and the
output power undergoes decaying oscillations at an oscillating

frequency of 5.5 Hz and the system is in a steady state. After 5 s, J is
changed to 1, the output power oscillates with a 5 Hz oscillation
frequency for divergence oscillation, and the system is in a
destabilized state. The experimental results are the same as the
theoretical analysis, which further proves that the stability of the
system deteriorates with the increase of the virtual inertia
coefficient J in a certain range.

Figure 13C illustrates the variation of the eigenvalues nearest to
the imaginary axis during the reduction of the virtual damping

FIGURE 13
(Continued).
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coefficient Kd from 40 to 25. From the figure, it can be found that
when Kd = 40 the eigenvalues are located in the left half-plane and
the system is in a stable state, which corresponds to an oscillation

frequency of 5 Hz for the eigenmodes, and when Kd = 25 the
eigenvalues are located in the right half-plane and the system is in a
destabilized state, which corresponds to an oscillation frequency of

FIGURE 13
(Continued). Experimental waveform and analysis with different parameters: (A) Eigenvalue λ12~13 trajectories with different J;(B) Active power
experiment waveform with different J; (C) Eigenvalue λ12~13 trajectories with different Dp;(D) Active power experiment waveform with different Dp; (E)
Eigenvalue λ12~13 trajectories with different Lv;(F) Active power experiment waveform with different Lv; (G) Eigenvalue λ12~13 trajectories with different Rv;
(H) Active power experiment waveform with different Rv; (I) Eigenvalue λ12~13 trajectories with different Kpv;(J) Active power experiment waveform
with different Kpv; (K) Eigenvalue λ12~13 trajectories with different Kiv; (L) Active power experiment waveform with different Kiv.
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5 Hz for the eigenmodes. The experimental results in Figure 13D
demonstrate this process; when Kd = 40, an active power step is
applied and the active power oscillates with a decaying frequency of
5 Hz and the system is in a steady state. After 5 s,Kd is changed to 25,
the active power oscillates with 5 Hz oscillation frequency for
divergence oscillation, and the system is in the destabilized state.
The experimental results are the same as the theoretical analysis,
which further proves that the stability of the system deteriorates
with the decrease of the virtual damping coefficient Kd in a
certain range.

Figure 13E illustrates the variation of the eigenvalues
nearest to the imaginary axis during the reduction of the
virtual reactance Lv from 0.1 to 0. From the figure, it can be
found that when Lv = 0.1 the eigenvalues are located in the
left half plane and the system is in a stable state, corresponding
to an oscillation frequency of the eigenmode of 5.1 Hz, and when
Lv = 0 the eigenvalues are located in the right half plane and the
system is in a destabilized state, corresponding to an oscillation
frequency of the eigenmode of 5 Hz. The experimental results
in Figure 13F demonstrate this process; when Lv = 0.1, an active
power step is applied and the active power undergoes decaying
oscillations at an oscillating frequency of 5 Hz and the system
is in a steady state. After 5 s, Lv is changed to 0, the active
power oscillates with a 5 Hz oscillation frequency for divergence
oscillation, and the system is in a destabilized state. The

experimental results are the same as the theoretical analysis,
which further proves that the stability of the system
deteriorates with the decrease of the virtual reactance Lv in a
certain range.

Figure 13G illustrates the variation of the eigenvalues nearest
to the imaginary axis during the reduction of the virtual resistance
Rv from 0.15 to 0. From the figure, it can be found that when Rv =
0.15 the eigenvalues are located in the left half-plane and
the system is in a steady state, corresponding to the eigenmode
with an oscillation frequency of 4.1 Hz, and when Rv =
0 the eigenvalues are located in the right half-plane and the
system is in a destabilized state, corresponding to the
eigenmode with an oscillation frequency of 5 Hz.The
experimental results in Figure 13H demonstrate this process,
when Rv = 0.15, the application of the active power step, the
active power decays and oscillates at an oscillation frequency
of 4.1 Hz and the system is in a steady state. After 5 s, Rv is
changed to 0, and the active power oscillates with a 5 Hz oscillation
frequency for divergence oscillation, and the system is in a
destabilized state. The experimental results are the same as the
theoretical analysis, which further proves that the stability of the
system deteriorates with the decrease of the virtual resistance Rv in
a certain range.

Figure 13I illustrates the variation of the eigenvalues nearest to
the imaginary axis during the reduction of the net-side voltage loop

FIGURE 14
Experimental waveforms of active power before and after optimization for different short circuit ratios (SCR) (A) SCR = 2, after optimization (B) SCR = 8,
after optimization (C) SCR = 2, before optimization (D) SCR = 8, before optimization.
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proportionality coefficient Kpv from 1.35 to 1.2. It can be found from
the figure that the eigenvalues are located in the left half-plane when
Kpv = 1.35, the system is in a stable state, and the corresponding
eigenmode oscillates at a frequency of 5.4 Hz, and the eigenvalues
are located in the right half-plane when Kpv = 1.2 and the system is in
a destabilized state, and the oscillation frequency of the
corresponding eigenmode is 5.4 Hz. The experimental results in
Figure 13J demonstrate this process; when Kpv = 1.35, an active
power step is applied and the active power undergoes decaying
oscillations at an oscillating frequency of 5 Hz and the system is in a
steady state. After 5 s, Kpv is changed to 1.2, the active power
oscillates with 5 Hz oscillation frequency for divergence oscillation,
and the coefficients are in a destabilized state. The experimental
results are the same as the theoretical analysis, which further proves
that the stability of the system deteriorates with the decrease of the
proportionality coefficient Kpv of the grid-side voltage loop in a
certain range.

Figure 13K illustrates the variation of the eigenvalue closest to
the imaginary axis during the reduction of the grid-side voltage loop
integration coefficient Kiv from 80 to 65. From the figure, it can be
found that the eigenvalues are located in the left half-plane when
Kiv = 80 and the system is in a stable state, corresponding to an
oscillation frequency of the eigenmode of 5.4 Hz, and the
eigenvalues are located in the right half-plane when Kiv = 65 and
the system is in a destabilized state, corresponding to an oscillation
frequency of the eigenmode of 4.8 Hz. The experimental results in
Figure 13L demonstrate this process, when Kiv = 80, an active power
step is applied and the active power oscillates decaying at a
frequency of 5.4 Hz and the system is in a steady state. After 5 s,
Kiv is changed to 0, the active power oscillates with a frequency of
4.7 Hz for divergence oscillation, and the system is in a destabilized
state. The experimental results are the same as the theoretical
analysis and simulation results, which further proves that the
stability of the system deteriorates in a certain range with the
decrease of the loop proportionality coefficient Kiv of the grid-
side voltage.

The control parameters before and after optimization as shown
in Table 3 were applied to the semi-physical simulation platform for
experimental verification. We can compare the dynamic
performance of the system by setting the power stepping with
different short-circuit ratios. The experimental results are shown
in Figure 14. From Figure 14, it can be seen that the unoptimized
system has longer regulation times with larger overshoots for
different grid strengths and different levels of disturbance.
Moreover, the oscillations increase significantly with increasing
short-circuit ratio. The optimized system shows better dynamic
performance under different disturbances and different
grid strengths.

7 Conclusion

The stability of single-VSG Grid-Connected system and
global parameter optimization are studied in this paper. The
system stability and parameter optimization methods are
verified by experiments, and the following conclusions can
be obtained:

(1) In the single-VSG grid-connected system, increasing the
virtual inertia coefficient will rapidly reduce the damping
ratio of the corresponding oscillation attenuation mode and
deteriorate the system stability. Increasing the virtual
damping coefficient, the virtual impedance parameters, the
voltage loop proportionality coefficient and the voltage loop
integration coefficient will increase the damping ratio and
improve the system stability.

(2) The PSO algorithm is able to optimize all controller
parameters of the system at the same time. that the
optimized system has high control accuracy under different
grid strengths and large disturbances, and the steady state and
transient characteristics of the system are greatly improved.
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