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With the growing concern for the environment, sustainable development centred
on a low-carbon economy has become a unifying pursuit for the energy industry.
Integrated energy systems (IES) that combine multiple energy sources such as
electricity, heat and gas are essential to facilitate the consumption of renewable
energy and the reduction of carbon emission. In this paper, gas turbine (GT),
carbon capture and storage (CCS) and power-to-gas (P2G) device are introduced
to construct a new carbon capture coupling devicemodel, GT-CCS-P2G (GCCP),
which is applied to the integrated electrical and gas system (IEGS). Multi-agent
soft actor critic (MASAC) applies historical trajectory representations, parameter
spatial techniques and deep densification frameworks to reinforcement learning
for reducing the detrimental effects of time-series data on the decisional
procedure. The energy scheduling problem of IEGS is redefined as a Markov
game, which is addressed by adopting a low carbon economic control framework
based onMASACwithminimumoperating cost andminimum carbon emission as
the optimization objectives. To validate the rationality and effectiveness of the
proposed low-carbon economy scheduling model of IEGS based on MASAC, this
paper simulates and analyses in integrated PJM-5 node system and seven nodes
natural gas system.
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1 Introduction

With population growth and accelerated industrialization, energy consumption is
increasing, along with significant greenhouse gas emission. These emissions have a huge
impact on climate change, with issues such as extreme weather events, sea-level rise and
ecosystem collapse (Ma et al., 2024; Wojtaszek et al., 2024). It is therefore crucial to adopt
energy-saving and emission-reduction measures (Li et al., 2019). By promoting the use of
renewable energy, improving energy efficiency and adopting cleaner production
technologies, we can reduce dependence on fossil fuels and lower greenhouse gas
emissions (Liu et al., 2024; Okedu et al., 2024).
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The United Nations Framework Convention on Climate
Change, adopted by the United Nations in 1994, became the
world’s first international treaty to reduce emissions of
greenhouse gases such as carbon dioxide and methane, requiring
all countries in the world to take some responsibility for carbon
emission reduction (Werksman, 1994). In 2005, countries continued
to sign the Kyoto Protocol, which provided programs to reduce
carbon emissions and established corresponding cooperation
mechanisms for countries to deal with carbon emission
reduction, thus advancing the development of global carbon
emission reduction (Gallo et al., 2018). The Paris Agreement,
signed in Paris in 2015, requires developed countries, while
accomplishing their own carbon emission reduction tasks, to
provide certain financial support and related technologies to
developing countries, contributing to the fulfillment of the global
carbon emission reduction tasks (Elsayed et al., 2024). In 2021,
China proposes to vigorously develop renewable energy sources
such as wind power and photovoltaic, laying a solid foundation for
achieving carbon peak by 2030 and carbon neutrality by 2060
(Zhong et al., 2023). However, renewable energy sources such as
wind turbine (WT) and photovoltaic (PV) have problems such as
chronology, stochasticity and volatility. When a high percentage of
renewable energy is injected into the grid it can bring about
problems such as sudden voltage changes (Cao et al., 2020a; Cao
et al., 2021) and system collapse (Barker and Mello, 2000; Dulăua
et al., 2013), which has also become the focus of carbon emission
reduction (Gao and Zhang, 2024).

In traditional energy dispatching, various energy sources are
dispatched by different sub-networks (e.g., electrical network, gas
network, and heat/cooling network), in which the sub-networks
are controlled by different departments. In actual operation,
power grids are coupled with each other in terms of
production, transmission, distribution and utilization.
However, a singular scheduling makes it impossible to form
an effective information sharing and energy complementarity
between sub-networks, so as to fail to guarantee the system
stability. Multi-energy flow deployment can improve the
efficiency of energy utilization, reduce the total cost of system
operation, and realize the stability and safety of system operation
(Liu et al., 2018; Wang et al., 2023a). Consequently, breaking the
limitations of traditional energy architecture and constructing
multi-energy network architecture, such as electricity-heat-gas-
cooling integrated energy system (IES) to tap the potential of
energy transmission between different systems, is one of the core
contents of research by scholars in related fields in various
countries (Liu et al., 2023).

Substituting conventional thermal power generation with
renewable energy sources such as wind and photovoltaic,
reducing the utilization rate of conventional thermal power
plants by applying power-to-gas (P2G) and gas turbines (GT),
and achieving carbon dioxide (CO2) absorption and utilization
are significant in reducing carbon emissions. Carbon capture and
storage (CCS) provides an alternative and effective technology for
dealing with CO2 emissions, with 92 per cent of the CO2 produced
by coal-fired units being captured and stored in the IES. It can be
seen that the combination of P2G and CCS technologies can
effectively reduce and improve carbon emissions, and the carbon
capture technology also improves the carbon feedstock for methane

generation by P2G, thereby reducing the amount of CO2 generated
by coal-fired units in the IES (Gu et al., 2017; Yang et al., 2019).

He et al. (2022) constructs a near-zero emission park-level IES
considering uncertainty with P2G and CCS. Zhang et al. (2020)
constructed an integrated electricity-gas energy system (IEGS)
optimization model considering P2G and wind power
uncertainty based on distributed robust optimization. The
superiority of the low carbon emission is effectively verified by
the results of three different IEGSs. In order to determine the
optimal capacity of the gas turbine and P2G technology for
different IEGS, a Monte Carlo based optimization framework has
been proposed in Tabebordbar et al. (2023). The experimental
results demonstrate the superiority and sophistication of the
reliability-oriented optimization framework. However the
algorithms adopted in the above mentioned literature struggle to
attain the satisfactory results in the presence of the complexity and
diversity of the system, the mutual constraints of the coupled energy
components and the large dimension of the optimization objective.

With the advancement of science and technology and the rapid
progress of artificial intelligence technology, many scholars have
proposed a variety of optimization and control strategies based on
machine learning in the literature. Reinforcement learning (RL) is
currently the most popular method to solve the control optimization
problem, which includes both agent and environment (Cao et al.,
2020b; Zhang et al., 2023a; Cao et al., 2023; Li et al., 2024a, 2024c).
Zhang et al. (2023b) proposed a two-timescale energy management
strategy based on multi-agent deep RL (MADRL) for residential
multicarrier energy system, where the optimal solution of each
coupling element in the system is obtained to achieve the
optimal control effect. Aiming at the joint operation of multiple
microgrids, a MADRL-based energy management method is
proposed in Li et al. (2023). Each microgrid as an agent
performs a game with each other, and the continuous training
ensures that each agent chooses the local optimal strategy under
the global optimal situation. Taking into account the different
characteristics between the electricity and the heat network,
Monfaredi et al. (2023) achieves an hourly optimal scheduling
strategy by scheduling multiple renewable energy sources. During
the optimization process, MADRL is applied to achieve the
information interaction between the energy storage system, new
energy sources, heat and power conversion system and the grid,
which results in the desirable control strategy of the system to
improve the energy utilization. In order to address the distributed
energy management problem of multi-area IES, a MADRL-based
energy management strategy is proposed, which effectively
decreases the influences of renewable energy uncertainty on the
decision-making of the optimization model by exploiting the
generalization capability of RL (Ding et al., 2024). A MADRL-
based building energy management model has been proposed which
achieves excellent dynamic decision making through centralized
training and distributed execution (Wang et al., 2024).

This paper proposes a low carbon and economic IEGS
scheduling method based on multi-agent soft actor critic
(MASAC), which achieves a bidirectional coupling between the
electrical network and gas network by utilizing the P2G and GT.
the CCS captures the CO2 produced by the power plant as feedstock
for the CH4 produced by the P2G, which will reduce the carbon
emissions of the system, and the excess CO2 will be purchased
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through the carbon trading market to achieve a zero-carbon system.
The main contributions of this paper can be summarized as.

1) A GT-CCS-P2G (GCCP) model is presented to achieve a two-
way coupling between the electric and gas grids in IEGS.

2) The electrical network and gas network are separately
modelled as an agent to enhance the generalization
capability of the energy dispatch model through
reciprocal gaming.

3) A novel energy scheduling strategy model based on MASAC
exploiting historical data is proposed.

The reminder structure of this article is as follows. Section 2
focuses on the theory of electrical and gas networks and related
coupling elements. Section 3 describes the algorithmic solution
process of the method proposed in this paper. Section 4 verifies
the superiority of the proposed method through a detailed analysis
of examples. Section 5 indicates the summary of the whole paper.

2 Problem formulation

The detailed structure of IEGS is shown in Figure 1, including
the electrical and gas networks. Electricity in the power network is
supplied by thermal power plants, GT andWT, where the CO2 from
the thermal power plants is captured by CCS and used as feedstock
for methane generation by P2G. CO2 from thermal power plants is
converted to CH4 by P2G treatment which is transmitted to the
natural gas network. CO2 that cannot be captured by CCS will be
purchased for carbon emission trading rights to achieve the zero
carbon target. Perfectly realize the bi-directional coupling between
electrical and gas networks through GT, CCS and P2G, enabling a
bi-directional flow of energy. Battery energy storage system (BESS)
as a rechargeable and dischargeable energy device enhances the
proportion of renewable energy consumed by the electrical network.

2.1 Natural gas system modelling

In a natural gas system, natural gas is transmitted to the
consumer through a pipeline, which consists of a gas source, a
gas load, a transmission pipeline, and a compressor (Zhang et al.,
2024a). Natural gas system modelling is mainly gas source, load,
nodal pressure and pipeline flow modelling.

2.1.1 Gas source and load
The main components of a typical natural gas network are gas

wells and gas storage stations. In practice, the supply of natural gas
from gas wells is not unlimited with certain constraints that should
exist in its supply. It can be expressed as Eq. 1.

Si,min ≤ Si,t ≤ Si,max (1)
where Si,t is the Natural gas supply; Si,min and Si,max represent the
minimum and maximum of Natural gas supply, separately.

2.1.2 Pipeline flow modelling
During the transport of natural gas, its flow rate does not

decrease. Analogous to voltage losses in power system, nod al
pressure losses will exist at the beginning and end of a natural
gas pipeline. Flow always moves from the high pressure node to the
low pressure node in the pipeline, with the magnitude depending on
the length of the pipeline, diameter, operating temperature and
pressure. The relationship between pipe flow rate magnitude and
pipe pressure can be expressed as Eqs 2, 3 (Dai et al., 2020).

Bij � sng πi, πj( )pCij

�������
π2
i − π2

j

∣∣∣∣∣ ∣∣∣∣∣√
sng πi, πj( ) � 1 πi ≥ πj

−1 πi ≤ πj
{

⎧⎪⎪⎨⎪⎪⎩ (2)

πi,min ≤ πi ≤ πi,max (3)
where Bij is pipe flow rate; π is the node pressure; sng(πi, πj) is the
function whose value is 1 When the pressure at node i is higher than

FIGURE 1
The structure of the IEGS.
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that at node j and vice versa its value is −1; Cij is a coefficient; πi,min

and πi,max are the minimum and maximum of the node pressure.
The correlation matrix between the injected flow at each node

and the pipeline flow can be established by using the forward
backward generation method for the acyclic natural gas network.
The correlation matrix between the injection flow and the
pipeline flow at each node can be established for the non-
cyclic natural gas network by using the forward back
generation method, which is similar to the concept of the
generation shift factor (GSF) in the direct current flow
method of the power system. The relationship between the
natural gas supply and load at each node with the pipeline
flow is represented by.

Bij � ∑N
n�1

GSFgas,m,ijp Sn − GLn( ) (4)

where n denotes the nature gas injection node,; GLn indicates the
consumption gas load of node n.

A link between each pipe node is established based on Eq. (4).
Therefore, the pressure in each node can be obtained from the
acquired pipeline flow rate based on Eq. (2).

2.1.3 Compressor station
As the distance of gas transmission increases, pressure losses

between nodes can lead to low pressure at the end of the pipeline
which limits the transmission capacity of the network. The most
important part of the compressor station is the compressor which
consumes electrical energy that increases the pressure of the natural
gas. The pressurization station considered in this paper is of fixed
variable ratio and the energy consumed is from electrical energy
contained in the load of the grid node (Bai et al., 2016). It can be
presented as Eqs 5, 6.

Hcom � EBij
πi

πj
( )G

− 1⎡⎣ ⎤⎦ (5)

Pcom � Hcompχ (6)
where Hcom represents the power required by the compressor; E, G
and χ represent coefficient; Pcom represents the electrical load
required by the compressor.

2.2 Electricity system modelling

The results of power flow calculations are the basis for analyzing
the feasibility, safety, reliability and economics of grid planning and
supply options. Power flow analyses perform a vital role in grid
operation modelling and designing which can be calculated as Eqs
7, 8.

Pi,t � Vi,t∑N
j�1
Vj,t Gij,t cos θij,t + Bij,t sin θij,t( ) (7)

Qi,t � Vi,t∑N
j�1
Vj,t Gij,t sin θij,t − Bij,t cos θij,t( ) (8)

where Pi,t denotes the active power injected by node i at time t; Gij,t

and Bij,t represent the correlation values of the node i and node j

conductivity matrices, respectively; N indicates the total amount of
nodes; θij,t denotes the phase difference from nodes i with j; Qi,t

denotes the reactive power injected by node i at time t.

2.3 Coupling elements modelling

The GT and the P2G technology enable the deep coupling of the
power system with the natural gas system, thereby enabling a bi-
directional conversion of the electricity-gas system.

2.3.1 GT
The GT can be viewed as a power source in a power system,

however in the natural gas system as the load. The relationship
between the power generated and the natural gas consumed can be
expressed as Eq. 9 (Ji et al., 2013).

PGT,i,t � ζGTpGLGT,i,t (9)
where PGT,i,t represents the generation of electricity from the GT at
node i at time t; ζGT represents conversion efficiency of GT; GLGT,i,t
represents the gas load of the GT at node i at time t.

2.3.2 P2G
P2G technology consists of two main steps: the electrolysis of

water and the synthesis of methane. The chemical equations for the
two reactions are expressed as Eqs 10, 11 (Clegg and
Mancarella, 2015).

2H2O → 2H2 +O2 (10)
4H2 + CO2 → CH4 + 2H2O (11)

The hydrogen produced in the first step can be stored in a
hydrogen storage facility or injected into the network in a mixture of
natural gas, but the concentration is limited due to safety factors.
The methane produced in the second step can be stored in large
quantities or transported to other places where it is necessary, which
absorbs a large amount of CO2 and reduces carbon emissions. P2G
not only strengthens the coupling of the electricity-gas network, but
also consumes the electricity generated by the new energy to increase
the proportion of new energy consumption. The conversion
relationship between P2G consumption of electrical energy and
the generation of natural gas can be demonstrated as Eqs 12, 13.

EP2G,t � ζP2GpPP2G,t (12)
SP2G,t � EP2G,t

HHV
(13)

where EP2G,t and SP2G,t denote the power and volume values
obtained by the P2G technology at time t, respectively; ζP2G
represents the conversion efficiency of P2G; HHV indicates the
conversion relationship between energy and volume of natural gas of
P2G; PP2G,t denotes the P2G electrical load at time t.

2.3.3 CCS
CCS has been identified as a key and promising technology for

future power generation (Zhang et al., 2024). Capture and storage
are the two main phases of current carbon capture technology. The
capture process is complex, and the main commercially available
CO2 capture methods fall into three categories: oxygenated fuel
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combustion, pre-combustion and post-combustion technologies.
Post-combustion technology deals with the CO2 containing gases
produced by conventional fossil fuel plants and achieves the process
of separating CO2 from other gases. Pre-combustion technology, on
the other hand, is the process of pre-treating the fuel to sort the
carbon in it from other substances. Unlike the first two technologies,
oxy-fuel combustion technology changes the environment in which
the fuel is burned, allowing it to be burned in an environment
containing only oxygen to obtain carbon dioxide and water. Of
these, post-combustion is currently the more widely used method,
and it is also the most cost-effective of the three CO2 capture
technologies. Sequestration technology begins with the creation
of pipelines to transport carbon dioxide, which is then
sequestered by compressors.

The electrical energy consumed by the CCS during operation is
expressed as Eq. 14.

PCCS,t � ζCCSpC
CO2
CCS,t (14)

where PCCS,t represents the power consumed by the CCS to capture
CO2 at time t; ζCCS indicates CCS capture efficiency; C

CO2
CCS,t denotes

the amount of carbon dioxide captured at time t.

2.4 GT-CCS-P2G

Conventionally, carbon capture power plants have operated
CCS in combination with thermal power plants or CHP.
However, to better reduce carbon emissions, a conventional
power plant is replaced by GT coupled with CCS and P2G in
this paper, which enhances the coupling of electrical energy flow.
In terms of carbon emission, the CCS captures the carbon dioxide
emitted by the GT and supplies the P2G with CO2 to generate
methane. In terms of energy supply, the GT unit supplies electricity
to P2G and CCS, meanwhile P2G can also supply a small amount of
natural gas to the GT. In terms of economic cost, P2G avoids the cost
of purchasing CO2 and CCS reduces purchase electricity from the

main grid. The energy flow route of GT-CCS-P2G (GCCP) is shown
in Figure 2.

2.4.1 GCCP operational power
The power consumed by P2G and CCS in the GCCP combined

operation model is supplied by GT and the excess power will
participate in the power network dispatch which can be
calculated as Eq. 15.

PGCCP,t � PGT,t − PCCS,t − PP2G,t (15)
where PGCCP,t indicates that the GCCP participates in grid dispatch
power at time t; PGT,t denotes the power produced by GT at time t.

The GT, CCS and P2G power constraint can be formulated as
Eqs 16–18.

PGT,min ≤PGT,t ≤PGT,max (16)
PCCS,min ≤PCCS,t ≤PCCS,max (17)
PP2G,min ≤PP2G,t ≤PP2G,max (18)

where PGT,min and PGT,max indicates GT operating minimum and
maximum power, separately; PCCS,min and PCCS,max represents the
minimum and maximum power for capturing CO2 by CCS,
respectively; PP2G,min and PP2G,max denote the minimum and
maximum power for P2G operation, separately.

2.4.2 GCCP carbon emission calculation
During operation of the GCCP, GT burning of natural gas

releases CO2, which can be expressed as Eq. 19.

CCO2
GT,t � ζCO2

GT pPGT,t (19)

where CCO2
GT,t denotes the CO2 produced by the GT operation at time

t; ζCO2
GT indicates the carbon emission factor for GT operation.
During GCCP operation, P2G reduces the carbon emissions

of the system by capturing CO2. P2G The synthesis of CH4 is
divided into two main steps: the first step is the electrolysis of
water, in which the principle of electrolysis of water is used to
convert electrical energy into hydrogen energy in an electrolytic

FIGURE 2
GCCP energy flow.
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tank. The second step is methanation, where the hydrogen energy
generated is converted to CH4 and heat energy in a Sabatier
reaction with carbon dioxide in a methane reactor which can be
calculated as Eq. 20.

CCO2
P2G,t � ζH2−CO2

ζH2
P2GSP2G,t (20)

where CCO2
P2G,t indicates the amount of CO2 captured during P2G

operation at time t; ζH2−CO2
denotes the coefficient of conversion

between H2 and CO2; ζ
H2
P2G represents the efficiency of hydrogen

generation by P2G.
In the GCCP coupling model, the CCS captures CO2 from GT

operation simultaneously providing P2G with the CO2 required for
CH4 production. CH4. The carbon emissions from the GCCP can be
expressed as follow (Eq. 21).

CCO2
GCCP,t � CCO2

GT,t − CCO2
CCP,t (21)

where CCO2
GCCP,t is the carbon emissions of GCCP at time t.

2.5 Objective function

In consideration of the above-mentioned model, the energy
scheduling of the IEGS system is viewed as an optimization problem
which involves the minimization of the following objective function
(Eq. 22).

min ∑T
t�1

CCCS,t + CP2G,t + CP,t + CE,t + CWind,t + CGas,t( )⎧⎨⎩ ⎫⎬⎭ (22)

where T represents the length of the operating hours; CCCS,t is the
cost of CCS at time t; CP2G,t indicates the cost of P2G at time t; CP,t

denotes the cost of purchasing carbon emissions trading at time t;
CE,t is the cost of purchasing coal at time t;CWind,t represents the cost
of abandoned wind at time t; CGas,t is the cost of acquiring gas
at time t.

The electricity consumed by the CCS to collect CO2 from the gas
produced by the thermal power unit through compression and
separation mainly consists of fixed energy consumption and
operation energy consumption. The detailed calculation is
expressed as follows (Eqs 23–26).

PCCS,t � Pe
CCS + ψCCO2

CCS,t (23)

Ce
CCS � ∑T

t�1
ηetPCCS,tΔt � ∑T

t�1
ηet Pe

CCS + ψCCO2
CCS,t( )Δt (24)

Cr
CCS �

Ca 1 − ωa( )
365Na

(25)
CCCS � Ce

CCS + Cr
CCS (26)

where Pe
CCS represents CCS fixed energy consumption; ψ is the

energy coefficient for capturing CO2; C
CO2
CCS,t indicates the capacity to

capture CO2 at time t; Ce
CCS is the cost consumed in the operation of

CCS; ηe denotes the price of electricity at time t; Cr
CCS represents the

depreciated cost of CCS; Ca is the total investment cost of CCS; ωa

represents the depreciation factor of CCS; Na is the depreciable
year of CCS.

Similar to CCS, the cost of P2G can be expressed as (Eqs 27–29).

Ce
P2G � ∑T

t�1
ηetPP2G,tΔt + ηCO2ΖCO2 − ηCH4ECH4 ,t( ) (27)

Cr
P2G � Cb 1 − ωb( )

365Nb
(28)

CP2G � Ce
P2G + Cr

P2G (29)
where Ce

P2G is the cost consumed in the operation of P2G; ηCO2

denotes the price of CO2; ΖCO2 represents the volume of CO2

absorbed by P2G; ηCH4 is the proceeds from the generation of
CH4; ECH4 ,t indicates the total volume of CH4 produced at time
t; Cr

P2G represents the depreciated cost of P2G; Cb is the total
investment cost of P2G; ωb represents the depreciation factor of
P2G; Nb is the depreciable year of P2G.

The remaining portion of the costing is shown below
(Eqs 30–33).

CP � ∑T
t�1
τ ςPelectricty,t − ΖCO2 ,t( ) (30)

CE � ∑T
t�1

aEP
2
electricty,t + bEPelectricty,t + cE( ) (31)

CWind � ∑T
t�1
ηWindΔPWind,t (32)

CGas � ∑T
t�1
ηGasEGas,t (33)

where τ denotes the coefficient for purchasing carbon emissions; ς is
the CO2 emission factor for thermal power units; Pelectricty,t indicates
the power purchased from the grid at time t; ΖCO2 ,t represents the
volume of CO2 captured by CCS at time t; aE, bE and cE, is the
coefficient of operating costs of thermal power units; ηWind

represents the wind discard cost factor; ΔPWind,t is the power of
the discarded wind; ηGas indicates the price of natural gas; EGas,t

represents the volume of gas consumed by gas network at time t.

2.6 Constraints

The constraints that need to be satisfied during power system
operation include power balance, nodal voltage limits and thermal
generator output constraints (Eqs 34–37).

PLoad,t � Pelectricity,t + PWind,t − ΔPWind,t + PGCCP,t (34)
Vmin ≤Vi,t ≤Vmax (35)

Pmin,t ≤Pelectricity,t ≤Pmax,t (36)
dmin,t ≤

Pelectricity,t − Pelectricity,t−1
t

≤ dmax,t (37)

where PLoad,t denotes the load power at time t; Vi,t represents the
voltage at node i at time t; Vmin and Vmax are the upper and lower
voltage limits for safe grid operation; Pmin,t and Pmax,t denote the
upper and lower thresholds for thermal generators, respectively;
dmin,t and dmax,t indicate the upper and lower thresholds of climbing
power for thermal generators, separately.

The gas network system consists of three main components: the
gas supply source, the gas network and the gas load (Eqs 38, 39).
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EGas,a + EP2G,a � ELoad,a + EGT,a (38)
Fmin ≤Ft ≤Fmax (39)

where EGas,a is the injection at node a gas source point; EP2G,a

denotes the amount of gas produced by P2G at node a; ELoad,a

represents the gas load required by the gas network at node a; EGT,a

is the gas load consumed by GT at node a; Fmin and Fmax denote the
upper and lower thresholds for pipeline delivery of natural gas flow,
respectively; Ft represents the flow rate conveyed by the pipe
at time t.

The constraints for other auxiliary equipment are expressed as follows
Eqs 40–41.

SOCESS,min ≤ SOCESS,t ≤ SOCESS,max (40)
QESS,min ≤QESS,t ≤QESS,max (41)

where SOCESS,min and QESS,min indicate the ESS minimum active
power and reactive power, respectively; SOCESS,max and QESS,max

represent the ESS maximum active power and reactive power,
separately; SOCESS,t and QESS,t denote the active and reactive
power of ESS at time t, respectively.

3 Proposed control methodology

3.1 Markov game modeling

The energy management optimization problem can be modelled
as a Markov game which is solved by the presented MADRL
algorithm. The Markov game contains several components (Li
et al., 2023).

• Agent: In theMarkov game, the power grid and the gas grid are
respectively modeled as an agent.

• Environment: Before each decision, the agents collect
information from the nodes in their corresponding region.
Each agent makes a decision based on the local observation
information which calculates the reward value for each agent
based on the decision.

• State: The state ensemble St � sgridt , sgast{ } at time t includes all
relevant information about the grid and the gas network. The
state of the grid agent sgast and the state of the gas agent sgast are
defined as Eqs 42–43:

s1t � sgridt

� Pgrid,i,t, ϕgrid,i,t, PCCS,i,t, PWind,i,t, PGT,i,t, SOCESS,i,t, Vgrid,i,t,Mgrid,t{ }
(42)

s2t � sgast � EGas,a,t,EP2G,a,t,Mgas,t{ } (43)

where Pgrid,i,t and ϕgrid,i,t indicate the active and reactive power
demanded by the load at grid node i at time t, respectively; PWind,i,t

denotes the active power injected into node i at time t by WT;
SOCESS,i,t indicates the capacity ratio of the ESS at node i at time t;
Vgrid,i,t denotes the voltage value of grid at node i at time t; Mgrid,t

and Mgas,t are the price of grid and gas, respectively.

• Action: The action ensemble At � agridt , agast{ } Each agent
performs certain actions based on the observed
environmental data, which are denoted respectively as
Eqs 44–45.

a1t � agridt � PESS,i,t, PCCS,i,t, PESS,i,t{ } (44)
a2t � agast � PGT,i,t{ } (45)

where agridt and agast indicate the action of the grid and gas network,
respectively.

• Reward: The reward value obtained by the system is the value
returned when each agent performs an action based on the
current state. Each agent shares the same reward function,
which is expressed as Eq. 46.

rt � − l1pCP,t + l2p CCCS,t + CP2G,t + CE,t + CWind,t + CGas,t( )( )/Z
(46)

FIGURE 3
Training process of the proposed MADRL method.
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where l1 and l2 denoteWeighting coefficients; Z indicates a constant.

• State transition function: It represents the probability of state
transfer to the next step after the agent executes the action.
sgt+1 � F(sgt , agt ), g � 1, 2 where F(·) denotes the state
transition function.

The energy supply optimization problem of IEGS is transformed
into a Markov game, where the grid agent and the gas agent search

for optimal actions by continuously learning the game to attain the
best control. In the specific training process, each agent provides the
corresponding action by observing part of the state, with the
corresponding reward value passed to the agent. While obtaining
the reward value, the agent can observe the environment state at the
next time. As the number of iterations increases, each agent
continuously adjusts its action value through mutual games to
maximize the reward value.

3.2 Proposed approach based on MADRL

Each agent has the action-critic network framework which the
action network is responsible for strategy program evaluation and
the critic network is responsible for strategy parameter updating.
Through the interaction and iteration between the two networks, the
parameters of the network are continuously updated with the reward
value gradually moving towards maximization. The proposed
method adopts MASAC (Li X. Y. et al., 2024; Hu et al., 2024) as
a kernel, which effectively mitigates the influence of environmental
data fluctuations on energy scheduling decisions by sharing
environmental and historical information between agents. Each
intelligence in MASAC has four deep neural networks, namely,
actor network and critic network and target actor network and target
critic network. During the training process, only the parameters of
the actor network and the critic network are updated, whereas the
target actor network and the target critic network are employed to
stabilize the learning effect of the actor network and the
critic network.

3.2.1 Critic network
The target critic network is mainly employed to mitigate the rate

of parameter updates to balance the stability and speed of the
training process. It is presented as Eq. 47.

Q′ sgt , �a
g
t

∣∣∣∣∣θ′) � Q′ sgt , πϑ′
′ agt

∣∣∣∣sgt( )∣∣∣∣∣θ′( )( (47)

where πϑ(· | sgt ) is the value function in the actor network of agent g;
πϑ′
′ (· | sgt ) denotes the function of target actor network; ϑ′ is the

parameters of the target actor network; θ′ is the parameters of the
target critic network; �agt represents the value passed from the action
network of agent g. The computed Q-value is applied to compute the
loss function of the criticized network which can be calculated as Eqs
48, 49.

ht � r sgt , a
g
t( ) + υ(Q′(sgt , �agt+1∣∣∣∣∣θ′)) (48)

L θ( ) � E ht − Q sgt , a
g
t

∣∣∣∣θ( ) agt � πϑ(·∣∣∣∣ ∣∣∣∣agt )2( )[ ] (49)

where ht is the value of Q for the specific situation; r(sgt , agt ) denotes
the total reward obtained by multiple agents performing action agt in
global state sgt ; υ represents the discount factor; θ is the parameters of
the critic network; E(·) indicates the mathematical
expectation function.

The gradient of the criticized network parameters ∇θL(θ) is
obtained using the gradient descent method which can be presented
as Eqs 50, 51.

∇θL θ( ) � E ht − Q sgt , a
g
t

∣∣∣∣θ( )( )∇θQ sgt , a
g
t

∣∣∣∣θ( )[ ] (50)

FIGURE 4
Framework diagram of integrated PJM-5 node power system
and seven node gas system.

TABLE 1 Electricity price.

Time period Price ($/MWh)

0:00–8:00, 22:00–24:00 105.06

8:00–12:00, 18:00–22:00 130.36

12:00–18:00 177.24

TABLE 2 Parameters of the proposed approach.

Parameters Value

Temperature parameter 0.1

Reward discount factor 0.95

Memory capacity 1e6

Learning rate of actor 1e-3

Learning rate of critic 1e-3

Soft replacement 1e-2

Batch size for updating 256
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θt+1 ← θt − βc∇θL θ( ) (51)
where βc is the learning rate of the critic network; θt+1 denotes the
parameters of the critic network at time t+1.

3.2.2 Actor network
The expression for the value function in the actor network is

Eq. 52:

agt � πϑ · | sgt( ) (52)
where ϑ denotes the parameters of the actor network.

This leads to the gradient function of the actor network value
function ∇ϑL(ϑ) is Eqs 53, 54:

∇ϑL ϑ( ) � E ∇AQ sgt , a
g
t

∣∣∣∣θ( ) · ∇ϑ �agt )( ][ (53)
ϑt+1 ← ϑt − βa∇ϑL ϑ( ) (54)

where βa is the learning rate of the actor network.
In order to prevent the value function in the critic network from

overly agreeing with the Q-value calculated by the target value
function, a corresponding noise function ςt based on a normal
distribution is attached to the value passed from the target value

FIGURE 5
Convergence process of proposed method on the train set.

FIGURE 6
Load for a particular day on the test set.
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function to the critic network in the actor network which can be
shown as Eqs 55, 56.

�agt � πϑ′ · | sgt( ) + ςt (55)
ς ~ clip N 0, σ( ),−z, z( ) (56)

In the training process, the evaluation network is mainly
to provide guidance for the actor network to select the
optimal action, if the difference between the Q value solved
by the critic network and the target value function is huge, the
action learned by the actor network will be dispersed and the
critic network will be unstable in the learning of the value
function. Therefore, in the parameter updating process, the
parameters of both the target actor network and the target
critic network are updated after a period of training, which

updates their relevant parameters through soft updating as
Eqs 57–58 (Li et al., 2023).

θt+1′ ← εθt+1′ + 1 − ε( )θ′t (57)
ϑt+1′ ← εϑt+1′ + 1 − ε( )ϑ′t (58)

where ε is the soft update factor, which has a value much
less than 1.

The detailed flowchart of the MADRL algorithm proposed in
this paper is shown in Figure 3.

4 Case study

In this session, the parameters of the IEGS and the
proposed algorithm are firstly described, followed by an

TABLE 3 Comparison results of various approaches on the test day.

Approaches PSO MADDPG MATD3 Proposed approach

Total cost ($) 457,802.6 434,237.86 429,974.52 422,131.94

The cost of CCS ($) 9,064.32 9,125.36 9,432.11 10,584.25

The cost of P2G ($) 30,825.14 31,004.31 31,231.25 32,214.16

The cost of carbon trading ($) 15,979.9 15,384.45 15,198.9 14,777.1

The cost of thermal power ($) 220,042.46 206,324.54 204,865.14 202,772.15

The cost of abandoned wind ($) 6,632.14 6,241.33 6,032.58 5,442.03

The cost of gas source ($) 175,258.64 166,157.87 163,214.54 156,342.25

Carbon emission (tons) 1,158.66 1,025.63 1,013.26 985.14

FIGURE 7
Optimization results for electrical system.
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example to assess the effectiveness and superiority of the
proposed approach.

4.1 Case study setup

In order to effectively evaluate the performance of the proposed
scheme, the integrated PJM-5 node system (Li et al., 2017) and seven
nodes natural gas system (Li et al., 2008) are selected for
experimental analysis, where P2G is connected to the WT at
PJM-5 node E, which decreases the wind abandonment rate of
the WT and the P2G simultaneously achieves the CH4 transmission
through node three of the gas system. GT achieves the conversion
between gas and electricity by connecting to the PJM-5 node D and
the gas system node 6. The specific system architecture is shown in

Figure 4. The electricity price is divided into three different prices as
shown in Table 1, where the electricity price for 0:00–8:00 and 22:
00–24:00 is $105.06/MW, for 8:00–12:00 and 18:00–22:00 is
$130.36/MW and for the remaining hours is $177.24/MW. The
price of gas sold from the two wells is 78.39$/MW. The price for
purchasing carbon credits in the carbon market is 15$/ton. Detailed
parametric data of IEGS can be found in (Li et al., 2023). Parameters
of the proposed approach are shown in Table 2.

4.2 Evaluation of the proposed
control model

In order to verify the effectiveness and advancement of the
proposed model, the following methods are selected for comparative
analysis. The reward variation of the proposed method during the
training process is shown in Figure 5, where the performance of the

FIGURE 8
Optimization results for gas system.

FIGURE 9
Comparison of carbon emission.

FIGURE 10
Comparison of wind power consumption.
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proposed method is evaluated by the variation of the reward value.
Since the parameters of the action neural network are randomly
initialized at the beginning of the training process, the agent is
unaware of how to make decisions to reduce the total operating cost.
Therefore, the agent chooses to explore the environment to gain
more experience. The experience gained from the pre-training is
stored in the experience pool to optimize the control strategy with
the experience replay mechanism. Each iteration step samples a
certain amount of historical training data from the experience pool
for updated parameters of the action and critic neural network. As
can be seen from the figure, the cumulative reward earned by the
agent gradually increases during the process. At the end of
100 stochastic optimizations, the reward rises rapidly, and the
curve starts to converge when the training reaches about 1,000 times.

After several training sessions, the proposedmodel has acquired the
ability to cogitate for optimal decision making in new environments.
One particular day of data is chosen for the validation analysis, with
specific information displayed in Figure 6. As can be seen, the power of
the WT is higher in the early hours of the morning, while the electrical
loads are smaller, leaving the system struggling to completely dissipate
all the wind power. During the period 5:00–24:00, the power ofWT has
been less than the electrical load.

In this paper, three algorithms, particle swarm optimization (PSO)
(Du et al., 2023), multi-agent deep deterministic policy gradient
(MADDPG) (Abid et al., 2024), and multi-agent twin delayed deep
deterministic policy gradients (MATD3) (Wang et al., 2023b) are
selected for comparative validation as a way to verify the reliability
and robustness of the proposed approach. The specific results of the
proposed method with other comparison schemes on the test set are
shown in Table 3. PSO performs the worst in the face of complex IEGS
such that the optimal scheduling scheme is not obtained. Compared to
the PSO, MADDPG selects multiple agents for optimal scheduling.
Coordinated management between energy sources is achieved using
communication between agents to obtain better performance.
MATD3 adds two sub-networks agents for Q-value estimation to
solve the problem due to Q-value overestimation, which is a further
improvement compared to MADDPG. The proposed scheme adopts
MASAC as the kernel, which expands the stochasticity of the scheduling
process by increasing the entropy function, to obtain the optimal
scheduling strategy. The proposed approach represents a total cost

reduction of 35,670.66$ and a reduction in carbon emission of
173.52 tons compared to PSO.

The detailed outputs of the electrical system and the gas system in
the proposed method on a particular day of the test set are presented in
Figures 7, 8 respectively. From Figure 7, it can be observed that during
the period 0:00–8:00, due to the lower electricity price and higher wind
power output, P2G consumes more electricity for CH4 production,
which reduces the CO2 release from the system while consuming wind
power, and the GT is almost inactive at this time. During this period the
BESS starts charging and the CCS is capturing carbon to consume
electricity. During 8:00–12:00, as the price of electricity increases, the
power consumed by the P2G and CCS starts to decrease, the GT
gradually starts to work, and the BESS releases the stored power. During
the period 12:00–18:00, when the tariff reaches its maximum value, the
GT reaches its maximum power to achieve gas to power conversion,
which reduces the cost of purchasing electricity for the system. It can
also be seen from Figure 8 that the proposed model chooses to increase
the power from electricity to gas when the electricity price is low. In
contrast, when the electricity price is high, the proposed model chooses
to increase the power of gas-to-electricity conversion.

4.3 Evaluation of the proposed GCCP model

In order to verify the validity of the GCCP model, this paper
constructs four scenarios for simulation analysis. The economic
scheduling strategy in scenario one does not consider CCS and P2G.
The economic scheduling strategy in scenario two considers only
CCS. The economic scheduling strategy in scenario three considers
mainly P2G. The economic scheduling strategy in scenario four
introduces the GCCP proposed in this paper.

The comparison of CO2 emissions under different scenarios is
displayed in Figure 9. Comparing the carbon emissions of scenario
one and scenario 2, it can be observed that the carbon capture device

Can significantly reduce the CO2 emissions of the IEGS, which is
about 53.4% of the total emissions, with a total of 1,210 tons of CO2

reduced in scenario two compared with scenario 1. By comparing
scenario one and scenario 3, the CO2 emissions of the system are almost
unchanged because the CO2 demanded for P2G is purchased from an
external source. The higher carbon emissions in scenario one than in
scenario three in the 0:00–6:00 interval are due to the conversion of
excess wind energy achieved through P2G, which reduces the amount
of gas purchased online to reduce carbon emissions. When the GCCP
model was introduced in scenario 4, the carbon emissions at each hour
are significantly reduced compared to the other scenarios, with a
reduction of 1,476 tons compared to scenario 1.

The wind power output under different scenarios is shown in
Figure 10. Comparing scenario 2 with scenario 1, which is the peak
period of wind power output from 1:00 to 5:00, it can be observed that
there is a partial improvement in wind power consumption after the use
of the CCS device. Comparing scenario one and scenario 3, it is clear
that the P2G device can significantly increase the wind power output,
and the wind power generated in scenario three does not achieve the
maximum value due to the maximum input power of the device. In
scenario 4, the GCCP coupling device is adopted to significantly
enhance the wind power consumption, which reaches 92.81%.

The voltage values of the proposed approach at each moment of
each node on a certain day of the test set are shown in Figure 11, from

FIGURE 11
Voltage profiles of power system.

Frontiers in Energy Research frontiersin.org12

Feng et al. 10.3389/fenrg.2024.1428624

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1428624


which it can be seen that although the voltage values of all nodes before
and after themoment have a large volatility, the voltage has been located
in the range of [0.96, 1.04]. It conforms to the requirement of stability
and security operation of the system, which again proves the
effectiveness of the proposed approach in voltage control.

5 Conclusion

In this study, a MADRL-based IEGS scheduling approach
considering GCCP with simultaneous consideration of system
security and economy is proposed. MADRL replicates historical
data to address the negative impacts caused by time series data with
efficient exploratory techniques for seeking optimization. Agents
seek optimal control strategies by continuously interacting with each
other with information. The detailed conclusions of the study are
summarized as follows: (1) Compared to several other methods, the
proposed controlling framework and approach provide the best
performance. (2) The explainability of the properties in detail in the
IEGS provides additional evidence of validation for the proposed
controlling framework. (3) The effectiveness of the proposed GCCP
model is verified through four different scenarios, reducing carbon
emissions by 1,476 tons and increasing the proportion of wind
power consumption by 4.41% compared to Scenario 1.
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